第二章《二次函数》单元检测试题(北师大版_附答案!)
北师大版数学九年级下册第二章二次函数(单元测试)(含简单答案)

第二章二次函数 单元测试 九年级下册数学北师大版一、单选题(本大题共12小题,每小题3分,共36分)1.已知抛物线22()1y x =-+,下列结论错误的是( )A .抛物线开口向上B .抛物线的对称轴为直线2x =C .抛物线的顶点坐标为(2,1)D .当2x <时,y 随x 的增大而增大 2.点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为( )A .m>2B .32m >C .1m <D .322m <<3.如图是拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可以近似看成抛物线y =-0.01(x -20)2+4,桥拱与桥墩AC 的交点C 恰好位于水面,且AC ⊥x 轴,若OA =5米,则桥面离水面的高度AC 为( )A .5米B .4米C .2.25米D .1.25米4.用配方法将二次函数21242y x x =--化为2()y a x h k =-+的形式为( ) A .21(2)42y x =-- B .21(1)32y x =-- C .21(2)52y x =-- D .21(2)62y x =-- 5.在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+B .()221y x =++C .()221y x =+-D .()221y x =-- 6.已知抛物线22y x kx k =+-的对称轴在y 轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k 的值是( )A .5-或2B .5-C .2D .2-7.已知二次函数2245y x x =-+,当函数值y 随x 值的增大而增大时,x 的取值范围是( )A .1x <B .1x >C .2x <D .2x >8.已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .29.二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的函数表达式为()20y ax bx c a =++≠,若此炮弹在第6秒与第13秒时的高度相等,则下列时间中炮弹所在高度最高的是( )A .第7秒B .第9秒C .第11秒D .第13秒11.如图,抛物线2(0)y ax bx c a =++≠的对称轴为2x =-,下列结论正确的是( )A .a<0B .0c >C .当<2x -时,y 随x 的增大而减小D .当2x >-时,y 随x 的增大而减小12.将二次函数223y x x =-++的图象在x 轴上方的部分沿x 轴翻折后,所得新函数的图象如图所示.当直线y x b =+与新函数的图象恰有3个公共点时,b 的值为( )A .214-或3-B .134-或3-C .214或3-D .134或3-二、填空题(本大题共8小题,每小题3分,共24分)13.如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .则当水位下降m=________时,水面宽为5m ?14.根据物理学规律,如果不考虑空气阻力,以40m /s 的速度将小球沿与地面成30︒角的方向击出,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间的函数关系是2520h t t =-+,当飞行时间t 为___________s 时,小球达到最高点.15.如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .16.如图,正方形ABCD 的边长为2,E 为边AD 上一动点,连接CE ,以CE 为边向右侧作正方形CEFG ,连接DF ,DG ,则DFG 面积的最小值为__________.17.如图,在平面直角坐标系中,菱形ABCD 的一边AB 在x 轴上,顶点B 在x 轴正半轴上.若抛物线y =x 2﹣5x +4经过点C 、D ,则点B 的坐标为______.18.如图是二次函数2y x bx c =++的图像,该函数的最小值是__________.19.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点()1,0-和点()2,0,以下结论:⊥<0abc ;⊥420a b c -+<;⊥0a b +=;⊥当12x <时,y 随x 的增大而减小.其中正确的结论有___________.(填写代表正确结论的序号)20.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系:2520h t t =-+,则当小球飞行高度达到最高时,飞行时间t =_________s .三、解答题(本大题共5小题,每小题8分,共40分)21.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降低1元,平均每天可多售出2件.(1)若每件衬衫降价4元时,平均每天可售出多少件衬衫?此时每天销售获利多少元?(2)在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,同每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到1300元吗?如果能,请写出降价方案,如果不能,请说明理由.22.为增加农民收入,助力乡村振兴.某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y (千克)与销售单价x (元/千克)(8≤x ≤40)满足的函数图象如图所示.(1)根据图象信息,求y 与x 的函数关系式;(2)求五一期间销售草莓获得的最大利润.23.2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系.图中的抛物线2117C :1126y x x =-++近似表示滑雪场地上的一座小山坡,某运动员从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线221:8C y x bx c =-++运动.(1)当运动员运动到离A 处的水平距离为4米时,离水平线的高度为8米,求抛物线2C 的函数解析式(不要求写出自变量x 的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为1米? (3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b 的取值范围.24.已知二次函数2243y x x =-+的图像为抛物线C .(1)抛物线C 顶点坐标为______;(2)将抛物线C 先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线1C ,请判断抛物线1C 是否经过点()2,3P ,并说明理由;(3)当23x -≤≤时,求该二次函数的函数值y 的取值范围.25.如图,抛物线y =x 2+x ﹣2与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A,点B和点C的坐标;(2)抛物线的对称轴上有一动点P,求PB+PC的值最小时的点P的坐标.参考答案:1.D2.B3.C4.D5.B6.B7.B8.A9.A10.B11.C12.A13.1.12514.215.416.3217.(2,0)18.4-19.⊥⊥⊥20.221.(1)平均每天可售出28件衬衫,此时每天销售获利1008元.(2)每件衬衫应降价10元.(3)不能,22.(1)3216(832)120(3240)x x y x -+≤≤⎧=⎨≤⎩<;(2)最大利润为3840元 23.(1)213482y x x =-++;(2)12米;(3)3524b ≥. 24.(1)()1,1(2)不经过,(3)119y≤≤25.(1)A(﹣2,0),B(1,0),C(0,﹣2).(2)P(12-,12-)。
第二章 二次函数 单元测试卷 2022-2023学年 北师大版数学九年级下册(含答案)

第二章二次函数单元测试卷一、选择题(每小题3分,共24分)1.下列函数是y关于x的二次函数的是()A.y=-x B.y=2x+3C.y=x2-3 D.y=1 x2+12.把函数y=(x-1)2+2的图象向右平移1个单位长度,平移后图象的函数表达式为()A.y=x2+2 B.y=(x-1)2+1C.y=(x-2)2+2 D.y=(x-1)2-33.二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是() A.y=(x-1)2+2 B.y=(x-1)2+3C.y=(x-2)2+2 D.y=(x-2)2+44.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是() A.m<2 B.m>2C.0<m≤2 D.m<-25.根据下列表格对应值:x … 6.17 6.18 6.19 6.20 6.21…ax2+bx+c …-0.02-0.010.010.040.08…判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的取值范围是()A.6.20<x<6.21 B.6.17<x<6.18C.6.18<x<6.19 D.6.19<x<6.206.在同一直角坐标系中,二次函数y=ax2与一次函数y=bx+c的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()(第6题)7.使用家用燃气灶烧开同一壶水所需的燃气量y(m3)与旋钮的旋转角度x(度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()(第7题)A.18度B.36度C.41度D.58度8.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=52,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B的坐标为(5,4)B.AB=ADC.a=-1 6D.OC·OD=16(第8题)(第12题)二、填空题(每小题3分,共15分)9.二次函数y=(x+3)2+2的图象的对称轴是直线________.10.已知函数y=(m-1)x m2+1+3x,当m=________时,它是二次函数.11.已知二次函数的图象经过(-1,0)、(3,0)、(0,3)三点,那么这个二次函数的表达式为____________.12.如图所示,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y关于x的函数表达式为________.13.如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2-4ac>0;③8a+c<0;④5a+b+2c>0,其中正确的结论有________(只填序号).(第13题)三、解答题(共13小题,共81分)14.(5分)把下列二次函数化为一般形式,并指出二次项系数、一次项系数及常数项.(1)y=(1-x)(1+x);(2)y=4x2-12x(1+x).。
北师大版九年级下第二章《二次函数》单元测试含答案

北师大版九年级数学下册第二章单元测试一、 选择题(每小题4分,共10小题,满分40分) 每题有A 、B 、C 、D 四个选项,只有一个是正确的,请把正确的选项填写在题的括号内.1.二次函数y=a (x+m )2+n 的图象如图,则一次函数y=mx+n 的图象经过( )A .第一、二、三象限 B.第一、二、四象限 C .第二、三、四象限D .第一、三、四象限 2.函数y=k x与y=﹣kx 2+k (k≠0)在同一直角坐标系中的图象可能是( ) A . B . C . D . 3.关于二次函数y=x 2﹣2x ﹣3的图象,下列说法中错误的是( )A .当x <2,y 随x 的增大而减小B .函数的对称轴是直线x=1C .函数的开口方向向上 D.函数图象与y 轴的交点坐标是(0,﹣3)4.如图,若a <0,b >0,c <0,则抛物线y=ax 2+bx+c 的大致图象为( )A .B .C .D .5.如图所示是二次函数y=ax 2﹣x+a 2﹣1的图象,则a 的值是( )A.a=﹣1 B.a=12C.a=1 D.a=1或a=﹣16.抛物线y=x2﹣2x﹣3的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=x2+bx+c,则b、c的值为()A.b=2,c=2 B.b=2,c=﹣1 C.b=﹣2,c=﹣1 D.b=﹣3,c=27.根据下列表格对应值:判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.x<3 B.x>5 C.3<x<4 D.4<x<58.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc <0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是抛物线上两点,则y1<y2,其中说法正确的是()A.①② B.②③ C.①②④D.②③④9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>510.已知抛物线和直线l在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=﹣1,P1(x1,y1)、P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线l上的点,且﹣1<x1<x2,x3<﹣1,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y3<y1<y2C.y3<y2<y1D.y2<y1<y3二、填空题(每小题5分,共4小题,满分20分)请把正确的答案填写在横线上.11.二次函数y=x2﹣2x+6的最小值是.12.抛物线y=x2﹣5x+6与x轴交于A、B两点,则AB的长为.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.如图,抛物线y=x+1)(x﹣3)与x轴交于A、B两点,与y轴交于点C,点D为该抛物线的对称轴上一点,当点D到直线BC和到x轴的距离相等时,则点D的坐标为.三、解答题(共8小题,满分90分)15.二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求该二次函数图象的顶点坐标和对称轴.16.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.17.已知二次函数y=﹣x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(﹣1,0),与y轴的交点坐标为(0,3).(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围.18.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米,现在O点为原点,OM所在直线为x轴建立直角坐标系(如图所示).(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的函数解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABCD,使A、D点在抛物线上,B、C点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.19.已知某种产品的进价为每件40元,现在的售价为每件60元,每星期可卖出300件.市场调查发现,该产品每降价1元,每星期可多卖出20件,由于供货方的原因销量不得超过380件,设这种产品每件降价x元(x为整数),每星期的销售利润为w元.(1)求w与x之间的函数关系式,并写出自变量x的取值范围;(2)该产品销售价定为每件多少元时,每星期的销售利润最大?最大利润是多少元?(3)该产品销售价在什么范围时,每星期的销售利润不低于6000元,请直接写出结果.20.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.21.如图,已知二次函数y=ax2+bx+8(a≠0)的图象与x轴交于点A(﹣2,0),B(4,0)与y轴交于点C.(Ⅰ)求抛物线的解析式及其顶点D的坐标;(Ⅱ)求△BCD的面积;(Ⅲ)若直线CD交x轴与点E,过点B作x轴的垂线,交直线CD与点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF总有公共点.试探究抛物线最多可以向上平移多少个单位长度(直接写出结果,不写求解过程).22.如图,已知正方形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,抛物线y=23x2+bx+c经过点A,B,交正x轴于点D,E是OC上的动点(不与C重合)连接EB,过B点作BF⊥BE交y轴与F(1)求b,c的值及D点的坐标;(2)求点E在OC上运动时,四边形OEBF的面积有怎样的规律性?并证明你的结论;(3)连接EF,BD,设OE=m,△BEF与△BED的面积之差为S,问:当m为何值时S最小,并求出这个最小值.23.如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=12x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.参考答案及解析1. 【答案】C .解析:∵抛物线的顶点在第四象限,∴﹣m >0,n <0,∴m <0,∴一次函数y=mx+n 的图象经过二、三、四象限,故选C .2. 【答案】B .解析:由解析式y=﹣kx 2+k 可得:抛物线对称轴x=0;A 、由双曲线的两支分别位于二、四象限,可得k <0,则﹣k >0,抛物线开口方向向上、抛物线与y 轴的交点为y 轴的负半轴上;本图象与k 的取值相矛盾,故A 错误;B 、由双曲线的两支分别位于一、三象限,可得k >0,则﹣k <0,抛物线开口方向向下、抛物线与y 轴的交点在y 轴的正半轴上,本图象符合题意,故B 正确;C 、由双曲线的两支分别位于一、三象限,可得k >0,则﹣k <0,抛物线开口方向向下、抛物线与y 轴的交点在y 轴的正半轴上,本图象与k 的取值相矛盾,故C 错误;D 、由双曲线的两支分别位于一、三象限,可得k >0,则﹣k <0,抛物线开口方向向下、抛物线与y 轴的交点在y 轴的正半轴上,本图象与k 的取值相矛盾,故D 错误.故选B .3. 【答案】A .解析:∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线开口向上,对称轴为x=1,当x <1时y 随x 的增大而减小,故B 、C 正确,A 不正确, 令x=0可得y=﹣3,∴抛物线与y 轴的交点坐标为(0,﹣3),故D 正确,故选A .4. 【答案】B .解析:∵a <0,∴抛物线的开口方向向下,故第三个选项错误;∵c <0,∴抛物线与y 轴的交点为在y 轴的负半轴上,故第一个选项错误;∵a <0、b >0,对称轴为x=2b a>0, ∴对称轴在y 轴右侧,故第四个选项错误.故选B .5. 【答案】C .解析:由图象得,此二次函数过原点(0,0),把点(0,0)代入函数解析式得a 2﹣1=0,解得a=±1;又因为此二次函数的开口向上,所以a >0;所以a=1.故选C .6. 【答案】B解析:y=x 2﹣2x ﹣3=x 2﹣2x+1﹣4=(x ﹣1)2﹣4,图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=(x ﹣1+2)2﹣4+2=(x+1)2﹣2=x 2+2x ﹣1,则b=2,c=﹣1,故选B .7. 【答案】C解析:∵x=3时,y=0.5,即ax 2+bx+c >0;x=4时,y=﹣0.5,即ax 2+bx+c <0,∴抛物线与x 轴的一个交点在(3,0)和(4,0)之间,∴关于x 的方程ax 2+bx+c=0(a≠0)的一个解x 的范围是3<x <4.故选C .8. 【答案】A解析:∵抛物线开口向上,∴a >0,∵抛物线对称轴为直线x=﹣2b a=﹣1, ∴b=2a >0,则2a ﹣b=0,所以②正确;∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①正确;∵x=2时,y >0,∴4a+2b+c >0,所以③错误;∵点(﹣5,y 1)离对称轴的距离与点(3,y 2)离对称轴的距离相等,∴y 1=y 2,所以④不正确.故选A .9. 【答案】D.解析:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x 轴的另一个交点坐标为(﹣1,0).利用图象可知:ax 2+bx+c <0的解集即是y <0的解集,∴x <﹣1或x >5.故选D .考点:二次函数利用图象.10. 【答案】D .解析:对称轴为直线x=﹣1,且﹣1<x 1<x 2,当x >﹣1时,y 2<y 1,又因为x 3<﹣1,由一次函数的图象可知,此时点P 3(x 3,y 3)在二次函数图象上方,所以y 2<y 1<y 3.故选D .11. 【答案】5.解析:y=x 2﹣2x+6=x 2﹣2x+1+5=(x ﹣1)2+5,可见,二次函数的最小值为5.12. 【答案】1.解析:当y=0,则0=x 2﹣5x+6,解得:x1=2,x2=3,故AB的长为:3﹣2=1.13.【答案】0或1①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4﹣4m=0,解得:m=1.14.【答案】(11,﹣.解析:如图所示:∵抛物线y=x+1)(x﹣3)与x轴交于A、B两点,与y轴交于点C,x+1)(x﹣3)=0时,x=﹣1,或x=3,当x=0时,∴A(﹣1,0),B(3,0),C(0,,对称轴x=1,∴BM=3﹣1=2,当点D到直线BC和到x轴的距离相等时,点D在∠ABC或∠ABE的平分线上,①点D在∠ABC的平分线上时,∵tan∠=∴∠ABC=60°,∴∠ABD=30°,∴∴D(1;②点D 在∠ABE 的平分线上时,∠ABE=180°﹣60°=120°,∴∠ABD=60°,∴∴D (1,﹣.15.【答案】(1)43b c =-⎧⎨=⎩ ;(2)顶点坐标为(2,﹣1),对称轴为直线x=2解析:(1)∵二次函数y=x 2+bx+c 的图象经过点(4,3),(3,0),∴3=16+4093b cb c +⎧⎨=++⎩ ,解得43b c =-⎧⎨=⎩ ;(2)∵该二次函数为y=x 2﹣4x+3=(x ﹣2)2﹣1.∴该二次函数图象的顶点坐标为(2,﹣1),对称轴为直线x=2考点:1.待定系数法求二次函数解析式;2.二次函数的性质.16. 【答案】(1)y=﹣x 2﹣4x ;(2)(﹣2,4)、(﹣4)、(﹣2﹣4). 解析:(1)由已知条件得20(4)4(4)0c a c =⎧⎨⨯--⨯-+=⎩,解得10a c =-⎧⎨=⎩,所以,此二次函数的解析式为y=﹣x 2﹣4x ;(2)∵点A 的坐标为(﹣4,0),∴AO=4,设点P 到x 轴的距离为h ,则S △AOP =12×4h=8,解得h=4,①当点P 在x 轴上方时,﹣x 2﹣4x=4,解得x=﹣2,所以,点P 的坐标为(﹣2,4),②当点P 在x 轴下方时,﹣x 2﹣4x=﹣4,解得x 1=﹣x 2=﹣2﹣所以,点P 的坐标为(﹣4)或(﹣2﹣4),综上所述,点P 的坐标是:(﹣2,4)、(﹣4)、(﹣2﹣4).17. 【答案】(1)b=2,c=3, y=﹣x 2+2x+3.(2) ﹣1<x <3解析:(1)将点(﹣1,0),(0,3)代入y=﹣x 2+bx+c 中,得103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩. ∴y=﹣x 2+2x+3.(2)令y=0,解方程﹣x 2+2x+3=0,得x 1=﹣1,x 2=3,抛物线开口向下,∴当﹣1<x <3时,y >0.18. 【答案】(1)M (12,0),P (6,6);(2)y=16-x 2+2x ;(3)15米. 解析:(1)M (12,0),P (6,6)(2)∵顶点坐标(6,6)∴设y=a (x ﹣6)2+6(a≠0)又∵图象经过(0,0)∴0=a (0﹣6)2+6∴a=16- ∴这条抛物线的函数解析式为y=16-(x ﹣6)2+6,即y=16-x 2+2x ; (3)设A (x ,y )∴A (x ,16-(x ﹣6)2+6) ∵四边形ABCD 是矩形, ∴AB=DC=16-(x ﹣6)2+6, 根据抛物线的轴对称性,可得:OB=CM=x ,∴BC=12﹣2x ,即AD=12﹣2x ,∴令L=AB+AD+DC=2[16-(x ﹣6)2+6]+12﹣2x=13-x 2+2x+12=13-(x ﹣3)2+15. ∴当x=3,L 最大值为15∴AB 、AD 、DC 的长度之和最大值为15米.19. 【答案】(1)w=﹣20x 2+100x+6000,x ≤4,且x 为整数;(2) 当定价为57或58元时有最大利润6120元;(3) 售价不低于56元且不高于60元时,每星期利润不低于6000元.解析: (1)w=(20﹣x )(300+20x )=﹣20x 2+100x+6000,∵300+20x≤380,∴x≤4,且x 为整数;(2)w=﹣20x 2+100x+6000=﹣20(x ﹣52)2+6125, ∵﹣20(x ﹣52)2≤0,且x≤4的整数, ∴当x=2或x=3时有最大利润6120元,即当定价为57或58元时有最大利润6120元;(3)根据题意得:﹣20(x ﹣52)2+6125≥6000, 解得:0≤x≤5.又∵x≤4,∴0≤x≤4答:售价不低于56元且不高于60元时,每星期利润不低于6000元.20. 【答案】(1)y=x 2﹣2x ﹣3.(2)对称轴x=1,顶点坐标(1,﹣4).(3)点P 在该抛物线上滑动到(4)或(1﹣4)或(1,﹣4)时,满足S △PAB =8.解析:(1)∵抛物线y=x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,∴方程x 2+bx+c=0的两根为x=﹣1或x=3,∴﹣1+3=﹣b ,﹣1×3=c , ∴b=﹣2,c=﹣3,∴二次函数解析式是y=x 2﹣2x ﹣3.(2)∵y=﹣x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的对称轴x=1,顶点坐标(1,﹣4).(3)设P 的纵坐标为|y P |,∵S △PAB =8, ∴12AB•|y P |=8, ∵AB=3+1=4,∴|y P |=4,∴y P =±4, 把y P =4代入解析式得,4=x 2﹣2x ﹣3,解得,x=1± 把y P =﹣4代入解析式得,﹣4=x 2﹣2x ﹣3,解得,x=1,∴点P 在该抛物线上滑动到(4)或(1﹣4)或(1,﹣4)时,满足S △PAB =8.21. 【答案】(Ⅰ)抛物线的解析式:y=﹣x 2+2x+8=﹣(x ﹣1)2+9,顶点D (1,9);(Ⅱ)6;(Ⅲ)72.解析:(Ⅰ)将A 、B 的坐标代入抛物线的解析式中,得: 428016480a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=⎩, ∴抛物线的解析式:y=﹣x 2+2x+8=﹣(x ﹣1)2+9,顶点D (1,9);(Ⅱ)如图1,∵抛物线的解析式:y=﹣x2+2x+8,∴C(0,8),∵B(4,0),∴直线BC解析式为y=﹣2x+8,∴直线和抛物线对称轴的交点H(1,6),∴S△BDC=S△BDH+S△DHC=12×3×1+12×3×3=6.(Ⅲ)如图2,∵C(0,8),D(1,9);代入直线解析式y=kx+b,∴89 bk b=⎧⎨+=⎩,解得:18 kb=⎧⎨=⎩,∴y=x+8,∴E点坐标为:(﹣8,0),∵B(4,0),∴x=4时,y=4+8=12∴F点坐标为:(4,12),设抛物线向上平移m个单位长度(m>0),则抛物线的解析式为:y=﹣(x﹣1)2+9+m;当x=﹣8时,y=m﹣72,当x=4时,y=m,∴m﹣72≤0 或m≤12,∴0<m≤72,∴抛物线最多向上平移72个单位.22.【答案】(1)b=43,c=2;D点坐标为(3,0).(2)点E在OC上运动时,四边形OEBF的面积不变;(3)当m=2S最小为0.解析:(1)把点A(0,2)、B(2,2)代入抛物线y=23-x2+bx+c得28223cb c=⎧⎪⎨-++=⎪⎩解得b=43,c=2;∴y=23-x2+43x+2;令23-x2+43x+2=0解得x1=﹣1,x2=3∴D点坐标为(3,0).(2)点E在OC上运动时,四边形OEBF的面积不变;∵四边形OABC是正方形∴AB=BC,∠BCE=∠BAE=∠ABC=90°又∵BF⊥BE∴∠FBE=90°∴∠ABF=∠CBE∴△ABF≌△BCE∴四边形OEBF的面积始终等于正方形OABC的面积.(3)如图,可以看出S△BEF=S梯形OCBF﹣S△OEF﹣S△BEC=12(2+2+m)×2﹣12m(2+m)﹣12(2﹣m)×2=﹣12m2+m+2S △BED =12×(3﹣m )×2 =3﹣m 两个三角形的面积差最小为0,即3﹣m=﹣12m 2+m+, 解得∵E 是OC 上的动点∴m=2当m=2S 最小为0.23. 【答案】(1)最高点P 的坐标为(2,4);(2)点A 的坐标为(72,74);(3)214;(4)点M 的坐标为(32,154). 解析:(1)由题意得,y=﹣x 2+4x=﹣(x ﹣2)2+4,故二次函数图象的最高点P 的坐标为(2,4);(2)联立两解析式可得:2124y x y x x ⎧=⎪⎨⎪=-+⎩,解得:00x y =⎧⎨=⎩,或7274x y ⎧=⎪⎪⎨⎪=⎪⎩. 故可得点A 的坐标为(72,74); (3)如图,作PQ ⊥x 轴于点Q ,AB ⊥x 轴于点B .S △POA =S △POQ +S △梯形PQBA ﹣S △BOA =12×2×4+12×(74+4)×(72﹣2)﹣12×72×74=4+6916﹣4916=214; (4)过P 作OA 的平行线,交抛物线于点M ,连结OM 、AM ,则△MOA 的面积等于△POA 的面积.设直线PM 的解析式为y=12x+b , ∵P 的坐标为(2,4), ∴4=12×2+b ,解得b=3, ∴直线PM 的解析式为y=12x+3. 由21324y x y x x ⎧=+⎪⎨⎪=-+⎩,解得24x y =⎧⎨=⎩,32154x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴点M 的坐标为(32,154).。
北师大版数学九年级下册第二章二次函数单元检测试卷(含答案解析)

数学北师九年级下第二章二次函数单元检测(时间:45分钟,满分:100分)一、选择题(本大题共8小题,每小题4分,共32分) 1.在下列函数关系式中,y 是x 的二次函数的是( ).A .xy=6 B .xy =-6 C .x 2+y =6 D .y =-6x 2.抛物线①y =2x 2,②y =223x-7,③y =213x +5中,开口从大到小的顺序为( ).A .①②③B .③②①C .①③②D .②①③3.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( ).A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h4.在反比例函数y =ax中,当x >0时,y 随x 的增大而减小,则二次函数y =ax 2-ax 的图象大致是下图中的( ).5.如图所示的二次函数y =ax 2+bx +c 的图象中,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a -b <0;(4)a +b +c <0.你认为其中错误的有( ).A .2个B .3个C .4个D .1个6.已知二次函数y =2x 2+9x +34,当自变量x 取两个不同的值x 1,x 2时,函数值相等,则当自变量x 取x 1+x 2时的函数值与( ). A .x =1时的函数值相等 B .x =0时的函数值相等 C .x =14时的函数值相等D .x =94-时的函数值相等 7.已知函数y 1=x 2与函数y 2=12x -+3的图象如图所示,若y 1<y 2,则自变量x 的取值范围是( ).A .32-<x <2 B .x >2或x <32- C .-2<x <32 D .x <-2或x >328.根据下表中的二次函数y =ax 2+bx +c 的自变量x 与函数y 的对应值,可判断该二次函数的图象与x 轴( ).A y 轴两侧 C .有两个交点,且它们均在y 轴同侧D .无交点二、填空题(本大题共5小题,每小题5分,共25分)9.把抛物线y =3x 2先向左平移3个单位长度,再向上平移2个单位长度,所得抛物线的解析式为______.10.二次函数y =x 2-mx +3的图象与x 轴的交点如图所示,根据图中信息可得到m 的值是__________.11.已知二次函数的图象开口向下,且与y轴的正半轴相交.请你写出一个满足条件的二次函数的关系式__________.12.若直线y=ax-6与抛物线y=x2-4x+3只有一个交点,则a的值是__________.13.给出下列命题:命题1.点(1,1)是双曲线y=1x与抛物线y=x2的一个交点.命题2.点(1,2)是双曲线y=2x与抛物线y=2x2的一个交点.命题3.点(1,3)是双曲线y=3x与抛物线y=3x2的一个交点.……请你观察上面的命题,猜想出命题n(n是正整数):__________________________. 三、解答题(本大题共4小题,共43分)14.(8分)已知点A(1,1)在二次函数y=x2-2ax+b图象上.(1)用含a的代数式表示b;(2)如果该二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.15.(10分)如图①,是苏州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1 m,拱桥的跨度为10 m,桥洞与水面的最大距离是5 m,桥洞两侧壁上各有一盏距离水面4 m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图②).(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.图①图②16.(12分)如图所示,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S△ABC,求点D的坐标.17.(13分)宏达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其他费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的二次函数关系式(不要求写出x的取值范围);(3)请把(2)中的二次函数配方成y=a(x-h)2+k的形式,并据此说明,该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.参考答案1.答案:C2.解析:二次项系数的绝对值越小,开口越大. ∵1233<-<2,∴抛物线的开口从大到小的顺序为③②①. 答案:B 3.答案:A4.解析:在反比例函数y =ax中,当x >0时,y 随x 的增大而减小,所以a >0. 所以二次函数y =ax 2-ax 开口向上,且与x 轴交于(0,0)和(1,0)点,应选A . 答案:A5.解析:∵抛物线y =ax 2+bx +c 与x 轴有两个交点, ∴b 2-4ac >0.∵抛物线y =ax 2+bx +c 与y 轴的交点坐标是(0,c ), ∴c <1.∵对称轴x =2ba->-1, 又a <0,∴2a -b <0.当x =1时,y <0,即当x =1时,y =a +b +c <0, ∴只有(2)错误. 答案:D6.解析:利用抛物线的对称性可知,x 1+x 2正好是对称轴的横坐标x 的值的2倍,即x 1+x 2=ba-.以对称轴为基础,正好与x =0时的函数值相等. 答案:B7.解析:y 1<y 2,即抛物线在直线下方的那部分对应的自变量x 的取值范围,需求出直线与抛物线的两交点坐标.答案:C8.解析:根据表中x ,y 的对应值描出函数y =ax 2+bx +c 的大致图象,可以看出,该二次函数的图象与x 轴有两个交点,且它们分别在y 轴两侧.答案:B9.解析:抛物线y =3x 2的顶点是(0,0),先向左平移3个单位长度,再向上平移2个单位长度后是(-3,2).所以,所得抛物线的解析式是y =3(x +3)2+2.答案:y =3(x +3)2+210.解析:把(1,0)的坐标代入二次函数y =x 2-mx +3的解析式,得1-m +3=0.解得m =4.答案:411.答案:y =-x 2-2x +3(满足条件即可,答案不惟一)12.解析:由题意,知26,43y ax y x x =-⎧⎨=-+⎩只有一个解,即方程x 2-(4+a )x +9=0有两个相等的实数根.所以(4+a )2-4×1×9=0. 解得a =2或a =-10. 答案:2或-1013.答案:点(1,n )是双曲线y =nx与抛物线y =nx 2的一个交点 14.解:(1)∵点A(1,1)在二次函数y =x 2-2ax +b 的图象上,∴1=1-2a +B .可得b =2A .(2)根据题意,方程x 2-2ax +b =0有两个相等的实数根, ∴4a 2-4b =4a 2-8a =0.解得a =0或a =2.当a =0时,y =x 2,这个二次函数的图象的顶点坐标是(0,0);当a =2时,y =x 2-4x +4=(x -2)2,这个二次函数的图象的顶点坐标为(2,0). ∴这个二次函数的图象的顶点坐标为(0,0)或(2,0).15.解:(1)抛物线的顶点坐标为(5,5),与y 轴的交点坐标是(0,1). 设抛物线的解析式是y =a (x -5)2+5, 把(0,1)代入y =a (x -5)2+5得a =425-. ∴y =425-(x -5)2+5(0≤x ≤10). (2)由已知得两盏景观灯的纵坐标都是4, ∴4=425-(x -5)2+5. ∴425(x -5)2=1.∴x 1=152,x 2=52.∴两盏景观灯间的距离为5米.16.解:(1)将(3,0)代入二次函数解析式,得-32+2×3+m =0.解得m =3. (2)二次函数解析式为y =-x 2+2x +3, 令y =0,得-x 2+2x +3=0.解得x =3或x =-1. ∴点B 的坐标为(-1,0).(3)∵S △ABD =S △ABC ,点D 在第一象限, ∴点C ,D 关于二次函数的对称轴对称.∵由二次函数解析式可得其对称轴为x =1,点C 的坐标为(0,3),∴点D 的坐标为(2,3). 17.解:(1)45+26024010-×7.5=60(吨).(2)y =(x -100)260457.510x -⎛⎫+⨯ ⎪⎝⎭, 化简得y =234x -+315x -24 000. (3)y =234x -+315x -24 000 =34-(x -210)2+9 075. 要获得最大月利润,售价应定为每吨210元.(4)小静说的不对.理由:当月利润最大时,x 为210元,而对于月销售额 W =x 260457.510x -⎛⎫+⨯ ⎪⎝⎭=34-(x -160)2+19 200来说,当x 为160元时,月销售额W 最大. ∴当x 为210元时,月销售额W 不是最大. ∴小静说的不对.。
2022-2023学年北师大版九年级数学下册《第2章二次函数》单元综合达标测试题(附答案)

2022-2023学年北师大版九年级数学下册《第2章二次函数》单元综合达标测试题(附答案)一.选择题(共10小题,满分30分)1.在下列关于x的函数中,一定是二次函数的是()A.y=﹣3x B.xy=2C.y=ax2+bx+c D.y=2x2+52.下列各点中,在抛物线y=x2﹣4上的是()A.(1,3)B.(﹣1,﹣3)C.(1,﹣5)D.(﹣1,﹣5)3.抛物线y=﹣(x﹣5)2+3的顶点坐标是()A.(﹣5,3)B.(5,3)C.(3,5)D.(5,﹣3)4.将抛物线y=x2﹣3向左平移2个单位后得到的抛物线表达式是()A.y=x2﹣1B.y=x2﹣5C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 5.已知b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示:根据图象分析,a的值等于()A.﹣2B.﹣1C.1D.26.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加()A.1m B.2m C.(2﹣4)m D.(﹣2)m 7.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y28.如图,抛物线y1=a(x+1)2﹣5与抛物线y2=﹣a(x﹣1)2+5(a≠0)交于点A(2,4),B(m,﹣4),若无论x取任何值,y总取y1,y2中的最小值,则y的最大值是()A.4B.5C.2D.19.已知函数y=,若使y=k成立的x值恰好有两个,则k的值为()A.﹣1B.1C.0D.±110.抛物线y=ax2+bx+c的顶点坐标(﹣2,3),抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a﹣b=0;②a﹣b+c=0;③若(﹣4,y1),(1,y2)是抛物线上的两点,则y1>y2;④b2+3b=4ac.其中正确的个数有()A.4B.3C.2D.1二.填空题(共7小题,满分21分)11.已知抛物线y=(a+3)x2开口向下,那么a的取值范围是.12.请写出一个开口向下,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.13.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.14.抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是直线x=2,且它的最高点在直线y=x+2上,则m=,n=.15.二次函数y=ax2+bx+c的部分对应值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…则当x=2时对应的函数值y=.16.如图在平面直角坐标系中,二次函数y=x2+mx+2的图象与x轴交于A、B两点,与y 轴交于C点,其顶点为D,若△ABC与△ABD的面积比为3:5,则m值为.17.如图,在平面直角坐标系中,直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+2x+1与y轴交于C点,若点E在抛物线的对称轴上移动,点F在直线AB上移动,则CE+EF的最小值为.三.解答题(共9小题,满分69分)18.用配方法把二次函数y=x2﹣4x+5化为y=a(x﹣m)2+k的形式,并写出该函数图象的顶点坐标.19.已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).(1)求a,b的值;(2)若(5,n),(m,n)是抛物线上不同的两点,求m的值.20.已知二次函数的图象经过点A(﹣1,0)和点B(3,0),且有最小值为﹣2.(1)求这个函数的解析式;(2)函数的开口方向、对称轴;(3)当y>0时,x的取值范围.21.已知函数y=(n+1)x m+mx+1﹣n(m,n为实数)(1)当m,n取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>﹣1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.22.如图所示,抛物线y=x2+bx+c与x轴交于点A和点B(5,0),与y轴交于点C(0,5).(1)求抛物线的表达式;(2)若点M是抛物线在x轴下方的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值.23.如图1,地面OB上两根等长立柱AO,CB之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AO为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)保持(2)中点N的位置不变,将立柱MN的长度提升为3米,发现抛物线F1和F2的形状和大小都一样,测得抛物线F1和F2的最低点到地面的高度相差0.5米,求抛物线F1对应函数的二次项系数.24.已知二次函数y=x2+px+q图象的顶点M为直线y=x与y=﹣x+m的交点.(1)用含m的代数式表示顶点M的坐标;(2)若二次函数y=x2+px+q的图象经过点A(0,3),求二次函数的表达式;(3)当m=6且x满足t﹣1≤x≤t+3时,二次函数y=x2+px+q的最小值为2,求t的取值范围.25.某商品的进价为每件20元,售价为每件30元,每月可卖出180件.如果该商品的售价每上涨1元,就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x 元(x为整数)时,月销售利润为y元.(1)求y与x之间的函数解析式,并直接写出自变量x的取值范围.(2)当每件商品的售价定为多少元时,可获得的月利润最大?最大月利润是多少?26.在平面直角坐标系中,点A(0,4),点B(2m,4)(m为常数,且m>0),将点A绕线段AB中点顺时针旋转90°得到点C.经过A、B、C三点的抛物线记为G.(1)当m=2时,求抛物线G所对应的函数表达式.(2)用含m的式子分别表示点C的坐标和抛物线G所对应的函数表达式.(直接写出即可)(3)当抛物线G在直线x=﹣2和x=2之间的部分(包括边界点)的最高点与最低点的纵坐标之差为8时,直接写出m的取值范围.(4)连结AC,点R在线段AC上,过点R作x轴的平行线与抛物线G交于P、Q两点,连结AP、AQ.当点R将线段PQ分成1:3两部分,且△APQ的面积为时,求m的值.参考答案一.选择题(共10小题,满分30分)1.解:A、y=﹣3x是一次函数,不是二次函数,故此选项不符合题意;B、xy=2不是二次函数,故此选项不符合题意;C、a=0时不是二次函数,故此选项不符合题意;D、y=2x2+5是二次函数,故此选项符合题意;故选:D.2.解:当x=1时,y=x2﹣4=﹣3;当x=﹣1时,y=x2﹣5=﹣3;∴点(﹣1,﹣3)在抛物线上,点(1,3)、(1,﹣5)、(﹣1,﹣5)都不在抛物线上.故选:B.3.解:抛物线y=﹣(x﹣5)2+3的顶点坐标是(5,3).故选:B.4.解:将抛物线y=x2﹣3向左平移2个单位后得到的抛物线表达式是y=(x+2)2﹣3.故选:C.5.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣>0,a>0,则b<0,与b>0矛盾;故第四个图正确.由于第四个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向下,a=﹣1.故选:B.6.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,可求出OA和OB为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,比原先的宽度当然是增加了2﹣4.故选:C.7.解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是直线x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选:A.8.解:由题意可知:y的函数图象如图所示:观察函数图象可知:点A为函数y的图象的最高点,∴y的最大值为4.故选:A.9.解:函数y=的图象如图:根据图象知道当y=﹣1或y=1时,对应成立的x有恰好有2个,则k的值为±1.故选:D.10.解:∵抛物线y=ax2+bx+c的对称轴是直线x=﹣2,∴﹣=﹣2,∴4a﹣b=0,因此①正确;∵抛物线的对称轴为x=﹣2,图象与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,∴抛物线与x轴的另一个交点在点(﹣1,0)和点(0,0)之间,∴当x=﹣1时,y=a﹣b+c>0,因此②不正确;∵|﹣4﹣(﹣2)|<|1﹣(﹣2)|,∴(﹣4,y1)到对称轴的水平距离小于(1,y2)到对称轴的水平距离,且抛物线开口向下,∴y1>y2,故③正确;∵抛物线的顶点坐标为(﹣2,3),∴=3,∴b2+12a=4ac,∵4a﹣b=0,∴b=4a,∴b2+3b=4ac,故④正确;∴正确的有:①③④,故选:B.二.填空题(共7小题,满分21分)11.解:∵抛物线y=(a+3)x2开口向下,∴a+3<0,∴a<﹣3.故答案为:a<﹣3.12.解:∵抛物线开口向下,∴a<0,令a=﹣1,设抛物线的关系式为y=﹣(x﹣h)2+k,∵对称轴为直线x=2,∴h=2,把(0,3)代入得,3=﹣(0﹣2)2+k,解得,k=7,∴抛物线的关系式为:y=﹣(x﹣2)2+7,故答案为:y=﹣(x﹣2)2+7(答案不唯一).13.解:抛物线的对称轴为直线x=﹣=﹣m,∵a=1>0,∴抛物线开口向上,∵当x>2时,y的值随x值的增大而增大,∴﹣m≤2,解得m≥﹣2.故答案为:m≥﹣2.14.解:∵抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是直线x=2,且它的最高点在直线y =x+2上,∴,当x=2时,y=×2+2=3,∴m=﹣1,该抛物线的顶点坐标为(2,3),∴3=[(﹣1)2﹣2]×22﹣4×(﹣1)×2+n,解得,n=﹣1,故答案为:﹣1,﹣1.15.解:观察表格可知,当x=﹣3或5时,y=7,根据二次函数图象的对称性,(﹣3,7),(5,7)是抛物线上两对称点,对称轴为直线x==1,顶点(1,﹣9),根据对称性,x=2与x=0时,函数值相等,都是﹣8.16.解:∵y=x2+mx+2=(x+)2+2﹣,∴顶点D(﹣,2﹣),C(0,2),∴OC=2,∵S△ABC=AB•OC=AB×2=AB,S△ABD=AB•|2﹣|,△ABC与△ABD的面积比为3:5,∴AB:AB•|2﹣|=3:5,解得:m=﹣.故答案是:﹣.17.解:如图,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,直线AB的解析式为y=x+3,∵C(0,1),∴C′(2,1),∴直线C′F的解析式为y=﹣x+,联立直线C′F和直线AB得:x+3=﹣x+,解得x=,代入解得y=,∴F(,),∴C′F==,即CE+EF的最小值为.故答案为.三.解答题(共9小题,满分69分)18.解:y=x2﹣4x+5=(x2﹣8x)+5=(x2﹣8x+16)+5﹣8=(x﹣4)2﹣3,∴顶点(4,﹣3).19.解:(1)把点(1,﹣2),(﹣2,13)代入y=ax2+bx+1得,,解得:;(2)由(1)得函数解析式为y=x2﹣4x+1,∴对称轴是直线x=﹣=2,∵(5,n),(m,n)是抛物线上不同的两点,纵坐标相同,∴(5,n),(m,n)是对称点,∴=2,解得m=﹣1.20.解:(1)由题意得:函数的对称轴为x=1,此时y=﹣2,则函数的表达式为:y=a(x﹣1)2﹣2,把点A坐标代入上式,解得:a=,则函数的表达式为:y=x2﹣x﹣(2)a=>0,函数开口向上,对称轴为:x=1;(3)当y>0时,x的取值范围为:x>3或x<﹣1.21.解:(1)①当m=1,n≠﹣2时,函数y=(n+1)x m+mx+1﹣n(m,n为实数)是一次函数,它一定与x轴有一个交点,∵当y=0时,(n+1)x m+mx+1﹣n=0,∴x=,∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;②当m=2,n≠﹣1时,函数y=(n+1)x m+mx+1﹣n(m,n为实数)是二次函数,当y=0时,y=(n+1)x m+mx+1﹣n=0,即:(n+1)x2+2x+1﹣n=0,△=22﹣4(1+n)(1﹣n)=4n2≥0;∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;③当n=﹣1,m≠0时,函数y=(n+1)x m+mx+1﹣n是一次函数,当y=0时,x=,∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;(2)①假命题,若它是一个二次函数,则m=2,函数y=(n+1)x2+2x+1﹣n,∵n>﹣1,∴n+1>0,抛物线开口向上,对称轴:﹣==﹣<0,∴对称轴在y轴左侧,当x<0时,y有可能随x的增大而增大,也可能随x的增大而减小,②当x=1时,y=n+1+2+1﹣n=4.当x=﹣1时,y=0.∴它一定经过点(1,4)和(﹣1,0).22.解:(1)将(5,0),(0,5)代入y=x2+bx+c得,解得,∴y=x2﹣6x+5.(2)设直线BC解析式为y=kx+n,将(5,0),(0,5)代入y=kx+n得,解得,∴y=﹣x+5,设点M坐标为(m,m2﹣6m+5),则点N坐标为(m,﹣m+5),∴MN=﹣m+5﹣(m2﹣6m+5)=﹣m2+5m=﹣(m﹣)2+,∴MN最大值为.23.解:(1)∵>0,∴抛物线开口向上,抛物线的顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为m;(2)由(1)可知,对称轴为x=4,则BO=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,1.8),设F1的解析式为:y=a(x﹣2)2+1.8,将(0,3)代入得:4a+1.8=3,解得:a=0.3,∴抛物线F1为:y=0.3(x﹣2)2+1.8,当x=3时,y=0.3×1+1.8=2.1,∴MN的长度为2.1米;(3)∵MN=3,点M(3,3),∵抛物线F1和F2的形状和大小都一样,∴设抛物线F1的解析式为y=a(x﹣)2+k1,F2的解析式为y=a(x﹣)2+k2,抛物线F1和F2的最低点到地面的高度分别为k1和k2,由题意,得k1﹣k2=0.5,把点M(3,3)分别代入y=a(x﹣)2+k1和y=a(x﹣)2+k2,得k1=3﹣a,k2=3﹣a,∴3﹣a﹣(3﹣a)=0.5,解得:a=.∴抛物线F1对应函数的二次项系数为.24.解:(1)由,得,即顶点M坐标为(m,m);(2)∵此时二次函数为y=(x﹣m)2+m过点A(0,3),∴3=(0﹣m)2+m得m1=﹣3,m2=,∴y=(x+2)2﹣1或y=(x﹣)2+;(3)当m=6时,顶点为M(4,2),∴抛物线为y=(x﹣4)2+2,函数的最小值为2,∵x满足t﹣1≤x≤t+3时,二次函数的最小值为2,∴,解得1≤t≤5.25.解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x==4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;26.解:(1)由题意可知,点C为抛物线G的顶点,当m=2时,C(2,6),设G所对应的函数的表达式为y=a(x﹣2)2+6(a≠0),将点A(0,4)代入y=a(x﹣2)2+6得4=4a+6,解得a=﹣.∴y=﹣(x﹣2)2+6.(2)∵抛物线对称轴为直线x==m,∴点C坐标为(m,m+4),设抛物线解析式为y=a(x﹣m)2+m+4,把(0,4)代入y=a(x﹣m)2+m+4得4=am2+m+4,解得a=﹣,∴y=﹣(x﹣m)2+m+4.(3)①0<m≤2时,在直线x=﹣2和x=2之间的部分的抛物线最高点为顶点(m,m+4),最低点为直线x=﹣2与抛物线交点(﹣2,﹣),m+4﹣(﹣)=8时,解得m=2.②当m>2时,图象最高点为直线x=2与抛物线交点(2,﹣+8),最低点为直线x=﹣2与抛物线交点(﹣2,﹣),﹣+8﹣(﹣)=8,∴m>2符合题意,∴m≥2.(4)作CD⊥PQ于点D,∵点R将线段PQ分成1:3两部分,∴PQ=4PR=2PD,∴PR=RD,∴CD=RD,∴PQ=4CD,设CD=t,则PQ=4t,∴点Q的坐标为(m+2t,m+4﹣t),∴=﹣(m+2t﹣m)2+m+4=m+4﹣t.解得t=m.∴点Q坐标为(m,m+4),PQ=m,∵△APQ的面积为,∴m(m+4﹣4)=,解得m=或m=﹣(舍).∴m=.。
北师大版九年级数学下《第二章二次函数》单元测试题(有答案)

第二章 二次函数一、选择题(本大题共8小题,每小题4分,共32分;在每小题列出的四个选项中,只有一项符合题意)1.下列函数中,y 是关于x 的二次函数的是( ) A .y =ax 2+bx +c B .y =x (x -1)C .y =1x2 D .y =(x -1)2-x 22.对于二次函数y =(x -1)2+2的图象,下列说法正确的是( ) A .开口向下 B .对称轴是直线x =-1C .顶点坐标是(1,2)D .与x 轴有两个交点3.已知二次函数y =x 2-6x +m 的最小值是-3,那么m 的值等于( ) A .10 B .4 C .5 D .64.如图2-Z -1,二次函数y =ax 2+bx +c 的图象与x 轴相交于(-2,0)和(4,0)两点,当函数值y >0时,自变量x 的取值范围是( )图2-Z -1A .x <-2B .-2<x <4C .x >0D .x >45.2+bx +c 中,y 与x 的部分对应值如下:则一元二次方程ax +bx +c =0的一个根x 满足条件( ) A .1.2<x <1.3 B .1.3<x <1.4 C .1.4<x <1.5 D .1.5<x <1.66.二次函数y =ax 2+bx +c 的图象如图2-Z -2所示,则一次函数y =bx +a 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限图2-Z -27.如图2-Z -3是二次函数y =ax 2+bx +c 的图象的一部分,图象过点A (-3,0),对称轴为直线x =-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a +b +c >0;④若点B ⎝⎛⎭⎫-52,y 1,C ⎝⎛⎭⎫-12,y 2为函数图象上的两点,则y 1<y 2.其中正确的是( )图2-Z-3A.②④B.①④C.①③D.②③8.如图2-Z-4,正三角形ABC的边长为4,P为BC边上的任意一点(不与点B,C 重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()图2-Z-4图2-Z-5二、填空题(本大题共5小题,每小题4分,共20分)9.将抛物线y=-2x2先向下平移3个单位长度,再向左平移1个单位长度,得到的抛物线的函数表达式是______________.10.已知抛物线y=x2-2x-3,若点P(3,0)与点Q关于该抛物线的对称轴对称,则点Q的坐标是________.11.已知A(4,y1),B(-4,y2)是抛物线y=(x+3)2-2上的两点,则y1________y2.(填“>”“<”或“=”)12.如图2-Z-6是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,桥拱最高点C到AB的距离为4 m,AB=12 m,D,E为拱桥底部的两点,且DE ∥AB,点E到直线AB的距离为5 m,则DE的长为________m.图2-Z-613.二次函数y=x2-2x-3的图象如图2-Z-7所示,若线段AB在x轴上,且AB为23个单位长度,以AB为边作等边三角形ABC,使点C落在该函数在y轴右侧的图象上,则点C的坐标为________.图2-Z-7三、解答题(本大题共4小题,共48分)14.(10分)如图2-Z-8,在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.(1)试求抛物线的表达式;(2)记抛物线与y轴的交点为D,求△BCD的面积.图2-Z-815.(12分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天的销售量y(件)与销售单价x(元/件)之间存在一次函数关系,如图2-Z-9所示.(1)求y与x之间的函数关系式(不用写自变量x的取值范围);(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元/件时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.图2-Z-916.(12分)如图2-Z -10,在直角坐标系中,已知点A (8,0),B (0,6),点P 由点B 出发沿BA 方向向点A 做匀速直线运动,速度为每秒3个单位长度,点Q 由点A 出发沿AO (O 为坐标原点)方向向点O 做匀速直线运动,速度为每秒2个单位长度,连接PQ .若设运动时间为t (0<t <103)秒,解答下列问题:(1)当t 为何值时,△APQ 与△ABO 相似?(2)设△AQP 的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值.图2-Z -1017.(14分)如图2-Z -11,已知抛物线y =x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,对称轴为直线x =2,AB =2.(1)求抛物线的函数表达式;(2)设P 为对称轴上一动点,求△APC 的周长的最小值;(3)设D 为抛物线上一点,E 为对称轴上一点,若以点A ,B ,D ,E 为顶点的四边形是菱形,则点D 的坐标为________.图2-Z -11详解详析1.[解析] B A .当a =0时,y =bx +c 不是二次函数;B.y =x (x -1)=x 2-x 是二次函数;C.y =1x2不是二次函数;D.y =(x -1)2-x 2=-2x +1为一次函数.故选B.2.[答案] C3.[解析] D 原二次函数可化为y =(x -3)2-9+m ,∵函数的最小值是-3,∴-9+m =-3,∴m =6.故选D.4.[解析] B ∵二次函数y =ax 2+bx +c 的图象与x 轴交于(-2,0)和(4,0)两点,函数图象开口向下,∴函数值y >0时,自变量x 的取值范围是-2<x <4,故选B.5.[解析] C 由表可以看出,当x 取1.4与1.5之间的某个数时,y =0,即这个数是关于x 的一元一次方程ax 2+bx +c =0的一个根.则一元二次方程ax 2+bx +c =0的一个根x 的取值范围为1.4<x <1.5. 故选C. 6.[答案] D7.[解析] B ①由抛物线与x 轴有两个交点,知b 2-4ac >0,所以①正确.②因为对称轴为直线x =-1,所以-b2a=-1,即2a -b =0,所以②错误.因为抛物线经过点A (-3,0),对称轴为直线x =-1,所以抛物线与x 轴的另一个交点坐标为(1,0),于是有a +b +c =0,所以③错误.④点B ⎝⎛⎭⎫-52,y 1在对称轴左侧1.5个单位长度处,点C ⎝⎛⎭⎫-12,y 2在对称轴右侧0.5个单位长度处,找出相应的点,显然y 1<y 2,所以④正确.故选B.8.[解析] C ∵△ABC 是正三角形,∴∠B =∠C =60°,∵∠BPD +∠APD =∠C +∠CAP ,∠APD =60°,∴∠BPD =∠CAP ,∴△BPD ∽△CAP ,∴BP ∶AC =BD ∶PC .∵正三角形ABC 的边长为4,BP =x ,BD =y ,∴x ∶4=y ∶(4-x ),∴y =-14x 2+x .故选C.9.[答案] y =-2(x +1)2-3 10.[答案] (-1,0) 11.[答案] >[解析] 由y =(x +3)2-2可知抛物线的对称轴为直线x =-3.∵抛物线开口向上,而点A (4,y 1)到对称轴的距离比点B (-4,y 2)到对称轴的距离远, ∴y 1>y 2.12.[答案] 18[解析] 如图所示,建立平面直角坐标系,x 轴在直线DE 上,y 轴经过最高点C . 设AB 与y 轴交于点H , ∵AB =12,∴AH =BH =6, 由题可知:OH =5,CH =4, ∴OC =5+4=9,∴B (6,5),C (0,9).设该抛物线的表达式为y =ax 2+k , ∵顶点为C (0,9), ∴y =ax 2+9.把B (6,5)代入,得5=36a +9,解得a =-19,∴抛物线的表达式为y =-19x 2+9.当y =0时,0=-19x 2+9,解得x =±9,∴E (9,0),D (-9,0), ∴OE =OD =9,∴DE =OD +OE =9+9=18(m). 故答案为18.13.[答案] (1+7,3)或(2,-3)[解析] ∵△ABC 是等边三角形,且AB =2 3,∴AB 边上的高为3.又∵点C 在二次函数的图象上,∴点C 的纵坐标为±3.将y =±3代入y =x 2-2x -3,得x =1±7或0或2.∵点C 落在该函数在y 轴右侧的图象上,∴x >0,∴x =1+7或2,∴点C 的坐标为(1+7,3)或(2,-3).14.解:(1)由题意得⎩⎨⎧4a -2b +2=6,4a +2b +2=2,解得⎩⎪⎨⎪⎧a =12,b =-1.∴抛物线的表达式为y =12x 2-x +2.(2)当x =0时,y =2,故点D 的坐标为(0,2).连接BD ,CD ,BC . ∵C ,D 两点的纵坐标相同, ∴CD ∥x 轴,∴点B 到CD 的距离为6-2=4. ∵CD =2-0=2, ∴S △BCD =12×2×4=4.15.[解析] (1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数关系式代入其中,求出利润和销售单价之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w -150与x 之间的函数关系式,进而利用所获利润等于3600元时,求得对应的x 值,根据增减性,求出x 的取值范围.解:(1)由题意得⎩⎨⎧40k +b =300,55k +b =150,解得⎩⎪⎨⎪⎧k =-10,b =700.故y 与x 之间的函数关系式为y =-10x +700,(2)由题意,得-10x +700≥240,解得x ≤46.设每天获取的利润为w 元,则w =(x -30)·y =(x -30)(-10x +700)=-10x 2+1000x -21000=-10(x -50)2+4000. ∵-10<0,∴当x <50时,w 随x 的增大而增大,∴当x =46时,w 最大=-10×(46-50)2+4000=3840.答:当销售单价为46元/件时,每天获取的利润最大,最大利润是3840元. (3)令w ′=w -150=-10x 2+1000x -21000-150=3600, -10(x -50)2=-250, x -50=±5, x 1=55,x 2=45.如图所示,由图象得当45≤x ≤55时,捐款后每天剩余利润不低于3600元.16.解:(1)在Rt △ABO 中,由勾股定理得:AB =OA 2+OB 2=10. ①当P A AB =AQOA 时,△APQ ∽△ABO ,即10-3t 10=2t 8,解得t =2011; ②当AP OA =AQAB 时,△APQ ∽△AOB ,即10-3t 8=2t 10,解得t =5023. 综上所述,当t =2011或t =5023时,△APQ 与△ABO 相似.(2)如图所示,过点P 作PD ⊥x 轴于点D .∵PD ⊥x 轴,OB ⊥x 轴,∴OB ∥PD , ∴AP AB =PDOB , 即10-3t 10=PD6,∴PD =6-95t .由三角形的面积公式可知:S =12AQ ·PD =12·2t ·(6-95t )=6t -95t 2,∴S 与t 之间的函数关系式为S =-95t 2+6t (0<t <103).∵S =-95t 2+6t =-95(t -53)2+5,∴当t =53时,S 有最大值,最大值为5.17.解:(1)∵AB =2,对称轴为直线x =2, ∴点A 的坐标为(1,0),点B 的坐标为(3,0). 把A ,B 两点的坐标代入y =x 2+bx +c 中,得⎩⎨⎧1+b +c =0,9+3b +c =0, 解得⎩⎨⎧b =-4,c =3,∴抛物线的函数表达式为y =x 2-4x +3.(2)连接AC ,BC ,BC 交对称轴于点P ,连接P A (如图).由(1)知抛物线的函数表达式为y =x -4x +3,点A ,B 的坐标分别为(1,0),(3,0), ∴点C 的坐标为(0,3),∴BC =32+32=3 2,AC =32+12=10.∵点A ,B 关于对称轴直线x =2对称, ∴P A =PB ,∴P A +PC =PB +PC ,此时PB +PC =BC ,∴当点P 在对称轴上运动时,P A +PC 的最小值等于BC , ∴△APC 的周长的最小值=AC +P A +PC =BC +AC =3 2+10. (3)(2,-1)。
北师大九年级下数学《第二章二次函数》单元测试(含答案)

2、选择题1.二次函数y=x +4x - 5的图象的对称轴为( )3.要得到函数y=2x 2-1的图象,应将函数 y=2x 2的图象()C. 沿y 轴向上平移1个单位 □沿 y 轴向下平移1个单位2 ..4. 若 A (- 3, y 1), B (- 1 , y 2), C ( 2, y 3)为二次函数 y=x - 2x - 3 的图象上的三点,贝U y 1 , y 2 y 3的大小关系是() A. y 1 < y 2< y 3B. y 2 < y 1 < y 3C. yj < y 2< y 1D. y 3< y 1< y 22 ..5. 已知二次函数 y=ax +bx+c ,且ac < 0,则它的图象经过( )A. 一、二、三象限B.二、三、四象限C. 一、三、四象限D. 一、二、三、四象限2 26.方程ax +bx+c=0的两个根是—3和1,那么二次函数 y=ax +bx+c 的图象的对称轴是直线( )7. 若将函数y=2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是(210. 抛物线y=- 3x +2x - 1与坐标轴的交点个数为(第二章二次函数A. x= - 4B. x=42.二次函数y= ( x - 1) 2- 2的顶点坐标是( )A. (1,- 2)B. (- 1,2)C.x=- 2D. x=2C. (- 1,- 2)D. (1 , 2)A. 沿x 轴向左平移1个单位B. 沿x 轴向右平移1个单位A. x =— 3B.关一2C.=x — 1D.关12A.y=2 (x - 1) - 3B. y=2 ( x - 1) 2+32C. y=2( x+1) - 3D. y=2 ( x+1) 2+32A. 0个B.个C. 个D.个2+k 的图象如图所示,下列判断正确的是(B. h >0, k < 0C. h < 0, k > 0D. h < 0, k < 09. y=x 2+( 1— a ) x + 1是关于x 的二次函数,当 x 的取值范围是 Kx w 时,y 在x = 1时取得最大值,则实数a 的取值范围是()A. a=5B. a >5C. c = 3D. a >3A. h >0, k >0211. 如图,二次函数 y=ax+bx+c 的图象与y 轴正半轴相交,其顶点坐标为(0.5, 1),下列结论:①ac v 0; ②a+b=0;③4ac - b 2=4a ;a+c ) 2 - b 2< 0 .其中正确的个数是()A. 1个B.个C.个D.个二、填空题212. 抛物线y=- 2 (x - 3) +4的顶点坐标是 ________ .13. 若抛物线y=ax 2+bx+c (a 工0的图象与抛物线 y=x 2 - 4x+3的图象关于y 轴对称,则函数 y=ax 2+bx+c 的解 析式为 _________ .2 2 ...14. 二次函数y= (x - 2m ) +m ,当m < x < m+1时,y 随x 的增大而减小,则m 的取值范围是 15. _____________________________________ 抛物线y=- x 2- 2x+3与x 轴交点为 . 2 __16. )若二次函数y=x+2x+m 的图象与x 轴没有公共点,则 m 的取值范围是 _____________217. 已知抛物线y=ax +bx+c 的部分图象如图所示,若 y >0,则x 的取值范围是 ___________ .19.二次函数y= (a - 1) x 2 - x+a 2 - 1的图象经过原点,贝Va 的值为 __________ 三、解答题20. 已知「一「「wW -川 门—厂一是x 的二次函数,求 m 的值和二次函数的解析式.221. 已知二次函数y=ax +bx+3的图象过点(-1, 8)、( 1, 0),求这个二次函数的表达式.3个单位,则所得抛物线的解析式是222. 已知二次函数 y= - x +2x+m . (1)如果二次函数的图象与 x 轴有两个交点,求 m 的取值范围;(2)如图,二次函数的图象过点 A (3,0),与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交(3)根据图象直接写出使一次函数值大于二次函数值的 x的取值范围... 223. 如图,对称轴为直线 x=2的抛物线y=x+bx+c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标(1) 求抛物线的解析式,以及 B 、C 两点的坐标;(2)求过O , B , C 三点的圆的面积.(结果保留n)一、 选择题 CADCDCDBBBD 二、 填空题 12. (3, 4) 13. y=x 2+4x+3 14. m > 115. (- 3, 0),( 1, 0) 16. m > 1 17. x v- 1 或 x > 5 218. y=x -10x+18. 19. - 1 三、解答题20. 解:「一 ;~川-'是x 的二次函数,•••此二次函数的解析式为: y=6x 2+9或y=2x 2 - 4x+1.解析式为y=« - 4x+322. (1)解:•二次函数的图象与x 轴有两个交点,2=2 +4m > 0 m >- 1(2)解:•二次函数的图象过点 A ( 3, 0),• 0= — 9+6+m • m=3,•••二次函数的解析式为: y=- «+2x+3, 令 x=0,则 y=3, • B ( 0, 3),参考答案21.解:把(-1, 8)2仏-占+ 3二&(1, 0)代入 y=ax +bx+3 得、,解得 a+i+3=0Jo 二 1 b二-4,所以二次函数的沖-砒H0nt- --1 = 2,解得 m=3 或 m= - 1,设直线AB的解析式为:y=kx+b.3t+i = 0,解得:6 = 3直线AB的解析式为:2抛物线y=- x +2x+3,严-1L i = 3y=- x+3,的对称轴为:x=1,•••把x=1 代入y=- x+3 得y=2, ••• P ( 1, 2)(3)解:根据函数图象可知:x v 0或x> 323. (1)解:由题意得: f 2 解得:l-b+c=O2•抛物线解析式为:y=x - 4x- 5,当x=0 时,x2- 4x- 5=0,(x+1)( x- 5) =0, x i=- 1 , x2=5,• A (- 1, 0), B (5, 0),当x=0 时,y= - 5,• C ( 0, - 5),•••抛物线解析式为y=/-4x- 5, B点坐标为(5, 0), C点坐标为(0,- 5)(2)解:连接BC,则△ OBC是直角三角形,•••过0、B、C三点的圆的直径是线段在Rt A 0BC 中,0B=0C=5• BC=5、~ ,•圆的面积为n (BC的长度,。
北师大版九年级数学下册 第二章 二次函数 单元检测试题(有答案)

第二章二次函数单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 下例函数中是二次函数的有()①;②;③;④.A.个B.个C.个D.个2. 抛物线与的图象,开口较大的是()A. B. C.同样大 D.无法确定3. 抛物线的顶点坐标是A. B. C. D.4. 函数的图象大致为( )A. B.C. D.5. 下列关于二次函数的图象与轴交点的判断,正确的是A.只有一个交点,且它位于轴的右侧B.只有一个交点,且它位于轴的左侧C.有两个交点,且它们位于轴的两侧D.有两个交点,且它们位于轴的右侧6. 若将二次函数=的图象向上平移个单位长度,再向右平移个单位长度,则平移后的二次函数的顶点坐标为()A. B. C. D.7. 已知二次函数的图象如图所示,那么下列判断中①;②;③;④;⑤正确的个数是()A. B. C. D.8. 点,的坐标分别为和,抛物线的顶点在线段上运动时,形状保持不变,且与轴交于,两点(在的左侧),给出下列结论:①;②当时,随的增大而增大;③若点的横坐标最大值为,则点的横坐标最小值为;④当四边形为平行四边形时,.其中正确的是( )A.②④B.②③C.①③④D.①②④9. 已知两点、均在抛物线上,点是该抛物线的顶点,若,则的取值范围是()A. B. C. D.10. 在平面直角坐标系中,某二次函数图像的顶点为,此函数图像与轴交于,两点(点在点左侧),且.若此函致图像经过,,,四点,则实数,,,中为负数的是( )A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 将二次函数的图象向右平移个单位,再向上平移个单位后,顶点恰好在直线上,则的值为________.12. 二次函数有最大值,则的值是________.13. 若二次函数的最低点的纵坐标是,则的值是________.14. 二次函数的图象如图所示,则它的解析式为________,如果另一个函数图象与该图象关于轴对称,那么它的解析式是________.15. 用厘米的铁丝,折成一个长方形框架,设长方形的一边长为厘米,则另一边长为________,长方形的面积________.16. 将二次函数化成的形式为________.17. 如图是一个横截面为抛物线形拱桥,当拱顶高水面时,水面宽.如图所示建立在平面直角坐标系中,则抛物线的解析式是________.18. 某商人将进价为每件元的某种商品按每件元出售,每天可销出件,经试验,把这种商品每件每提价元,每天的销售量就会减少件,则每天所得的利润(元)与售价(元/件)之间的函数关系式为:________.19. 如图,用长米的篱笆,靠墙围成一个长方形场地,在表示场地面积时,可以设为米,也可以选择________为米,相应地面积的解析式为________或________20. 用“描点法”画二次函数=的图象时,列出了如下表格:……=……那么该二次函数在=时,=________.三、解答题(本题共计6 小题,共计60分,)21. 已知抛物线(1)若,,求该抛物线与轴公共点的坐标;(2)若,且当时,抛物线与轴有且只有一个公共点,利用函数图象求的取值范围.22. 已知一抛物线与轴轴的交点分别是、且经过点.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标.23. 如图,某学生推铅球,铅球出手(点处)的高度是,出手后的铅球沿一段抛物线运行,当运行到最高时,水平距离.求这个二次函数的解析式;该男同学把铅球推出去多远?24. 抛物线和反比例函数的图象如图所示利用图象解答:(1)方程的解(2)取何值时.25. 二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)写出不等式的解集;(3)写出随的增大而增大的自变量的取值范围;(4)若方程没有实数根,求取值范围.26. 某贸易公司购进“长青”胶州大白菜,进价为每棵元,物价部门规定其销售单价每棵不得超过元,也不得低于元.经调查发现:日均销售量(棵)与销售单价(元/棵)满足一次函数关系,并且每棵售价元时,日均销售棵;每棵售价元时,日均销售棵.(1)求日均销售量与销售单价的函数关系式;(2)在销售过程中,每天还要支出其他费用元,求销售利润(元)与销售单价之间的函数关系式;并求当销售单价为何值时,可获得最大的销售利润?最大销售利润是多少?参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:②;③是二次函数,故选:.2.【答案】A【解答】解:抛物线与的图象中,,∵,∴抛物线的开口小于的开口,故选.3.【答案】B【解答】解:∵抛物线的解析式为,∴抛物线的顶点坐标为.故选.4.【答案】B【解答】解:∵二次项系数,∴开口方向向下,∵一次项系数,∴对称轴为轴,∵常数项,∴图象与轴交于.故选.5.【答案】D【解答】解:当时,.∵,∴,∴有两个不同的实数根,即函数与轴有两个交点.设两根分别为,则,,∴函数与轴的两个交点位于轴右侧.故选.6.【答案】B【解答】∵将二次函数=的图象向上平移个单位长度,再向右平移个单位长度,∴平移后的二次函数的解析式为:=,∴平移后的二次函数的顶点坐标为,7.【答案】A【解答】解:①、图象开口向下,与轴交于正半轴,对称轴在轴右侧,能得到:,,,,∴,故①错误;②、∵对称轴是,∴,∴,∴,故②错误;③、当时,,∴,故③正确.④、时,,∴,∵,∴,故④错误;⑤、时,,∴,∵,∴,故⑤错误;故选:.8.【答案】A【解答】解:∵点,的坐标分别为和,∴线段与轴的交点坐标为,又∵抛物线的顶点在线段上运动,抛物线与轴的交点坐标为,∴,(顶点在轴上时取“”),故①错误;∵抛物线的顶点在线段上运动,∴当时,随的增大而增大,因此,当时,随的增大而增大,故②正确;若点的横坐标最大值为,则此时对称轴为直线,根据二次函数的对称性,点的横坐标最小值为,故③错误;根据顶点坐标公式,,令,则,,根据顶点坐标公式,,∴,∴,∵四边形为平行四边形,∴,∴,解得,故④正确;综上所述,正确的结论有②④.故选.9.【答案】B【解答】解:∵点是该抛物线的顶点,,∴抛物线开口向下,当两点、都在对称轴左侧,则;当两点、在对称轴两侧,则点离对称轴要近,所以,∴.故选.10.【答案】C【解答】解:设二次函数解析式为,函数图象与轴交于,两点,对称轴为直线,且,点,的坐标分别为:,,将点的坐标代入二次函数解析式并解得:,二次函数的解析式为,将,,,代入上式逐次验证,当时,,即.故选.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】【解答】解:∵二次函数的顶点坐标为,∴将的图象向右平移个单位,向上平移个单位后顶点坐标为.根据题意,得,解得.故答案是:.12.【答案】【解答】解:∵二次函数有最大值,∴,,即,整理得:,即,解得:,(不合题意舍去),则的值是:.故答案为:.13.【答案】【解答】解:二次函数的顶点横坐标为,把代入得,,整理得,解得,,.函数有最低点,舍去,故答案为.14.【答案】,【解答】解:设抛物线的解析式为,由图可知,二次函数的图象经过点,∴,解得∴;∵另一个函数的图象与该函数的图象关于轴对称,∴这个函数的关系式是.故答案为:,.15.【答案】,【解答】解:∵长方形的一边长为厘米,周长为厘米,∴另一边长为,∴长方形的面积.故填空答案:,.16.【答案】【解答】解:,所以.故答案为:.17.【答案】【解答】解:如图,建立平面直角坐标系如下,设抛物线解析式为,由图象可知该图象经过点,故,解得.则抛物线的解析式是.18.【答案】【解答】解:每件可获得的利润为元,可售出的数量为,∴,故答案为.19.【答案】或,,【解答】解:若设为,则,面积;若设为,则,面积.20.【答案】【解答】由上表可知函数图象经过点和点,∴对称轴为=,∴当=时的函数值等于当=时的函数值,∵当=时,=,∴当=时,=.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:(1)解:∵,,∴抛物线的解析式为,令,解得:或,∴抛物线与轴的交点坐标为:,(2)∵,∴解析式为.∵对称轴,∴当时,抛物线与轴有且只有一个公共点,则①此公共点一定是顶点,∴,②一个交点的横坐标小于等于,另一交点的横坐标小于而大于,∴,,解得.综上所述,的取值范围是:或.【解答】解:(1)解:∵,,∴抛物线的解析式为,令,解得:或,∴抛物线与轴的交点坐标为:,(2)∵,∴解析式为.∵对称轴,∴当时,抛物线与轴有且只有一个公共点,则①此公共点一定是顶点,∴,②一个交点的横坐标小于等于,另一交点的横坐标小于而大于,∴,,解得.综上所述,的取值范围是:或.22.【答案】解:(1)设抛物线的解析式为,∵与轴的交点是,∴,∵经过,,∴,解得:,∴抛物线的解析式为;(2)抛物线的对称轴是,,顶点坐标是.【解答】解:(1)设抛物线的解析式为,∵与轴的交点是,∴,∵经过,,∴,解得:,∴抛物线的解析式为;(2)抛物线的对称轴是,,顶点坐标是.23.【答案】解:设二次函数的解析式为,把代入得:.∴.当时,,解得或(舍去).答:该男同学把铅球推出去米远.【解答】解:设二次函数的解析式为,把代入得:.∴.当时,,解得或(舍去).答:该男同学把铅球推出去米远.24.【答案】解:(1)根据图象,抛物线与反比例函数图象的交点坐标是、、,∴方程的解是,,;(2)观察图形可知,当,,时,.【解答】解:(1)根据图象,抛物线与反比例函数图象的交点坐标是、、,∴方程的解是,,;(2)观察图形可知,当,,时,.25.【答案】解:(1)由图象可得:,;(2)结合图象可得:或时,,即当或时,;(3)根据图象可得当时,随的增大而减小;(4)根据图象可得,时,方程没有实数根.【解答】解:(1)由图象可得:,;(2)结合图象可得:或时,,即当或时,;(3)根据图象可得当时,随的增大而减小;(4)根据图象可得,时,方程没有实数根.26.【答案】解:(1)设一次函数解析式为设一次函数解析式为,把,分别代入上式得,,解得.故,.(2)根据题意得.当时取得最大值,为元.【解答】解:(1)设一次函数解析式为设一次函数解析式为,把,分别代入上式得,,解得.故,.(2)根据题意得.当时取得最大值,为元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《二次函数》单元检测试题一、 选择题(每题3分,共24分)1,已知点(a ,8)在二次函数y =a x 2的图象上,则a 的值是( ) A ,2 B ,-2 C ,±2 D ,±2 2,抛物线y =x 2+2x -2的图象最高点的坐标是( )A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3)3,若y =(2-m)23m x -是二次函数,且开口向上,则m 的值为( ) A.5± B.-5 C.5 D.04,二次函数y ax bx c =++2的图象如图1所示,则下列结论正确的是( ) A. a b c ><>000,, B. a b c <<>000,, C. a b c <><000,, D. a b c <>>000,,5,如果二次函数y ax bx c =++2(a >0)的顶点在x 轴上方,那么( )A ,b 2-4ac ≥0B ,b 2-4ac <0C ,b 2-4ac >0D ,b 2-4ac =06,已知h 关于t 的函数关系式为h =12gt 2(g 为正常数,t 为时间), 则如图2中函数的图像为( )7,已知二次函数y=-12x 2-3x -52,设自变量的值分别为x 1,x 2,x 3,且-3<x 1<x 2<x 3, 则对应的函数值y 1,y 2,y 3的大小关系是( )A.y 1>y 2>y 3B.y 1<y 2<y 3;C.y 2>y 3>y 1D.y 2<y 3<y 18,关于二次函数y =x 2+4x -7的最大(小)值,叙述正确的是( )A.当x =2时,函数有最大值B.x =2时,函数有最小值C.当x =-1时,函数有最大值D.当x =-2时,函数有最小值二、 填空题(每题3分,共24分)9,二次函数y =-122x 2+3的开口方向是_________.10,抛物线y =x 2+8x -4与直线x =4的交点坐标是__________.11,若二次函数y =ax 2的图象经过点(-1,2),则二次函数y =ax 2的解析式是__12,已知抛物线22b x x y ++=经过点)41,(-a 和),(1y a -,则1y 的值是 .13,已知二次函数y =ax 2+bx +c 的图象与x 轴交于A (1,0),B (3,0)两点,与y0thA 0t hB 0t h D0t h C 图2图1轴交于点C (0,3),则二次函数的解析式是.14,若函数y=3x2与直线y=kx+3的交点为(2,b),则k=__,b=__.15,函数y=9-4x2,当x=_________时有最大值________.16,两数和为10,则它们的乘积最大是_______,此时两数分别为________.三、解答题(共52分)17,求下列函数的图像的对称轴、顶点坐标及与x轴的交点坐标.(1)y=4x2+24x+35;(2)y=-3x2+6x+2;(3)y=x2-x+3;(4)y=2x2+12x+18.18,已知抛物线C1的解析式是5x=xy,抛物线C2与抛物线C1关于x轴对22+-4称,求抛物线C2的解析式.19(1)在同一坐标系中画出两个函数的图像.(2)当x从1开始增大时,预测哪一个函数的值先到达16.(3)请你编出一个二次项系数是1的二次函数,使得当x=4时,函数值为16.编出的函数解析式是什么?20,已知抛物线y =x 2-2x -8.(1)试说明该抛物线与x 轴一定有两个交点.(2)若该抛物线与x 轴的两个交点分别为A 、B (A 在B 的左边),且它的顶点为P , 求△ABP 的面积.21,已知:如图3,在Rt△ABC 中,∠C =90°,BC =4, AC =8,点D 在斜边AB 上, 分别作DE ⊥AC ,DF ⊥BC ,垂足 分别为E 、F ,得四边形DECF ,设DE =x ,DF =y . (1)用含y 的代数式表示AE .(2)求y 与x 之间的函数关系式,并求出x 的取值范围.(3)设四边形DECF 的面积为S ,求出S 的最大值.D CBF E A 图3 图422,某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图4所示,其拱形图形为抛物线的一部分,栅栏的跨径AB 间,按相同的间距0.2米用5根立柱加固,拱高OC 为0.6米.(1) 以O 为原点,OC 所在的直线为y 轴建立平面直角坐标系,请根据以上的数据,求出抛物线y =ax 2的解析式;(2)计算一段栅栏所需立柱的总长度(精确到0.1米).23、已知:m ,n 是方程2650x x -+=的两个实数根,且m n <, 抛物线2y x bx c =-++的图象经过点A (0m ,),B (0n ,).(1) 求这个抛物线的解析式;(2) 设(1)中的抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C ,D 的坐标和BCD △的面积;(注:抛物线2y ax bx c =++(0)a ≠的顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,); (3) P 是线段OC 上的一点,过点P 作PH x ⊥轴,与抛物线交于H 点,若直线BC 把PCH△分成面积之比为2:3的两部分,请求出P 点的坐标.答案:解:(1)解方程2650x x -+=,得15x =,21x =.由mn <,有1m =,5n =.所以点A ,B 的坐标分别为()10A ,,()05B ,. 将()10A ,,()05B ,的坐标分别代入2y x bx c =-++, 得105b c c -++=⎧⎨=⎩,.解这个方程组,得45b c =-⎧⎨=⎩,.所以抛物线的解析式为245y x x =--+.(2)由245y x x =--+,令0y =,得2450x x --+=.解这个方程,得15x =-,21x =.所以C 点的坐标为()50-,. 由顶点坐标公式计算,得点()29D-,. 过D 作x 轴的垂线交x 轴于M ,则()12795222DMCS =⨯⨯-=△, ()1295142MDBO S =⨯⨯+=梯形,1255522BOC S =⨯⨯=△. 所以2725141522BCDDMC BOC MDBO S S S S =+-=+-=梯形△△△. (3)设P 点的坐标为()0a ,, 因为线段BC 过B ,C 两点,所以BC 所在的直线方程为5y x =+.那么,PH 与直线BC 的交点坐标为()5E a a +,,PH 与抛物线245y x x =--+的交点坐标为()245H a a a --+,. 由题意,得①32EH EP =,即()()()2345552a a a a --+-+=+. 解这个方程,得32a =-或5a =-(舍去).②23EH EP =,即()()()2245553a a a a --+-+=+.解这个方程,得23a =-或5a =-(舍去).P 点的坐标为302⎛⎫- ⎪⎝⎭,或203⎛⎫- ⎪⎝⎭,.参考答案:一、1,A ;2,D ;3,B ;4,D ;5,B ;6,A ;7,A ;8,D. 二、9,下; 10,(-4,-20); 11,y =2x 2; 12,43; 13,y =x 2-4x +3; 14,k =92,b =12; 15,0、9; 16,25 5、5. 三、17,(1)对称轴是直线x =-3,顶点坐标是(-3,-1),解方程4x 2+24x +35=0,得x 1=52-,x 2=72-.故它与x 轴交点坐标是(52-,0),(72-,0)(2)对称轴是直线x =1,顶点坐标是(1,5),解方程-3x 2+6x +2=0,得1211x x =+=-,故它与x轴的交点坐标是1,133⎛⎫⎛⎫+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (3)对称轴是直线x =12,顶点坐标是111,24⎛⎫ ⎪⎝⎭,解方程x 2-x +3=0,得12x x 故它与x轴的交点坐标是,⎫⎫⎪⎪⎪⎪⎝⎭⎝⎭.(4)对称轴是直线x =-3,顶点坐标是(-3,0),它与x 轴的交点坐标是(-3,0);18,经检验,点A (0,5)、B (1,3)、C (-1,11)都在抛物线C 1上.点A 、B 、C 关于x 轴的对称点分别为A′(0,-5)、B′(1,-3)、C′(-1,-11),它们都在抛物线C 2上.设抛物线C 2的解析式为c bx ax y ++=2,则⎪⎩⎪⎨⎧-=+--=++-=.11,3,5c b a c b a c 解得⎪⎩⎪⎨⎧-==-=.5,4,2c b a 所以抛物线的解析式是5422-+-=x x y ;19,(1)图略,(2)y2=x2的函数值先到达16,(3)如:y3=(x-4)2+16;20,(1)解方程x2-2x-8=0,得x1=-2,x2=4.故抛物线y=x2-2x-8与x轴有两个交点.(2)由(1)得A(-2,0),B(4,0),故AB=6.由y=x2-2x-8=x2-2x+1-9=(x-1)2-9.故P点坐标为(1,-9),过P作PC⊥x轴于C,则PC=9,∴S△ABP=12AB·PC=12×6×9=27;21,(1)由已知得DECF是矩形,故EC=DF=y,AE=8-EC=8-y.(2)∵DE∥BC,∴△ADE∽△ABC,∴DE AEBC AC=,即848x y-=.∴y=8-2x(0<x<4).(3)S=xy=x(8-2x)=-2(x-2)2+8.∴当x=2时,S有最大值8;22,(1)由OC=0.6,AC=0.6,得点A的坐标为(0.6,0.6),代入y=ax2,得a=53,∴抛物线的解析式为y=53x2,(2)可设右边的两个立柱分别为C1D1,C2D2,则点D1,D2的横坐标分别为0.2,0.4,代入y=53x2,得点D1,D2的纵坐标分别为:y1=53×0.22≈0.07,y2=53×0.42≈0.27,∴立柱C1D1=0.6-0.07=0.53,C2D2=0.6-0.27=0.33,由于抛物线关于y轴对称,栅栏所需立柱的总长度为:2(C1D1+ C2D2)+OC=2(0.53+0.33)+0.6≈2.3米.。