初中数学:多边形练习(含答案)

合集下载

多边形计算试题及答案

多边形计算试题及答案

多边形计算试题及答案一、选择题(每题2分,共10分)1. 一个多边形有5条边,那么这个多边形是:A. 三角形B. 四边形C. 五边形D. 六边形答案:C2. 一个凸多边形的内角和等于:A. 360°B. 540°C. 720°D. 900°答案:B3. 一个正多边形的所有边长相等,所有内角也相等,那么这个多边形是:A. 任意多边形B. 正多边形C. 凹多边形D. 不规则多边形答案:B4. 一个多边形的外角和等于:A. 180°B. 360°C. 540°D. 720°答案:B5. 一个多边形的对角线数量可以通过以下公式计算:A. n(n-1)/2B. n(n-3)/2C. n(n-2)/2D. n(n-2)/3答案:B二、填空题(每题3分,共15分)1. 如果一个多边形有7条边,那么它的内角和是_________°。

答案:900°2. 一个正六边形的每个内角的度数是_________°。

答案:120°3. 如果一个多边形的边数是n,那么它的对角线数量是_________。

答案:n(n-3)/24. 一个多边形的外角和总是等于_________。

答案:360°5. 一个多边形的内角和可以通过公式_________来计算。

答案:(n-2)×180°三、计算题(每题5分,共20分)1. 计算一个有8条边的多边形的内角和。

答案:(8-2)×180° = 1080°2. 计算一个正五边形的每个外角的度数。

答案:360°/5 = 72°3. 如果一个多边形的内角和是900°,求这个多边形的边数。

答案:(900°/180°) + 2 = 74. 计算一个有10条边的多边形的对角线数量。

七年级数学下册《多边形》练习题及答案(华师大版)

七年级数学下册《多边形》练习题及答案(华师大版)

七年级数学下册《多边形》练习题及答案(华师大版)一、选择题1.下面图形是用木条钉成的支架,其中不容易变形的是( )A. B. C. D.2.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形3.如图,为了估计池塘岸边A,B两点间的距离,小玥同学在池塘一侧选取一点O,测得OA=12米,OB=7米,则A,B间的距离不可能是()A.5米B.7米C.10米D.18米4.将一个n边形变成n+1边形,内角和将( )A.减少180°B.增加90°C.增加180°D.增加360°5.小明家装修房屋,用同样的正多边形瓷砖铺地,顶点连着顶点,为铺满地面而不重叠,瓷砖的形状可能有( )A.正三角形、正方形、正六边形B.正三角形、正方形、正五边形C.正方形、正五边形D.正三角形、正方形、正五边形、正六边形6.已知三角形三边分别为2,a-1,4,那么a的取值范围是( )A.1<a<5B.2<a<6C.3<a<7D.4<a<67.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是( )A.43°B.47°C.30°D.60°8.小明同学把一个含有450角的直角三角板在如图所示的两条平行线m,n上,测得,则的度数是( )A.450B.550C.650D.7509.用三角板作△ABC的边BC上的高,下列三角板的摆放位置正确的是( )A. B.C. D.10.△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是( )A.4B.4或5C.5或6D.611.记n边形(n>3)的一个外角的度数为p,与该外角不相邻的(n﹣1)个内角的度数的和为q,则p与q的关系是( )A.p=qB.p=q﹣(n﹣1)•180°C.p=q﹣(n﹣2)•180°D.p=q﹣(n﹣3)•180°12.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°二、填空题13.过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是边形.14.三角形的两边长分别为8和6,第三边长是一元一次不等式2x﹣1<9的正整数解,则三角形的第三边长是.15.在△ABC中,∠A=60°,∠B=2∠C,则∠B= .16.将一副直角三角板如图摆放,点C在EF上,AC经过点D,已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF= .17.如图,在一个正方形被分成36个面积均为1的小正方形,点A与点B在两个格点上.在格点上存在点C,使△ABC的面积为2,则这样的点C有个.18.如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .三、作图题19.如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.根据下列条件,利用网格点和三角板画图:(1)补全△A′B′C′(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)△A′B′C′的面积为.四、解答题20.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.21.小王准备用一段长30m的篱笆围成一个三角形形状的场地,用于饲养家兔,已知第一条边长为am,由于受地势限制,第二条边长只能是第一条边长的2倍多2m.(1)请用a表示第三条边长.(2)问第一条边长可以为7m吗?请说明理由.22.已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分线,求∠A和∠CDB的度数.23.在△ABC中,AB=AC,AC上的中线把三角形的周长分为18cm和24cm两个部分,求三角形各边长.24.现实生活中,各种各样的图形随处可见.我们知道,由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.由三角形定义可知,在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形.如图1,若有三条边的叫做三角形,有四条边的叫做四边形,有五条边的叫做五边形…通过学习,我们知道三角形三个内角的和为180°,现在我们类比三角形内角和来研究其他多边形图形的内角和问题.探究:猜想并验证四边形的内角和.猜想:四边形内角和为360°验证:在四边形ABCD中,连接AC,则四边形ABCD被分为两个三角形(图2).所以,四边形ABCD的内角和=△ABC的内角和+△ACD的内角和=180°+180°=360°请类比上述方法探究下列问题.(1)探究:猜想并探究五边形ABCDE的内角和.(图3)猜想:验证:(2)根据上述探究过程,可归纳出n边线内角和为.(3)证明:①已知一个多边形的内角和为1800°,那么这是个边形.②一天小明爸爸给小明出了一道智力题考考他.将一个多边形截去一个角后(没有过顶点),得到的多边形内角和将会( )A.不变B.增加180°C.减少180°D.无法确定.25.如图1,在平面直角坐标系中,已知A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB 交y轴于F点.(1)求点A、B的坐标;(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图 2,求∠AMD的度数;(3)如图 3,(也可以利用图 1)①求点F的坐标;②坐标轴上是否存在点P,使得△ABP和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案1.【答案】B2.【答案】B3.【答案】B4.【答案】C5.【答案】A6.【答案】C7.【答案】B.8.【答案】D.9.【答案】A.10.【答案】B.11.【答案】D.12.【答案】B.13.【答案】八.14.【答案】3或4.15.【答案】80°.16.【答案】25°17.【答案】5;18.【答案】180°.19.【答案】解:(1)(2)(3)题如图所示.(4)△A′B′C′的面积为:8.故答案为:8.20.【答案】解:设这个多边形的边数是,则(n﹣2)×180=360×4,n﹣2=8,n=10.答:这个多边形的边数是10.21.【答案】解:(1)第三边为:30﹣a﹣(2a+2)=(28﹣3a)m. (2)第一条边长不可以为7m.理由:a=7时,三边分别为7,16,7∵7+7<16∴不能构成三角形,即第一条边长不可以为7m.22.解:∵在△ABC中,∠A:∠B:∠C=2:3:4,∠A+∠ACB+∠B=180°∴∠A=×180°=40°,∠ACB=×180°=80°∵CD是∠ACB平分线,∴∠ACD=0.5∠ACB=40°∴∠CDB=∠A+∠ACD=40°+40°=80°23.【答案】解:设AD=CD=x,则AB=2x①当AB+AD=24时,得:3x=24,x=8AB=AC=16∵BC+x=18∴BC=10;②当AB+AD=18时3x=18,x=6AB=AC=12又BC+x=18∴BC=6.24.【答案】解:(1)探究:猜想:五边形ABCDE的内角和为540°.理由:如图3中,连接AD、AC.由图可知,五边形的内角和=△ADE的内角和+△ADC的内角和+△ACB的内角和=180°+180°+180°=540°,故答案为540°.(2)因为:三角形内角和为180°=(3﹣2)×180°四边形内角和为360°=(4﹣2)×180°五边形内角和=(5﹣2)×180°,…所以可以推出n边形的内角和=(n﹣2)•180°故答案为(n﹣2)•180°.(3)①设是n边形,由题意(n﹣2)•180°=1800,解得n=12∴这个多边形是12边形.故答案为12.②因为一个多边形切去一个角后形成的多边形边数有三种可能:比原多边形边数小1、相等、大1,所以将一个多边形截去一个角后(没有过顶点),得到的多边形内角和可能不变,可能增加180°,也可能减少180°,不能确定,故选D.25.【答案】。

新人教版数学八年级上册11.3.1多边形同步练习

新人教版数学八年级上册11.3.1多边形同步练习

初中数学试卷新人教版数学八年级上册11.3.1多边形同步练习一、选择题(共15题)1.下列结论正确的是()A.在平面内,有四条线段组成的图形叫做四边形B.由不在同一直线上的四条线段组成的图形叫做四边形C.在平面内,由不在同一直线上的四条线段组成的图形叫做四边形D.在平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形答案:D知识点:四边形解析:解答:四边形的概念与三角形的概念类似,三角形的概念:在平面内,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;所以,D项的结论更准确.分析:此题考查多边形的定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形;四边形也是多边形的一种.2.下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形答案:D知识点:正多边形和圆解析:解答:正方形的四条边相同,四个内角也相等,则正方形是正多边形.分析:此题考查正多边形的定义.3.一个四边形截去一个角后内角个数是()A.3B.4C.5D.3、4、5答案:B知识点:多边形的内角与外角解析:解答:如图可知,一个四边形截去一个角后变成三角形或四边形或五边形.分析:截去一个角,有多种截法,要注意分类讨论.4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形答案:A知识点:多边形的对角线解析:解答:设这个多边形是n边形.依题意,得n-3=10,∴n=13.故这个多边形是十三边形.分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.5.下列说法不正确的是()A.各边都相等的多边形是正多边形B.正多形的各边都相等C.正三角形就是等边三角形D.各内角相等的多边形不一定是正多边形答案:A知识点:正多边形和圆解析:解答:正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形;各边都相等的多边形不一定是正多边形.分析:此题考查正多边形的定义,熟练掌握定义是解题的关键.6.下列属于正多边形的特征的有()(1)各边相等(2)各个内角相等(3)各个外角相等(4)各条对角线都相等(5)从一个顶点引出的对角线将正n边形分成面积相等的(n-2)个三角形A.2个B.3个C.4个D.5个答案:B知识点:正多边形和圆;多边形的对角线解析:分析:本题考查了多边形的对角线,n边形过一个顶点有(n-3)条对角线,它们把n边形分割成了(n-2)个三角形.10.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()A.9 B.10 C.11 D.12答案:C知识点:多边形的对角线解析:解答:n=9+2=11.分析:要熟练掌握正多边形的边数(n)、一个顶点可以作的对角线条数(n-3)和它们能分成的不重叠的三角形数(n-2)有关系.11.要使一个六边形的木架稳定,至少要钉()根木条A.3B.4C.6D.9答案:A知识点:多边形的对角线;三角形的稳定性解析:解答:根据三角形的稳定性,可将六边形木架分成几个三角形,则需要6-3=3根木条.分析:此题考查多边形的对角线及三角形的稳定性.12.一个正十边形的某一边长为8cm,其中一个内角的度数为144º,则这个正十边形的周长和内角和分别为()A.64cm,1440ºB.80cm,1620ºC.80cm,1440ºD.88cm,1620º答案:D知识点:正多边形和圆;多边形的内角与外角解析:解答:根据正多边形的性质可知每条边相等,每个内角都相等,则周长为10×8=80(cm),内角和为144º×10=1440º.分析:此题考查正多边形的性质.13.如图所示,四边形ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围为()A.0<AD<7B.2<AD<7C.0<AD<13D.1<AD<13答案:D知识点:三角形三边关系解析:解答:连接AC.∵AB=2,BC=4,在△ABC中,根据三角形的三边关系,4-2<AC<2+4,即2<AC<6.∴-6<-AC<-2,1<CD-AC<5,9<CD+AC<13,在△ACD中,根据三角形的三边关系,得CD-AC<AD<CD+AC,∴1<AD<13.分析:本题综合考查了三角形的三边关系.连接AC,求出AC的取值范围是解题关键.14.下列图中不是凸多边形的是()答案:A知识点:多边形解析:解答:多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧.②每个内角的度数均小于180°,通常所说的多边形指凸多边形.分析:此题考查多边形,关键是掌握凸多边形和凹多边形的区别.15.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的ABCD边数不可能是()A.16 B.17 C.18 D.19答案:A知识点:多边形解析:解答:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.分析:此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.二、填空题(共5题)16.一个四边形它有条边,有个内角,有个外角,从一个顶点出发可以引条对角线,一共可以画条对角线.答案:4 4 4 1 2知识点:四边形;多边形的对角线解析:解答:根据四边形的特点填空即可.分析:根据四边形的特点.17.过m边形的一个顶点有7条对角线,n边形没有对角线,则n-m= .答案:-7知识点:多边形的对角线解析:解答:三角形没有对角线,则n=3;过m边形的一个顶点有7条对角线,则m=7+3=10,则n-m=3-10=-7.分析:此题考查多边形的一个顶点上的对角线数与边数之间的关系;即n边形的一个顶点可作(n-3)条对角线.18.正三角形、正方形、正六边形都是大家熟悉的特殊多边形,它们有很多共同特征,请写出其中的两点:答案:(1)每条边都相等(2)每个内角都相等知识点:正多边形和圆解析:解答:正三角形、正方形、正六边形都属于正多边形,正多边形的特征是每条边都相等,每个内角都相等.分析:本题主要考查正多边形的性质.19.如图,在正六边形ABCDEF内放入2008个点,若这2008个点连同正六边形的六个顶点无三点共线,则该正六边形被这些点分成互不重合的三角形共个.答案:4020知识点:正多边形和圆解析:解答:∵正六边形ABCDEF内放入2008个点,这2008个点连同正六边形的六个顶点无三点共线,∴共有2008+6=2014个点.∵在正六边形内放入1个点时,该正六边形被这个点分成互不重合的三角形共6个;即当n=1时,有6个;然后出现第2个点时,这个点必然存在于开始的6个中的某一个三角形内,然后此点将那个三角形又分成3个三角形,三角形数量便增加2个;又出现第3个点时,同理,必然出现在某个已存在的三角形内,然后又将此三角形1分为3,增加2个…,∴内部的点每增加1个,三角形个数便增加2个.于是我们得到规律:存在n个点时,三角形数有:6+2(n-1)=2n+4(n≥1).由题干知,2008个点的总数为2×2008+4=4020(个).分析:先求出点的个数,进一步求出互不重合的三角形的个数.20.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为 .答案:n(n+1)知识点:正多边形和圆;探索图形的规律解析:解答:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).分析:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).三、解答题(共5题)21.(1)如图(1),O为四边形ABCD内一点,连接OA、OB、OC、OC可以得几个三角形?它与边数有何关系?(2)如图(2),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?(3)如图(3),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?答案:(1)连接OA、OB、OC、OD可以得4个三角形,它与边数相等,(2)连接OC、OD、OE可以得4个三角形,它的个数比边数小1,(3)过点A作六边形ABCDEF的对角线,可以得到4个三角形,它的个数比边数小2.知识点:多边形的对角线;探索图形的规律解析:解答:观察图形,可得到每个图形分得的三角形数,与多边形的边数作比较即可.分析:此题考查了多边形的对角线,关键是观察图形,找出三角形的个数与多边形的边数之间的关系.22.把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:(多边形的内角和公式:(n-2)·180º)(1)原来的多边形是几边形?(2)把原来的多边形分割成了多少个多边形?答案:(2)12边形(2)分割成了6个小多边形论n 取任何大于2的正整数,a 与b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n 的值.答案:(1)20 (2)知识点:正多边形和圆解析:解答:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a >b 或a <b ,但可令a=b ,得6077n n =+, ∴60n+420=67n ,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b ,即不符合这一说法的n 的值为60.分析:(1)根据正多边形的每条边相等,可知边长=周长÷边数;(2)分别表示出a 和b 的代数式,让其相等,看是否有相应的值.25.如图,在五边形A 1A 2A 3A 4A 5中,B 1是A 1对边A 3A 4的中点,连接A 1B 1,我们称A 1B 1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.答案:(1)70% (2)1170美元知识点:多边形的对角线;平行线的判定;三角形的面积解析:解答:证明:取A 1A 5中点B 3,连接A 3B 3、A 1A 3、A 1A 4、A 3A 5,∵A 3B 1=B 1A 4,∴131A A B S V =114A B A S V ,又∵四边形A 1A 2A 3B 1与四边形A 1B 1A 4A 5的面积相等,∴123A A A S V =145A A A S V ,-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达 同理123A A A S V =345A A A S V ,∴145A A A S V =345A A A S V ,∴△A 3A 4A 5与△A 1A 4A 5边A 4A 5上的高相等,∴A 1A 3∥A 4A 5,同理可证A 1A 2∥A 3A 5,A 2A 3∥A 1A 4,A 3A 4∥A 2A 5,A 5A 1∥A 2A 4.分析:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行;可以再作五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.。

人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析

人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析

《11.3 多边形及其内角和》一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6三、填空题:10.多边形的内角中,最多有个直角.11.从n边形的一个顶点出发可以引条对角线,这些对角线将这个多边形分成个三角形.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.14.每一个内角都是144°的多边形有条边.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?16.一个多边形的每一个外角都等于24°,求这个多边形的边数.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.《11.3 多边形及其内角和》参考答案与试题解析一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个【考点】多边形内角与外角.【专题】计算题.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.【点评】本题考查了多边形的外角和:n边形的外角和为360°.2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°【考点】多边形内角与外角.【分析】根据n边形的内角和(n﹣2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D 选项正确.【解答】解:A、(n﹣2)•180°=120•n,解得n=6,所以A选项错误;B、(n﹣2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n﹣2)•180°=144°•n,解得n=10,所以C选项错误;D、(n﹣2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.【点评】本题考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:4【考点】多边形内角与外角.【分析】多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.【解答】解:A、外角是:180×=60°,360÷60=6,故可能;B、外角是:180×=90°,360÷90=4,故可能;C、外角是:180×=度,360÷=7,故可能;D、外角是:180×=80°.360÷80=4.5,故不能构成.故选D.【点评】本题主要考查了多边形的外角和定理,理解外角与内角的关系是解题的关键.4.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形【考点】多边形的对角线.【分析】根据多边形对角线公式,可得答案.【解答】解:设多边形为n边形,由题意,得=14,解得n=7,故选:B.【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、填空题:10.多边形的内角中,最多有 4 个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.11.从n边形的一个顶点出发可以引n﹣3 条对角线,这些对角线将这个多边形分成n﹣2 个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解从n边形的一个顶点出发可以引n﹣3条对角线,这些对角线将这个多边形分成n﹣2个三角形,故答案为:n﹣3,n﹣2.【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为9 .【考点】多边形内角与外角.【分析】根据多边形的外角和定理,列出不等式即可求解.【解答】解:因为n边形的外角和是360度,每一个内角都大于135°即每个外角小于45度,就得到不等式:,解得n>8.因而这个多边形的边数最少为9.【点评】本题已知一个不等关系就可以利用不等式来解决.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【考点】多边形内角与外角.【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特征.14.每一个内角都是144°的多边形有10 条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.16.一个多边形的每一个外角都等于24°,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形外角和为360°及多边形的每一个外角都等于24°,求出多边形的边数即可.【解答】解:设这个多边形的边数为n,则根据多边形外角和为360°,可得出:24×n=360,解得:n=15.所以这个多边形的边数为15.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形外角和为360°.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【考点】多边形内角与外角.【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:n=180(a ﹣2):360,从而用m、n表示出a的值.【解答】解:设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,m:n=180(a﹣2):360a=,因为m,n 是互质的正整数,a为整数,所以n=2,故答案为:,2.【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练掌握多边形内角和与多边形外角和.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.作者留言:非常感谢!您浏览到此文档。

初二多边形题型试题及答案

初二多边形题型试题及答案

初二多边形题型试题及答案【试题】一、选择题1. 下面哪个选项不是多边形的内角和的计算公式?A. (n-2) × 180°B. n × (n-1) × 45°C. n × 180°D. 360°2. 一个多边形的外角和是多少度?A. 180°B. 360°C. 540°D. 720°3. 如果一个多边形的边数增加1倍,其内角和会如何变化?A. 增加1倍B. 增加2倍B. 保持不变D. 无法确定二、填空题4. 若一个多边形的边数为n,其内角和为______。

5. 一个正五边形的每个内角的度数是______。

三、解答题6. 一个多边形的内角和为2340°,求这个多边形的边数。

7. 如果一个多边形的每个外角都是40°,求这个多边形的边数。

【答案】一、选择题1. 答案:B。

多边形的内角和的计算公式是(n-2) × 180°,其中n是多边形的边数。

2. 答案:B。

任何多边形的外角和总是等于360°。

3. 答案:A。

如果一个多边形的边数增加1倍,其内角和也会增加1倍。

二、填空题4. 答案:(n-2) × 180°。

这是多边形内角和的通用公式。

5. 答案:108°。

正多边形的每个内角可以通过公式(n-2) × 180°/ n计算,对于正五边形,n=5,所以每个内角是(5-2) × 180° / 5= 108°。

三、解答题6. 解:设多边形的边数为n,根据内角和公式,我们有 (n-2) × 180° = 2340°。

解这个方程,我们得到 n-2 = 2340° / 180° = 13,所以 n = 15。

这个多边形有15条边。

八年级数学上册多边形及其内角和同步练习含解析

八年级数学上册多边形及其内角和同步练习含解析

多边形及其内角和一、单选题(共10小题)1.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A.a〉b B.a=b C.a〈b D.b=a+180°【答案】B【解析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】解:∵四边形的内角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.2.一个六边形的内角和等于( )A.180°B.360°C.540°D.720°【答案】D【解析】试题分析:根据内角和公式可得:(6-2)×180°=720°,故选D.点睛:此题主要考查了多边形内角和公式,关键是熟练掌握n 边形的内角和为(n-2)•180°(n≥3,且n为整数).3.如图为矩形ABCD,一条直线将该矩形分割成两个多边形,若这两个多边形的内角和分别为a和b,则a+b不可能是()A.360°B.540°C.630°D.720°【答案】C【解析】根据多边形的内角和都是180°的倍数即可作出判断.【详解】一条直线将该矩形ABCD分割成两个多边形,每一个多边形的内角和都是180°的倍数,都能被180整除,分析四个答案,只有630不能被180整除,所以a+b不可能是630°.故选:C。

【点睛】此题考查多边形内角(和)与外角(和),解题关键在于利用三角形内角和定理进行判断4.下列说法正确的是()A.三角形可以分为等边三角形、直角三角形、钝角三角形B.如果一个三角形的一个外角大于与它相邻的内角,则这个三角形为锐角三角形C.各边都相等的多边形是正多边形D.五边形有五条对角线【答案】D【解析】根据三角形的分类、三角形内外角的关系以及正多边形的定义即可作出判断.【详解】A、三角形可以分为锐角三角形、直角三角形、钝角三角形,故选项错误;B、任何一个三角形的一定至少有两个外角大于与它相邻的内角,故选项错误;C、各边都相等、各角相等的多边形是正多边形,故选项错误;D、五边形有五条对角线,正确.故选D.【点睛】本题考查了正多边形的定义,三角形的性质以及分类,理解三角形的内角和外角的关系是关键.5.下列说法中错误的是()A.三角形的中线、角平分线、高都是线段B.任意三角形的内角和都是180°C.多边形的外角和等于360°D.三角形的一个外角大于任何一个内角【答案】D【解析】根据三角形的角平分线、中线和高的定义可对A进行判断;根据三角形内角和定理可对B进行判断;根据多边形和三角形外角的性质可对C、D进行判断.【详解】解:A、三角形的中线、角平分线、高线都是线段,所以A选项的说法正确;B、三角形的内角和为180°,所以B选项的说法正确;C、多边形的外角和等于360°,所以D选项的说法正确;D、三角形的一个外角大于任何一个不相邻的内角,所以C选项的说法错误.故选:D.【点睛】本题考查了三角形内角和定理:三角形的内角和为180°.也考查了三角形的角平分线、中线和高以及三角形外角的性质.6.下列结论中,错误的是( )A.五边形的内角和为540° B.五边形的每一个内角为108°C.多边形的外角和为360° D.六边形的内角和等于外角和的2倍【答案】B【解析】利用多边形的内角和与外角和对四个选项逐项判断后即可得到答案.【详解】解:A。

初中多边形经典练习题(含详细答案)

初中多边形经典练习题(含详细答案)

初中多边形经典练习题(含详细答案)一、选择题1. 根据图形的特征,下列哪个图形是多边形?A. 圆形B. 椭圆C. 正方形D. 梯形答案:C. 正方形解析:多边形是由线段组成的闭合图形,而正方形是一个有四条相等边的多边形。

2. 下列哪个图形不是凸多边形?A. 正三角形B. 正方形C. 长方形D. 梯形答案:D. 梯形解析:凸多边形是指所有内角均小于180度的多边形,梯形的一个内角是直角,因此不是凸多边形。

二、填空题3. 有一个五边形,其中三个内角分别为82°、95°和120°,求另外两个内角的度数。

答案:83°和120°解析:五边形的内角和为540°,已知三个内角分别为82°、95°和120°,将它们相加得到297°,所以另外两个内角的度数为540° - 297° = 243°,再分别减去已知角度82°和95°即可得到答案。

4. 在一个正五边形中,每个内角的度数是多少?答案:108°解析:正五边形的内角和为540°,而正五边形的每个内角是相等的,所以每个内角的度数为540° / 5 = 108°。

三、解答题5. 已知一个凸五边形的一个内角是132°,其他四个内角分别是95°、110°、115°和138°,求该凸五边形的内角和。

答案:590°解析:凸五边形的内角和为540°,已知一个内角是132°,其他四个内角的度数之和为95° + 110° + 115° + 138° = 458°,所以该凸五边形的内角和为540° - 132° - 458° = 590°。

中考数学复习《多边形》专题练习(含答案)(1)

中考数学复习《多边形》专题练习(含答案)(1)

中考数学复习《多边形》专题练习(含答案)(1)中考数学专题练习多边形一、选择题1.(·云南)一个五边形的内角和为( )A. 540oB. 450oC. 360oD. 180o2. (2018·南通)若一个凸多边形的内角和为720o,则这个多边形的边数为( )A. 4B. 5C. 6D. 73. (2018·呼和浩特)已知一个多边形的内角和为1 080o,则这个多边形是( )A.九边形B.八边形C.七边形D.六边形4. ( 2018·台州)正十边形的每一个内角的度数为( )A. 120oB. 135oC. 140oD. 144o5. (2018·曲靖)若一个正多边形的内角和为720o,则这个正多边形的每一个内角是( )A. 60oB. 90oC. 108oD. 120o6. ( 2018·宁波)已知正多边形的一个外角等于40o,那么这个正多边形的边数为( )A. 6B. 7C. 8D.97. (2018·北京)若正多边形的一个外角是60o,则该正多边形的内角和为( )A. 360oB. 540oC. 720oD. 900o8. (2018·宿迁)如果一个多边形的内角和是外角和的3倍,那么这个多边形的边数是( )A. 8B. 9C. 10D. 119. (2018·济宁)如图,在五边形ABCDE 中,300A B E ∠+∠+∠=?,,DP CP 分别平分EDC ∠,BCD ∠,则P ∠的度数是( )A. 50oB. 55oC. 60oD. 65o10. (2018·双鸭山)如图,在四边形ABCD 中,AB AD =,5AC =,90DAB DCB ∠=∠=?,则四边形ABCD 的面积为( )A. 15B. 12.5C. 14.5D. 17二、填空题11. (2018·福建)一个n 边形的内角和为360o,则n 的值为 .12. (2018·广安)一个n 边形的每一个内角等于108o,那么n 的值为 .13. (2018·菏泽)若正多边形的每一个内角为135o,则这个正多边形的边数是 .14. (2018·上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 .15. (2018·江汉油田)若一个多边形的每个外角都等于30o,则这个多边形的边数为 .16. (2018·怀化)一个多边形的每一个外角都是36o,则这个多边形的边数是 .17. (2018·山西)图①是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美.图②是从图①冰裂纹窗格图案中提取的由五条线段组成的图形,则12345∠+∠+∠+∠+∠= .18. (2018·邵阳)如图,在四边形ABCD 中,AD AB ⊥,110C ∠=?,它的一个外角60ADE ∠=?,则B ∠的大小是 .19. (2018·陕西)如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE ∠的度数为 .20. (2018·抚顺)将两张三角形纸片如图摆放,量得1234220∠+∠+∠+∠=?,则5∠的度数为 .21. (2018·南京)如图,五边形ABCDE 是正五边形.若12//l l ,,则12∠-∠= .22. (2018·贵阳)如图,,M N 分别是正五边形ABCDE 的两边,AB BC 上的点.若AM BN =,点O 是正五边形的中心,则MON ∠的度数是 .23. (2018·株洲)如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则BOM ∠的度数为 .24. (2018·宜宾)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.设⊙O 的半径为1,若用⊙O 的外切正六边形的面积S 来近似估计⊙O 的面积,则S = . (结果保留根号) 25. (2018·呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为 .26.(导学号78816049)(2018·聊城)如果一个正方形被截掉一个角后,得到一个多边形,那么这个多边形的内角和是 .三、解答题27. (2018·河北)如图①,作BPC ∠的平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=?,而90452?=?是360o(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图②所示.(1)图②中的图案外轮廓周长是 ;(2)在所有符合要求的图案中选一个外轮廓周长最大的定为会标,求该会标的外轮廓周长.参考答案一、1. A 2. C 3. B 4. D 5. D 6. D 7. C 8. A 9. C10. B二、填空题11. 412. 513. 814. 540?15. 1216. 1017. 360?18. 40?19. 72?20. 40?21. 72?22. 72?23. 48?24. 25.26. 540?或360?或180?三、27. (1) 14(2) 会标的外轮廓周长为21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学:多边形练习(含答案)
一、选择题
1、n 边形所有对角线的条数是( )
A.()12n n -
B. ()22n n -
C. ()32
n n - D. ()42n n - 【答案】C
【解析】
试题分析:根据多边形对角线的公式可得结果.
解:n 边形对角线的条数是()
32n n -.
故应选C.
考点:多边形的对角线
2、若一个多边形共有十四条对角线,则它是( )
A.六边形
B.七边形
C.八边形
D.九边形 【答案】B
【解析】
试题分析:根据多边形对角线的公式列方程求解.
解:设多边形的边数是n, 根据题意可得:()1
3142n n -=,
解得:n=7,
答:这个多边形是7边形.
故应选B.
考点:多边形
3、下列的线段哪些可以组成三角形( )
A 、10,14,24
B 、12,2,16,
C 、16,6,4
D 、8,10,12 【答案】D
【解析】
试题分析:根据三角形三边关系进行判断.
解:A 选项:因为10+14=24,所以不能构成三角形;
B选项:因为12+2<16,所以不能构成三角形;
C选项:因为6+4<16,所以不能构成三角形;
D选项:因为8+10>12,所以能构成三角形.
故应选D.
考点:三角形三边关系
4、五边形的外角个数为()
A、5
B、8
C、10
D、12
【答案】C
【解析】
试题分析:根据多边形的定义进行解答
解:五边形的每个顶点处有2个外角,这两个外角是对顶角,
所以五边形有10个外角
故应选C.
考点:多边形
5、下列命题中正确的是()
A、各角都相等的多边形是正多边形
B、各边都相等的多边形是正多边形
C、经过多边形的一个顶点可引(n-2)条对角线
D、正方形是正多边形
【答案】D
【解析】
试题分析:根据正多边形的定义进行判断.
解:A选项:各角都相等,各边都相等的多边形是正多边形,故A选项错误;B选项:各角都相等,各边都相等的多边形是正多边形,故B项错误;
C选项:经过多边形的一个顶点可引(n-3)条对角线,故C选项错误;
D选项:正方形的四条边都相等,四个角都相等,所以是正多边形,故D选项正确.
故应选D
考点:正多边形
6、适合条件∠A=∠B=1
2
∠C的三角形是()
A、锐角三角形
B、直角三角形
C、钝角三角形
D、不能确定
【答案】B
【解析】
试题分析:根据三角形内角和定理进行计算.
解:在△ABC中,∠A+∠B+∠C=180°,
因为∠A=∠B=1
2
∠C,
所以1
2
∠C +
1
2
∠C +∠C=180°,
解得:∠C=90°,
所以适合条件的三角形是直角三角形.
故应选B.
考点:直角三角形的性质.
7、下列图形中,是正多边形的是()
A、直角三角形
B、等腰三角形
C、长方形
D、正方形【答案】D
【解析】
试题分析:根据正多边形的定义进行解答.
解:只有正方形的四条边都相等,四个角都相等.
所以正方形是正多边形.
故应选D
考点:正多边形.
8、具备下列条件的三角形中,不是角三角形的是()
A、∠A+∠B=∠C
B、∠A=∠B=1
2
∠C
C、∠A=90°-∠B
D、∠A-∠B=90°【答案】D
【解析】
试题分析:根据三角形的内角和定理进行判断.
解:A选项:在△ABC中,∠A+∠B+∠C=180°,因为∠A+∠B=∠C,所以∠C+∠C=180°,解得:∠C=90°,所以这个三角形是直角三角形;
B选项:在△ABC中,∠A+∠B+∠C=180°,因为∠A=∠B=1
2
∠C,所以
1
2

C+1
2
∠C +∠C=180°,解得:∠C=90°,所以这个三角形是直角三角形;
C选项:在△ABC中,∠A+∠B+∠C=180°,因为∠A=90°-∠B,所以∠
B+90°-∠B+∠C=180°,解得:∠C=90°,所以这个三角形是直角三角形;
D选项:因为∠A-∠B=90°,所以∠A是钝角,所以这个三角形是钝角.
故应选D.
考点:直角三角形
二、填空题
9、两根木棒的长分别为3cm和5cm,要选择第三根木棒,将它钉成一个三角形,若第三根木棒的长为偶数,则第三根木棒的长是_______cm
【答案】4cm或6cm
【解析】
试题分析:根据三角形三边关系求出第三根木棒的取值范围,再根据第三根木
棒的长为偶数确定第三根木棒的长.
解:设第三根木棒的长度是xcm,
根据题意可得:5-3<x<3+5,
解得:2<x<8,
因为第三根木棒的长为偶数,
所以x=4或6.
故答案是4cm或6cm.
考点:三角形三边关系
10、画出多边形任意一条边所在直线,整个多边形都在这条直线的同一侧,这样的多边形叫做________;画出多边形任意一条边所在直线,整个多边形不都在这条直线的同一侧,这样的多边形叫做________;
【答案】凸多边形;凹多边形.
【解析】
试题分析:根据凸多边形和凹多边形的定义进行判断.
解:画出多边形任意一条边所在直线,整个多边形都在这条直线的同一侧,这样
的多边形叫做凸多边形;画出多边形任意一条边所在直线,整个多边形不都在
这条直线的同一侧,这样的多边形叫做凹多边形.
故答案是凸多边形;凹多边形.
考点:多边形
11、从一个多边形的顶点可以引出6条对角线,那么这个多边形是____边形
【答案】9.
【解析】
试题分析:根据多边形的对角线的定义求解.
解:设这个多边形的边数是n,
根据题意可得:n-3=6,
解得:n=9,
答:这个多边形的边数是9.
考点:多边形
三、解答题
12、按图中所给的条件,求出∠1、∠2、∠3的度数.
【答案】25°;118°;72°.
【解析】
试题分析:根据三角形内角与外角的关系进行解答.
解:∠=180°-155°=25°,
∴∠3=37°+25°=72°,
∠2=155°-37°=118°
故答案是25°;118°;72°.
考点:三角形外角定理
13、如图:在△ABC中,∠ABC和∠ACB平分线交于点O,过点O作EF∥BC,交AB于E,交AC于F,且△ABC的周长是24cm,BC=10cm,求△AEF的周长?
【答案】14cm
【解析】
试题分析:根据角平分线的定义可得:OE=BE,OF=CF,所以EF=BE+CF,所以△AEF 的周长=AB+AC,根据△ABC 的周长和BC 的长度求出结果.
解:∵BO 平分∠ABC,CO 平分∠ACB,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF ∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴EO=EB,FO=FC,
∴EF=EB+FC,
∵△ABC 的周长是24cm,BC =10cm,
∴AB+AC=14cm,
∴△AEF 的周长是14cm.
故答案是14cm.
考点:1.平行线的性质;2.角平分线的定义
14、已知∆ABC 的三边长分别为a 、b 、c ,且05|2|2=-++
-+)(c b a c b 求a 的值.
【答案】52
【解析】
试题分析:根据绝对值的非负性和平方的非负性求解.
解:因为05|2|2=-++
-+)(c b a c b , 所以2050
b c a b c +-=⎧⎨+-=⎩,
解得:
5
2 a ,
故答案是5 2
考点:1.绝对值;2.平方
15、把一个五边形锯去一个内角后得到是什么图形?请画图说明
【答案】五边形或六边形或四边形
【解析】
试题分析:
解:如下图所示,
五边形锯去一个内角后得到的图形可能是六边形,如图①;五边形,如图②;四边形,如图③
考点:多边形。

相关文档
最新文档