电磁感应典型例题

合集下载

【物理】高中物理电磁感应经典习题(含答案)

【物理】高中物理电磁感应经典习题(含答案)

【物理】高中物理电磁感应经典习题(含答案)题一题目:一个导线截面积为$2.5\times10^{-4}m^2$,长度为$0.3m$,放在磁感应强度为$0.5T$的均匀磁场中,将导线两端连接到一个电阻为$2\Omega$的电阻器上,求电阻器中的电流。

解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁感应强度以及导线的运动速度有关。

在此题中,导线不运动,所以感应电动势为零。

因此,电路中的电流完全由电源提供,根据欧姆定律,可以使用$U=IR$求解电流。

答案:电路中的电流为0A。

题二题目:一个充满磁感应强度为$1T$的磁场的金属环,直径为$0.2m$,环的厚度可以忽略不计。

当磁场方向垂直于环的平面并向上时,将环从磁场中抽出后,环中的磁场强度变为多少?解析:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,环中会产生感应电动势导致感应电流的产生。

在此题中,环被抽出磁场后,磁通量减小,从而产生感应电动势。

根据安培环路定理和比奥-萨伐尔定律,感应电动势的方向与磁场的变化方向相反,因此感应电流会生成一磁场。

根据安培定律和环形线圈的磁场公式,可以计算出环中的新的磁场强度。

答案:环中的新磁场强度需要通过计算得出。

具体计算过程请参考相关物理教材或参考书籍。

题三题目:一根长度为$0.5m$的直导线与一个磁场相垂直,导线两端的电动势为$2V$,导线的电阻为$4\Omega$,求导线在磁场中运动的速度。

解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁场强度以及导线的运动速度有关。

在此题中,导线的电动势和电阻已知,可以使用欧姆定律$U=IR$解出电流,并使用感应电动势的公式$E=Bvl$解出运动速度。

答案:导线在磁场中的运动速度需要通过计算得出。

具体计算过程请参考相关物理教材或参考书籍。

电磁感应练习50题

电磁感应练习50题

电磁感应练习50题(含答案)1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.答案分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.2、如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37º,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场。

法拉第电磁感应定律典型例题

法拉第电磁感应定律典型例题

A B C D 法拉第电磁感应定律典型例题一、平均电动势的应用、与瞬时电动势的区别(求通过电路的电荷量)1. 如右图所示,线圈M 和线圈P 绕在同一铁芯上。

设两个线圈中的电流方向与图中所标的电流方向相同时为正。

当M 中通入下列哪种电流时,在线圈P 中能产生正方向的恒定感应电流2. 如图中(a),圆形线圈P 静止在水平桌面上,其正上方悬挂一相同的线圈Q ,P 和Q 共轴,Q 中通有变化电流,电流随时间变化的规律如图4—4(b)所示,P 所受的重力为G ,桌面对P 的支持力为N ,则不成立是 ( )A.t 1时刻N >GB.t 2时刻N >GC.t 3时刻N <GD.t 4时刻N =G3.在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M 相接,如图所示,导轨上放一根导线ab ,磁感线垂直导轨所在的平面,欲使M 所包围的小闭合线圈N 产生顺时针方向的感应电流,则导线的运动可能是 ( )A .匀速向右运动B .加速向右运动C .减速向右运动D .加速向左运动4、如左图所示,一矩形线圈置于匀强磁场中,磁场的磁感应强度随时间变化的规律如右图所示.则线圈产生的感应电动势的情况为:( )A 、0时刻电动势最大B 、0时刻电动势为零C 、1t 时刻电动势为0D 、1t ~2t 时间内电动势增大5.如图17-20所示,边长为a 的正方形闭合线框ABCD 在匀强磁场中绕AB 边匀速转动,磁感应强度为B ,初始时刻线框所在平面与磁感线垂直,经过t 时刻后转过120°角,求:(1)线框内感应电动势在t 时间内的平均值(2)转过120°角时感应电动势的瞬时值(3)设线框电阻为R,则这一过程中通过线框截面的电量 二、等效长度的应用1.如图17-17所示中PQRS 为一正方形线圈,它以恒定的速度向右进入以MN 为边界的匀强磁场,磁场方向垂直于线圈平面,MN 与线圈边成45°角,E 、F 分别为PS 、PQ 的中点,关于线圈中感应电流的大小,下面判断正确的是A .当E 点经过MN 时,线圈中感应电流最大B .当P 点经过MN 时,线圈中感应电流最大C .当F 点经过MN 时,线圈中感应电流最大D .当Q 点经过MN 时,线圈中感应电流最大三、旋转切割磁感线1.竖直平面内有一金属环,半径为a ,总电阻为R .磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a 、电阻为R /2的导体棒AB 由水平位置紧贴环面摆下(如图).当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )A.2BavB.BavC.2Bav /3D.Bav /3三、图像问题1. 图6中A 是一底边宽为L 的闭合线框,其电阻为R 。

(完整版)电磁感应典型例题

(完整版)电磁感应典型例题

典型例题电磁感应与电路、电场相结合1 .如图所示,螺线管的导线的两端与两平行金属板相接,一个带负电的通草球用丝线悬挂在两金属板间,并处于静止状态,若条形磁铁突然插入线圈时,通草球的运动情况是()A、向左摆动B、向右摆动_C、保持静止D、无法确定N解:当磁铁插入时,穿过线圈的磁通量向左且增加,线圈产S—^生感应电动势,因此线圈是一个产生感应电动势的电路,相当于一个电源,其等效电路图如图,因此A板带正电,B板带负电,故小球受电场力向左答案:A3.如图所示,匀强磁场B=0.1T,金属棒AB长0.4m,与框架宽度相同,计,电阻Ri=2 Q, R2=1 ◎当金属棒以5m/s的速度匀速向左运动时,求:(1)流过金属棒的感应电流多大?(2)若图中电容器C为0.3则充电量多少?(1)0.2A, (2)4 10-8C解:(1)金属棒AB以5m/s的速度匀速向左运动时,切割磁感线,产生的感应电动势为 E Blv ,得E 0.1 0.4 5V 0.2V ,2由串并联知识可得R外一,R总1 ,所以电流I 0.2A304(2)电容器C并联在外电路上,U外—V由公式Q CU 0.334.(2003上海)粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。

现使线框以同样大小的速度沿四个不同方向平移出磁场,如图100-1所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是()解:沿四个不同方向移出线框的感应电动势都是E效电路如图100-2所示,显然图B'的Uab最大,选B。

电阻为R=1/3 ◎框架电阻不106 034 c 4108cBlv ,而a、b两点在电路中的位置不同,其等AB5.( 2004年东北三校联合考试)粗细均匀的电阻丝围成如图12 —8所示的线框abcde (ab=bc)置于正方形有界匀强磁场中,磁场方向垂直于线框平面.现使线框以同样大小的速度匀速地沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则在通过图示位置时,线框ab边两端点间的电势差绝对值最大的是6. 竖直平面内有一金属环,半径为 a,总电阻为 R.磁感应强度为 B 的匀强磁场垂直穿过环平面,与环的最高点 A 较链连接的长度为 2a 、电阻为R/2的导体棒AB 由水平位置紧-----贴环面摆下(如图).当摆到竖直位置时, B 点的线速度为 v,则这时 AB 两端 巾 的电压大小为( )|,\A.2BavB.BavC.2Bav/3D.Bav/3 X工/解析:导体棒转至竖直位置时,感应电动势 E=1B2av=Bav E2R R电路中总电阻R 总=Y2-2— + — = — R 总电流I = -- = 4EavAB 两端的电压U=E - I — =— Bav.R R 2 4 R 总 3R2 32 2答案:D8. (04江苏35)如图100-3所示,U 形导线框 MNQP 水平放置在磁感应强度 B = 0.2T 的匀强磁场中, 磁感线方向与导线框所在平面垂直,导线 MN 和PQ 足够长,间距为0. 5m,横跨在导线框上的导体棒 ab的电阻r= 1.0 0,接在NQ 间的电阻R = 4.OQ,电压表为理想电表,其余电阻不计.若导体棒在水平外力 作用下以速度 尸2.0m/s 向左做匀速直线运动,不计导体棒与导线框间的摩擦.(1)通过电阻R 的电流方向如何?(2)电压表的示数为多少?M 咛 (3)若某一时刻撤去水平外力,则从该时刻起,在导体棒运动1.0m•的过程中,通过导体棒的电荷量为多少 ?解:(1)由右手定则可判断,导体棒中的电流方向为 阻R 的电流方向为NRQ(2)由感应电动势的公式,得 E=Blv设电路中的电流为I,由闭合电路欧姆定律,得又电压表的示数等于电阻 R 两端的电压值,则有综合①②③式,得R +产 ④(3)撤去水平外力后,导体棒将在安培力的作用下, 做减速运动.设在导体棒运动x=1.0m 的过程中,2U=IR ③代入数值,得 U=0.16V ⑤导体棒中产生的感应电动势的平均值为由法拉第电磁感应定律,得设通过导体棒的电荷量为E E f =—A/E r综合⑥、⑦、⑧式,得Q,则有 Q = I At由闭合电路欧姆定律,得⑧⑨代入数值,得Q=2.0 M0-2C ⑩解析:线框通过图示各位置时,电动势均为E=Blv,图A 中ab 相当于电源,U ab 最大.答案:A答案:通过电阻R的电流万向为NRQ 0.16V 2.0 102c得:Ft mgt I LBt mv ⑤ 解得:q I t 0.36C⑥拓展1. (2003年北京海淀区模拟题) 如图所示,MN 和PQ 是固定在水平面内间距 L=0.20 m 的平 行金属轨道,轨道的电阻忽略不计.金属杆ab 垂直放置在轨道上.两轨道间连接有阻值为 R O =1.5翦勺电阻, ab 杆的电阻R= 0.50 @b 杆与轨道接触良好并不计摩擦, 整个装置放置在磁感应强度为 B= 0.50 T 的匀强 磁场中,磁场方向垂直轨道平面向下 .对ab 杆施加一水平向右的拉力,使之以v= 5.0 m/s 的速度在金属轨道上向右匀速运动 .求: (1)通过电阻R 0的电流; (2)对ab 杆施加的水平向右的拉力的大小 ;(3) ab 杆两端的电势差. 解析:(1) a 、b 杆上产生的感应电动势为 E=BLv=0.50 V. 根据闭合电路欧姆定律,通过 R 0的电流1 = 一E一=0.25 A. R 0 R 口 (2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力 F 大小相等,即F 拉=F=BIL=0.025 N..................................... ER BlvR … (3)根据欧姆定律,ab 杆两端的电势差 Uab=——0—= -------- 0- =0.375 V.R R 0 R R 0 答案:(1) 0.50 V (2) 0.025 N (3) 0.375 V 拓展2.如图所示,水平面上有两根相距 0.5m 的足够长的平行 金属导轨 MN 和PQ,它们的电阻可忽略不计,在 M 和P 之间接有 阻值为R 的定值电阻,导体棒 ab 长l = 0.5m,其电阻为r,与导轨 接触良好.整个装置处于方向竖直向上的匀强磁场中,磁感应强度 B = 0.4T.现使ab 以v= 10m/s 的速度向右做匀速运动. (1) ab 中的感应电动势多大 ? (2)ab 中电流的方向如何 ? ⑶若定值电阻R = 3.O ◎导体棒的电阻r=1.O ◎,则电路电流大? 解:(1) ab 中的感应电动势为: E Blv ① 代入数据得:E=2.0V ② (2) ab 中电流方向为b-a (3)由闭合电路欧姆定律,回路中的电流 I —E — ③ 代入数据得:I = 0.5A R r答案:(1) 2.0V (2) ab 中电流方向为 b-a (3) 0.5A 拓展3.如图所示,MN 、PQ 是两条水平放置彼此平行的金属导轨, 匀强磁场的磁感线垂直导轨平面. 导 轨左端接阻值 R=1.5 ◎的电阻,电阻两端并联一电压表,垂直导轨跨接一金属杆 ab, ab 的质量m=0.1kg, 电阻r=0.5 Q.ab 与导轨间动摩擦因数 户0.5,导轨电阻不计,现用F=0.7N 的恒力水平向右拉 ab,使之从静止开始运动,经时间 t=2s 后,ab 开始 做匀速运动,此时电压表示数 U=0.3V .重力加速度g=10m/s 2.求: (1) ab 匀速运动时,外力 F 的功率. (2) ab 杆加速过程中,通过 R 的电量. (3) ab 杆加速运动的距离. 解:(1)设导轨间距为 L,磁感应强度为 B, ab 杆匀速运动的速 度为v,电流为I,此时ab 杆受力如图所示:由平衡条件得:F=(i mg+ILB ① 由欧姆定律得:1_B" U ② R r R由①②解得:BL=1T m v=0.4m/s③ F 的功率:P=Fv=0.7 0.4W=0.28W④(2)设ab 加速时间为t,加速过程的平均感应电流为I ,由动量定理典型例题一一导体在磁场中切割磁感线(一)单导体运动切割磁感线1.动——电——动2.电——动——电(3)设加速运动距离为s,由法拉第电磁感应定律得 EBLs又E 「(R r) ⑧由⑥⑦⑧解得 c q(R r)s -------BL 0.36 2 ------ m 072m9. (05天津23)图中MN和PQ为竖直方向的两平行长直金属导轨,间距导轨所在平面与磁感应强度B为0. 50T的匀强磁场垂直。

(完整版)电磁感应经典例题

(完整版)电磁感应经典例题

电磁感应考点清单1 电磁感应现象 感应电流方向(一)磁通量1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ).2.磁通量的计算(1)公式Φ=BS此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直.(2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积.θsin S B •=Φ其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”.(3)磁通量的方向性磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量.(4)磁通量的变化12Φ-Φ=∆Φ∆Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意.(二)电磁感应现象的产生条件1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源.[例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( )图13-36A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大[解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.[答案] BC(三)感应电流的方向1.右手定则当闭合电路的部分导体切割磁感线时,产生的感应电流的方向可以用右手定则来进行判断.右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向.[说明] 伸直四指指向还有另外的一些说法:○1感应电动势的方向;○2导体的高电势处.[例2](2004天津理综,20)图13-37中MN 、GH 为平行导轨,AB 、CD 为跨在导轨上的两根横杆,导轨和横杆均为导体.有匀强磁场垂直于导轨所在的平面,方向如图,用I 表示回路的电流.A.当AB 不动而CD 向右滑动时,0≠I 且沿顺时针方向B.当AB 向左、CD 向右滑动且速度大小相等时,I =0C.当AB 、CD 都向右滑动且速度大小相等时,I =0D.当AB 、CD 都向右滑动,且AB 速度大于CD 时,0≠I 且沿逆时针方向图13-37[解析] 当AB 不动而CD 向右滑动时,0≠I ,但电流方向为逆时针,A 错;当AB 向左,CD 向右滑动时,两杆产生的感应电动势同向,故0≠I ,B 错;当AB 和CD 都向右滑动且速度大小相等时,则两杆产生的感应电动势等值反向,故I =0,C 正确;当AB 和CD 都向右滑动,且AB 速度大于CD 时,0≠I ,但方向为顺时针,D 错误.[答案] C2.楞次定律(1)内容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化.注意:○1“阻碍”不是“相反”,原磁通量增大时,感应电流的磁场与原磁通量相反,“反抗”其增加;原磁通量减小时,感应电流的磁场与原磁通量相同,“补偿”其减小.即“增反减同”.○2“阻碍”也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化. ○3楞次定律的实质是“能量转化和守恒”,感应电流的磁场阻碍过程,使机械能减少,转化为电能.(2)应用楞次定律判断感应电流的步骤:○1确定原磁场的方向○2明确回路中磁通量变化情况.○3应用楞次定律的“增反减同”,确定感应电流磁场的方向.○4应用右手安培定则,确立感应电流方向.[例3] (2001上海综合,14)某实验小组用如图13-38所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是()A.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b图13-38[解析] ○1确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.○2明确回路中磁通量变化情况:向下的磁通量增加.○3由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上.○4应用右手安培定则可以判断感应电流的方向为逆时针(俯视)即:从b→G→a.同理可以判断:条形磁铁穿出线圈过程中,向下的磁通量减小,由楞次定律可得:线圈中将产生顺时针的感应电流(俯视),电流从a→G→b.[答案] D[评价] 该题目关键在于对楞次定律的理解和应用以及对“穿过”二字的正确理解,它包括穿入和穿出两个过程.(3)楞次定律的另一种表述楞次定律的另一种表达为:感应电流的效果,总是要反抗产生感应电流的原因.[说明] 这里产生感应电流的原因,既可以是磁通量的变化,也可以是引起磁通量变化的相对运动或回路的形变.○1当电路的磁通量发生变化时,感应电流的效果就阻碍变化−−变形为阻碍原磁通−→量的变化.○2当出现引起磁量变化的相对运动时,感应电流的效果就阻碍变化−−拓展为阻碍−→(导体间的)相对运动,即“来时拒,去时留”.○3当回路发生形变时,感应电流的效果就阻碍回路发生形变.○4当线圈自身的电流发生变化时,感应电流的效果就阻碍原来的电流发生变化. 总之,如果问题不涉及感应电流的方向,则从楞次定律的另类表述出发的分析方法较为简便.[例4] 如图13-19所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时( )图13-39A.P 、Q 将互相靠拢B.P 、Q 将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 方法一:设磁铁下端为N 极,如图13-40所示,根据楞次定律可判断出P 、Q 中感应电流方向,根据左手定则可判断P 、Q 所受安培力的方向,可见P 、Q 将互相靠拢,由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g .当S 极为下端时,可得到同样的结果.图13-40方法二:根据楞次定律的另一种表述——感应电流的效果总是要反抗产生感应电流的原因,本题的“原因”是回路中磁通量的增加.归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以P 、Q 将互相靠近,且磁铁的加速度小于g .[答案] AD2 法拉第电磁感应定律 自感(一)法拉第电磁感应定律(1)内容:电磁感应中线圈里的感应电动势眼穿过线圈的磁通量变化率成正比.(2)表达式:t E ∆∆Φ=或tn E ∆∆Φ=. (3)说明:○1式中的n 为线圈的匝数,∆Φ是线圈磁通量的变化量,△t 是磁通量变化所用的时间.t ∆∆Φ又叫磁通量的变化率. ○2∆Φ是单位是韦伯,△t 的单位是秒,E 的单位是伏特. ○3t n E ∆∆Φ=中学阶段一般只用来计算平均感应电动势,如果t∆∆Φ是恒定的,那么E 是稳恒的.[例1] 有一面积为S =100cm 2金属环,电阻为R =0.1Ω,环中磁场变化规律如图13-41所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电量为多少?图13-41[分析] 由楞次定律可判断感应电流的方向.感应电量的计算为 R t tR t R E t I Q ∆Φ=∆∆∆Φ=∆=∆=,仅由电路电阻和磁通量变化决定,与发生磁通量变化的时间无关,本题推导的感应电量的计算表达式可以直接使用.[解析] (1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为1212t t B B t B --=∆∆ ○1 线圈中的磁通量的变化率: S t t B B S t B t •--=∆∆=∆∆Φ1212 ○2 环中形成感应电流tR R t R E I ∆∆Φ=∆∆Φ==/ ○3 通过金属环的电量:t I Q ∆= ○4由○1○2○3○4解得:1.010)1.02.0()(212-⨯-=-=R S B B Q C=0.1C. (二)导线切割磁感线的感应电动势1.公式:E=BLv2.导线切割磁感线的感应电动势公式的几点说明:(1)公式仅适用于导体上各点以相同的速度切割匀强的磁场的磁感线的情况.(2)公式中的B 、v 、L 要求互相两两垂直.当L ⊥B ,L ⊥v ,而v 与B 成θ夹角时,导线切割磁感线的感应电动势大小为θsin BLv E =.(3)适用于计算当导体切割磁感线产生的感应电动势,当v 为瞬时速度时,可计算瞬时感应电动势,当v 为平均速度时,可计算平均电动势.(4)若导体棒不是直的,θsin BLv E =中的L 为切割磁感线的导体棒的有效长度.如图13-42中,棒的有效长度有ab 的弦长.图13-42[例2] (2001上海物理,22)(13分)半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均匀为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计.(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径00′的瞬间(如图13-43所示)MN 中的电动势和流过灯L 1的电流.图13-43(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为s T t B /)/4(/π=∆∆,求L 1的功率.[解析] (1)棒通过圆环直径时切割磁感线的有效长度L =2a ,棒中产生的感应电动势为58.02.02⨯⨯===av B BLv E V=0.8V ○1 当不计棒和环的电阻时,直径OO ′两端的电压U =E =0.8V ,通过灯L 1电流的为 28.001==R U I A =0.4A. ○2 (2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,221a S π=',磁场变化时在回路中产生的感应电动热为V V a t B S t E 23.04212=⨯=∆∆•'=∆∆Φ='ππ ○3 由L 1、L 2两灯相同,圆环电阻不计,所以每灯的电压均为E U '='21,L 1的功率为 2020211028.1)21(-⨯='='=R E R U P W. ○4 3.导体切割磁感线产生的感应电动势大小两个特例:(1)长为L 的导体棒在磁感应强度为B 的匀强磁场中以ω匀速转动,导体棒产生的感应电动势:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===))((212121022212不同两段的代数和以任意点为轴时,)线速度(平均速度取中点位置以端点为轴时,(不同两段的代数和)以中点为轴时,L L B E L L B E E ωωω [例3] (2004两湖理综,19)一直升飞机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B ,直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图13-44所示.如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则( )A.B ft 2πε=,且a 点电势低于b 点电势B.B ft 22πε-=,且a 点电势低于b 点电势C.B ft 2πε=,且a 点电势高于b 点电势D.B ft 22πε=,且a 点电势高于b 点电势图13-44[解析] 对于螺旋桨叶片ab ,其切割磁感线的速度是其做圆周运动的线速度,螺旋桨不同点的线速度不同,但是满足R v ω=',可求其等效切割速度fl lv πω==2,运用法拉第电磁感应定律B ft Blv 2πε==,由右手定则判断电流的方向为由a 指向b ,在电源内部电流由低电势流向高电势,故选项A 是正确的.[答案] A(2)面积为S 的矩形线圈在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势:⎪⎩⎪⎨⎧===θωθωsin 0BS E E BS E 时,为线圈平面与磁感线夹角时,线圈平面与磁感线垂直时,线圈平面与磁感线平行 (三)自感1.自感现象:当导体中的电流发生变化,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来的电流的变化,这种由于导体本身电流发生变化而产生的电磁感应现象,叫自感现象.2.自感现象的应用(1)通电自感:通电瞬间自感线圈处相当于断路.(2)断电自感:断电时自感线圈处相当于电源.○1当线圈中电阻≥灯丝电阻时,灯缓慢熄灭; ○2当线圈中电阻<灯丝电阻时,灯闪亮后缓慢熄灭. 3.增大线圈自感系数的方法(1)增大线圈长度(2)增多单位长度上匝数(3)增大线圈截面积(口径)(4)线圈中插入铁芯4.日光灯(1)日光灯电路的组成和电路图:○1灯管:日光灯管的两端各有一个灯丝,灯管内有微量的氩和汞蒸气,灯管内涂有荧光粉.两个灯丝之间的气体导电荷发出紫外线,激发管壁上的荧光粉发出可见光.但要使管内气体导电所需电压比200V 的电源电压高得多.○2镇流器:ⅰ)结构:线圈和铁芯.ⅱ)原理:自感.ⅲ)作用:灯管启动时提供一个瞬时高压,灯管工作时降压限流.○3启动器ⅰ) 结构:电容、氖气、静触片、U形动触片、管脚、外壳.ⅱ)原理:热胀冷缩. ⅲ)作用:先接通电路,再瞬间断开电路,使镇流器产生瞬间高压.(2)日光灯电路的工作过程:合上开关,电源电压220V加在启动器两极间→氖气放电发出辉光→辉光产生的热量,使U形动触片膨胀伸长,与静触片接触接通电路→镇流器和灯丝中通过电流→氖气停止放电→动静触片分离→切断电路→镇流器产生瞬间高压,与电源电压加在一起,加在灯管两端→灯管中气体放电→日光灯发光.(3)日光灯启动后正常工作时,启动器断开,电流从灯管中通过.镇流器产生自感电动势起降压限流作用.3 电磁感应规律的综合应用法拉第电磁感应定律是电磁学的重点内容之一,其综合了力、热、静电场、直流电路、磁场等许多内容,反映在以下几个方面:1.因导体在切割运动或电路中磁通量的变化,产生感应电流,使导体受到安培力的作用,从而直接影响到导体或线圈的运动.[例1] (2002粤豫大综合,30)如图13-45所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动图13-45[解析] 给ef一个向右的初速度,则ef产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef受到一个向左的安培力的作用而减速,随着ef的速度减小,ef产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.因此可知选项A 是正确的.[答案] A[例2] (2004北京理综,23)如图13-46甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向的垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.13-46 (1)由b 向a 方向看到的装置如图13-46乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.[解析] (1)重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =B lv ,此时电路中电流RBlv R E I ==. ab 杆受到安培力Rv L B BIL F 22==, 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ, mRv L B g a 22sin -=θ. (3)当θsin 22mg Rv L B =时,ab 杆达到最大速度v m .22sin L B mgR v m θ=. 2.以电磁感应现象为核心,综合力学各种不同的规律(如机械能、动量、牛顿运动定律)等内容形成的综合类问题.电学部分思路:将产生感应电动势的那部分电路等效为电源,如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串并联,分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.力学部分思路:分析通电导体的受力情况及力的效果,应用牛顿定律、动量定理、动量守恒、动能定理、机械能守恒等规律理顺力学量之间的关系.[例3] (2001京春季,20)(12分)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l .导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图13-47所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:图13-47(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? [解析] ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用做减速运动,cd 棒则在安培力作用下做加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 做匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= ○1根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=○2 (2)设ab 棒的速度变为初速度的43时,cd 棒的速度为v ′,则由动量守恒可知v m v m mv '+=0043 ○3 此时回路中的感应电动势和感应电流分别为Bl v v E )43(0'-= ○4 R I 2ε= ○5此时cd 棒所受的安培力IBl F = ○6 cd 棒的加速度mF a = ○7 由以上各式,可得mRv l B a 4022=. ○8 3.电磁感应中的能量转化问题电磁感应过程实质是不同形式的能量转化的过程,电磁感应过程中产生的感应电流在磁场中必定受到安培力作用.因此要维持安培力存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.因此电能求解思路主要有三种:○1利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功. ○2得用能量守恒求解:开始的机械能总和与最后的机械能总和之差等于产生的电能.○3利用电路特征来求解:通过电路中所产生的电能来计算. [例4] 把一个矩形线圈从有理想边界的匀强磁场中匀速拉出(如图13-48),第一次速度为v 1,第二次速度为v 2且v 2=2v 1,则两种情况下拉力的功之比W 1/W 2= ,拉力的功率之比P 1/P 2= ,线圈中产生焦耳热之比Q 1/Q 2= .[解析] 设线圈的ab 边长为L ,bc 边长为L ′,整个线圈的电阻为R ,把ab 边拉出磁场时,cd 边以速度v 匀速运动切割磁感线产生感应电动势Blv E =.其电流方向从c 指向d ,线圈中形成的感应电流R BLv R E I == cd 边所受的安培力Rv L B BIL F 22== 为了维持线圈匀速运动,所需外力大小为Rv L B BIL F F 22=='= 因此拉出线圈过程外力的功v RL L B L F W '='=22 外力的功率222v RL B Fv P == 线圈中产生的焦耳热W v R L L B v L R R v L B Rt I Q ='='•==2222222由上面得出的W 、P 、Q 的表达式可知,两情况拉力的功、功率、线圈中的焦耳热之比分别为1∶2、1∶4、1∶2.[评价] 从题中可以看出,安培力做的功,与电路的消耗的电能是相同的.[例5] (2004河南理综,24)图13-49中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2.x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R .F 为作用于金属杆x 1y 1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.[解析] 设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少,由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-=回路中的电流RE I = 电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为 11BIlF =(方向向上)作用于杆x 2y 2的安培力为22BIl F =(方向向下)当杆匀速运动时,根据牛顿第二定律有02121=-+--F F g m g m F解以上各式[]2122211221)()()()(l l B Rg m m F v l l B g m m F I -+-=-+-=作用于两杆的重力功率的大小gv m m P )(21+=电阻上的热功率.)()()()()(21221212122212R l l B g m m F Q g m m R l l B g m m F P RI Q ⎥⎦⎤⎢⎣⎡-+-=+-+-== 4.电磁感应中的图象问题电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E 和感应电流I 随线圈位移x 变化的图象,即E -x 图象和I -x 图象.这些图象问题大体上可分为两类:○1由给定的电磁感应过程选出或画出正确的图象. ○2由给定的有关图象分析电磁感应过程,求解相应的物理量. 不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.[例6] (2004内蒙理综,19)一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图13-50所示.以I 表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图13-51的I -t 图正确的是( )图13-50图13-51[解析] 由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小t S B t ∆•∆=∆∆Φ=ε,Rt S B R E I •∆•∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项正确.[答案] A。

(完整版)电磁感应综合典型例题

(完整版)电磁感应综合典型例题

电磁感应综合典型例题【例1】电阻为R的矩形线框abcd,边长ab=L,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线框中产生的焦耳热是_______.(不考虑空气阻力)【分析】线框通过磁场的过程中,动能不变。

根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热.所以,线框通过磁场过程中产生的焦耳热为Q=W G=mg—2h=2mgh.【解答】2mgh。

【说明】本题也可以直接从焦耳热公式Q=I2Rt进行推算:设线框以恒定速度v通过磁场,运动时间从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感线产生的感应电流的大小为cd边进入磁场时的电流从d到c,cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上,大小恒为据匀速下落的条件,有因线框通过磁场的时间,也就是线框中产生电流的时间,所以据焦耳定律,联立(l)、(2)、(3)三式,即得线框中产生的焦耳热为Q=2mgh.两种解法相比较,由于用能的转化和守恒的观点,只需从全过程考虑,不需涉及电流的产生等过程,计算更为简捷.【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1Ω的矩形线圈,从离匀强磁场上边缘高h1=5m处由静止自由下落.进入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s2,求:(1)匀强磁场的磁感强度B;(2)磁场区域的高度h2;(3)通过磁场过程中线框中产生的热量,并说明其转化过程.【分析】线圈进入磁场后受到向上的磁场力,恰作匀速运动时必满足条件:磁场力=重力.由此可算出B并由运动学公式可算出h2。

由于通过磁场时动能不变,线圈重力势能的减少完全转化为电能,最后以焦耳热形式放出.【解答】线圈自由下落将进入磁场时的速度(l)线圈的下边进入磁场后切割磁感线产生感应电流,其方向从左至右,使线圈受到向上的磁场力.匀速运动时应满足条件(2)从线圈的下边进入磁场起至整个线圈进入磁场做匀速运动的时间以后线圈改做a=g的匀加速运动,历时所对应的位移所以磁场区域的高度(3)因为仅当线圈的下边在磁场中、线圈做匀速运动过程时线圈内才有感应电流,此时线圈的动能不变,由线圈下落过程中重力势能的减少转化为电能,最后以焦耳热的形式释放出来,所以线圈中产生的热量【说明】这是力、热、电磁综合题,解题过程要分析清楚每个物理过程及该过程遵守的物理规律,列方程求解。

(完整版)电磁感应经典例题

电磁感应考点清单1 电磁感应现象 感应电流方向(一)磁通量1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ).2.磁通量的计算(1)公式Φ=BS此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直.(2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积.θsin S B •=Φ其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”.(3)磁通量的方向性磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量.(4)磁通量的变化12Φ-Φ=∆Φ∆Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意.(二)电磁感应现象的产生条件1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源.[例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( )图13-36A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大[解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.[答案] BC(三)感应电流的方向1.右手定则当闭合电路的部分导体切割磁感线时,产生的感应电流的方向可以用右手定则来进行判断.右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向.[说明] 伸直四指指向还有另外的一些说法:○1感应电动势的方向;○2导体的高电势处.[例2](2004天津理综,20)图13-37中MN 、GH 为平行导轨,AB 、CD 为跨在导轨上的两根横杆,导轨和横杆均为导体.有匀强磁场垂直于导轨所在的平面,方向如图,用I 表示回路的电流.A.当AB 不动而CD 向右滑动时,0≠I 且沿顺时针方向B.当AB 向左、CD 向右滑动且速度大小相等时,I =0C.当AB 、CD 都向右滑动且速度大小相等时,I =0D.当AB 、CD 都向右滑动,且AB 速度大于CD 时,0≠I 且沿逆时针方向图13-37[解析] 当AB 不动而CD 向右滑动时,0≠I ,但电流方向为逆时针,A 错;当AB 向左,CD 向右滑动时,两杆产生的感应电动势同向,故0≠I ,B 错;当AB 和CD 都向右滑动且速度大小相等时,则两杆产生的感应电动势等值反向,故I =0,C 正确;当AB 和CD 都向右滑动,且AB 速度大于CD 时,0≠I ,但方向为顺时针,D 错误.[答案] C2.楞次定律(1)内容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化.注意:○1“阻碍”不是“相反”,原磁通量增大时,感应电流的磁场与原磁通量相反,“反抗”其增加;原磁通量减小时,感应电流的磁场与原磁通量相同,“补偿”其减小.即“增反减同”.○2“阻碍”也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化. ○3楞次定律的实质是“能量转化和守恒”,感应电流的磁场阻碍过程,使机械能减少,转化为电能.(2)应用楞次定律判断感应电流的步骤:○1确定原磁场的方向○2明确回路中磁通量变化情况.○3应用楞次定律的“增反减同”,确定感应电流磁场的方向.○4应用右手安培定则,确立感应电流方向.[例3] (2001上海综合,14)某实验小组用如图13-38所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是()A.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b图13-38[解析] ○1确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.○2明确回路中磁通量变化情况:向下的磁通量增加.○3由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上.○4应用右手安培定则可以判断感应电流的方向为逆时针(俯视)即:从b→G→a.同理可以判断:条形磁铁穿出线圈过程中,向下的磁通量减小,由楞次定律可得:线圈中将产生顺时针的感应电流(俯视),电流从a→G→b.[答案] D[评价] 该题目关键在于对楞次定律的理解和应用以及对“穿过”二字的正确理解,它包括穿入和穿出两个过程.(3)楞次定律的另一种表述楞次定律的另一种表达为:感应电流的效果,总是要反抗产生感应电流的原因.[说明] 这里产生感应电流的原因,既可以是磁通量的变化,也可以是引起磁通量变化的相对运动或回路的形变.○1当电路的磁通量发生变化时,感应电流的效果就阻碍变化−−变形为阻碍原磁通−→量的变化.○2当出现引起磁量变化的相对运动时,感应电流的效果就阻碍变化−−拓展为阻碍−→(导体间的)相对运动,即“来时拒,去时留”.○3当回路发生形变时,感应电流的效果就阻碍回路发生形变.○4当线圈自身的电流发生变化时,感应电流的效果就阻碍原来的电流发生变化. 总之,如果问题不涉及感应电流的方向,则从楞次定律的另类表述出发的分析方法较为简便.[例4] 如图13-19所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时( )图13-39A.P 、Q 将互相靠拢B.P 、Q 将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 方法一:设磁铁下端为N 极,如图13-40所示,根据楞次定律可判断出P 、Q 中感应电流方向,根据左手定则可判断P 、Q 所受安培力的方向,可见P 、Q 将互相靠拢,由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g .当S 极为下端时,可得到同样的结果.图13-40方法二:根据楞次定律的另一种表述——感应电流的效果总是要反抗产生感应电流的原因,本题的“原因”是回路中磁通量的增加.归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以P 、Q 将互相靠近,且磁铁的加速度小于g .[答案] AD2 法拉第电磁感应定律 自感(一)法拉第电磁感应定律(1)内容:电磁感应中线圈里的感应电动势眼穿过线圈的磁通量变化率成正比.(2)表达式:t E ∆∆Φ=或tn E ∆∆Φ=. (3)说明:○1式中的n 为线圈的匝数,∆Φ是线圈磁通量的变化量,△t 是磁通量变化所用的时间.t ∆∆Φ又叫磁通量的变化率. ○2∆Φ是单位是韦伯,△t 的单位是秒,E 的单位是伏特. ○3t n E ∆∆Φ=中学阶段一般只用来计算平均感应电动势,如果t∆∆Φ是恒定的,那么E 是稳恒的.[例1] 有一面积为S =100cm 2金属环,电阻为R =0.1Ω,环中磁场变化规律如图13-41所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电量为多少?图13-41[分析] 由楞次定律可判断感应电流的方向.感应电量的计算为 R t tR t R E t I Q ∆Φ=∆∆∆Φ=∆=∆=,仅由电路电阻和磁通量变化决定,与发生磁通量变化的时间无关,本题推导的感应电量的计算表达式可以直接使用.[解析] (1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为1212t t B B t B --=∆∆ ○1 线圈中的磁通量的变化率: S t t B B S t B t •--=∆∆=∆∆Φ1212 ○2 环中形成感应电流tR R t R E I ∆∆Φ=∆∆Φ==/ ○3 通过金属环的电量:t I Q ∆= ○4由○1○2○3○4解得:1.010)1.02.0()(212-⨯-=-=R S B B Q C=0.1C. (二)导线切割磁感线的感应电动势1.公式:E=BLv2.导线切割磁感线的感应电动势公式的几点说明:(1)公式仅适用于导体上各点以相同的速度切割匀强的磁场的磁感线的情况.(2)公式中的B 、v 、L 要求互相两两垂直.当L ⊥B ,L ⊥v ,而v 与B 成θ夹角时,导线切割磁感线的感应电动势大小为θsin BLv E =.(3)适用于计算当导体切割磁感线产生的感应电动势,当v 为瞬时速度时,可计算瞬时感应电动势,当v 为平均速度时,可计算平均电动势.(4)若导体棒不是直的,θsin BLv E =中的L 为切割磁感线的导体棒的有效长度.如图13-42中,棒的有效长度有ab 的弦长.图13-42[例2] (2001上海物理,22)(13分)半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均匀为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计.(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径00′的瞬间(如图13-43所示)MN 中的电动势和流过灯L 1的电流.图13-43(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为s T t B /)/4(/π=∆∆,求L 1的功率.[解析] (1)棒通过圆环直径时切割磁感线的有效长度L =2a ,棒中产生的感应电动势为58.02.02⨯⨯===av B BLv E V=0.8V ○1 当不计棒和环的电阻时,直径OO ′两端的电压U =E =0.8V ,通过灯L 1电流的为 28.001==R U I A =0.4A. ○2 (2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,221a S π=',磁场变化时在回路中产生的感应电动热为V V a t B S t E 23.04212=⨯=∆∆•'=∆∆Φ='ππ ○3 由L 1、L 2两灯相同,圆环电阻不计,所以每灯的电压均为E U '='21,L 1的功率为 2020211028.1)21(-⨯='='=R E R U P W. ○4 3.导体切割磁感线产生的感应电动势大小两个特例:(1)长为L 的导体棒在磁感应强度为B 的匀强磁场中以ω匀速转动,导体棒产生的感应电动势:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===))((212121022212不同两段的代数和以任意点为轴时,)线速度(平均速度取中点位置以端点为轴时,(不同两段的代数和)以中点为轴时,L L B E L L B E E ωωω [例3] (2004两湖理综,19)一直升飞机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B ,直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图13-44所示.如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则( )A.B ft 2πε=,且a 点电势低于b 点电势B.B ft 22πε-=,且a 点电势低于b 点电势C.B ft 2πε=,且a 点电势高于b 点电势D.B ft 22πε=,且a 点电势高于b 点电势图13-44[解析] 对于螺旋桨叶片ab ,其切割磁感线的速度是其做圆周运动的线速度,螺旋桨不同点的线速度不同,但是满足R v ω=',可求其等效切割速度fl lv πω==2,运用法拉第电磁感应定律B ft Blv 2πε==,由右手定则判断电流的方向为由a 指向b ,在电源内部电流由低电势流向高电势,故选项A 是正确的.[答案] A(2)面积为S 的矩形线圈在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势:⎪⎩⎪⎨⎧===θωθωsin 0BS E E BS E 时,为线圈平面与磁感线夹角时,线圈平面与磁感线垂直时,线圈平面与磁感线平行 (三)自感1.自感现象:当导体中的电流发生变化,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来的电流的变化,这种由于导体本身电流发生变化而产生的电磁感应现象,叫自感现象.2.自感现象的应用(1)通电自感:通电瞬间自感线圈处相当于断路.(2)断电自感:断电时自感线圈处相当于电源.○1当线圈中电阻≥灯丝电阻时,灯缓慢熄灭; ○2当线圈中电阻<灯丝电阻时,灯闪亮后缓慢熄灭. 3.增大线圈自感系数的方法(1)增大线圈长度(2)增多单位长度上匝数(3)增大线圈截面积(口径)(4)线圈中插入铁芯4.日光灯(1)日光灯电路的组成和电路图:○1灯管:日光灯管的两端各有一个灯丝,灯管内有微量的氩和汞蒸气,灯管内涂有荧光粉.两个灯丝之间的气体导电荷发出紫外线,激发管壁上的荧光粉发出可见光.但要使管内气体导电所需电压比200V 的电源电压高得多.○2镇流器:ⅰ)结构:线圈和铁芯.ⅱ)原理:自感.ⅲ)作用:灯管启动时提供一个瞬时高压,灯管工作时降压限流.○3启动器ⅰ) 结构:电容、氖气、静触片、U形动触片、管脚、外壳.ⅱ)原理:热胀冷缩. ⅲ)作用:先接通电路,再瞬间断开电路,使镇流器产生瞬间高压.(2)日光灯电路的工作过程:合上开关,电源电压220V加在启动器两极间→氖气放电发出辉光→辉光产生的热量,使U形动触片膨胀伸长,与静触片接触接通电路→镇流器和灯丝中通过电流→氖气停止放电→动静触片分离→切断电路→镇流器产生瞬间高压,与电源电压加在一起,加在灯管两端→灯管中气体放电→日光灯发光.(3)日光灯启动后正常工作时,启动器断开,电流从灯管中通过.镇流器产生自感电动势起降压限流作用.3 电磁感应规律的综合应用法拉第电磁感应定律是电磁学的重点内容之一,其综合了力、热、静电场、直流电路、磁场等许多内容,反映在以下几个方面:1.因导体在切割运动或电路中磁通量的变化,产生感应电流,使导体受到安培力的作用,从而直接影响到导体或线圈的运动.[例1] (2002粤豫大综合,30)如图13-45所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动图13-45[解析] 给ef一个向右的初速度,则ef产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef受到一个向左的安培力的作用而减速,随着ef的速度减小,ef产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.因此可知选项A 是正确的.[答案] A[例2] (2004北京理综,23)如图13-46甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向的垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.13-46 (1)由b 向a 方向看到的装置如图13-46乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.[解析] (1)重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =B lv ,此时电路中电流RBlv R E I ==. ab 杆受到安培力Rv L B BIL F 22==, 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ, mRv L B g a 22sin -=θ. (3)当θsin 22mg Rv L B =时,ab 杆达到最大速度v m .22sin L B mgR v m θ=. 2.以电磁感应现象为核心,综合力学各种不同的规律(如机械能、动量、牛顿运动定律)等内容形成的综合类问题.电学部分思路:将产生感应电动势的那部分电路等效为电源,如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串并联,分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.力学部分思路:分析通电导体的受力情况及力的效果,应用牛顿定律、动量定理、动量守恒、动能定理、机械能守恒等规律理顺力学量之间的关系.[例3] (2001京春季,20)(12分)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l .导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图13-47所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:图13-47(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? [解析] ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用做减速运动,cd 棒则在安培力作用下做加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 做匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= ○1根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=○2 (2)设ab 棒的速度变为初速度的43时,cd 棒的速度为v ′,则由动量守恒可知v m v m mv '+=0043 ○3 此时回路中的感应电动势和感应电流分别为Bl v v E )43(0'-= ○4 R I 2ε= ○5此时cd 棒所受的安培力IBl F = ○6 cd 棒的加速度mF a = ○7 由以上各式,可得mRv l B a 4022=. ○8 3.电磁感应中的能量转化问题电磁感应过程实质是不同形式的能量转化的过程,电磁感应过程中产生的感应电流在磁场中必定受到安培力作用.因此要维持安培力存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.因此电能求解思路主要有三种:○1利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功. ○2得用能量守恒求解:开始的机械能总和与最后的机械能总和之差等于产生的电能.○3利用电路特征来求解:通过电路中所产生的电能来计算. [例4] 把一个矩形线圈从有理想边界的匀强磁场中匀速拉出(如图13-48),第一次速度为v 1,第二次速度为v 2且v 2=2v 1,则两种情况下拉力的功之比W 1/W 2= ,拉力的功率之比P 1/P 2= ,线圈中产生焦耳热之比Q 1/Q 2= .[解析] 设线圈的ab 边长为L ,bc 边长为L ′,整个线圈的电阻为R ,把ab 边拉出磁场时,cd 边以速度v 匀速运动切割磁感线产生感应电动势Blv E =.其电流方向从c 指向d ,线圈中形成的感应电流R BLv R E I == cd 边所受的安培力Rv L B BIL F 22== 为了维持线圈匀速运动,所需外力大小为Rv L B BIL F F 22=='= 因此拉出线圈过程外力的功v RL L B L F W '='=22 外力的功率222v RL B Fv P == 线圈中产生的焦耳热W v R L L B v L R R v L B Rt I Q ='='•==2222222由上面得出的W 、P 、Q 的表达式可知,两情况拉力的功、功率、线圈中的焦耳热之比分别为1∶2、1∶4、1∶2.[评价] 从题中可以看出,安培力做的功,与电路的消耗的电能是相同的.[例5] (2004河南理综,24)图13-49中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2.x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R .F 为作用于金属杆x 1y 1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.[解析] 设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少,由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-=回路中的电流RE I = 电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为 11BIlF =(方向向上)作用于杆x 2y 2的安培力为22BIl F =(方向向下)当杆匀速运动时,根据牛顿第二定律有02121=-+--F F g m g m F解以上各式[]2122211221)()()()(l l B Rg m m F v l l B g m m F I -+-=-+-=作用于两杆的重力功率的大小gv m m P )(21+=电阻上的热功率.)()()()()(21221212122212R l l B g m m F Q g m m R l l B g m m F P RI Q ⎥⎦⎤⎢⎣⎡-+-=+-+-== 4.电磁感应中的图象问题电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E 和感应电流I 随线圈位移x 变化的图象,即E -x 图象和I -x 图象.这些图象问题大体上可分为两类:○1由给定的电磁感应过程选出或画出正确的图象. ○2由给定的有关图象分析电磁感应过程,求解相应的物理量. 不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.[例6] (2004内蒙理综,19)一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图13-50所示.以I 表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图13-51的I -t 图正确的是( )图13-50图13-51[解析] 由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小t S B t ∆•∆=∆∆Φ=ε,Rt S B R E I •∆•∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项正确.[答案] A。

高中物理 第09章 电磁感应 (单双棒问题)典型例题(含答案)【经典】

第九章 电磁感应知识点七:单杆问题(与电阻结合)(水平单杆、斜面单杆(先电后力再能量))1、发电式(1)电路特点:导体棒相当于电源,当速度为v 时,电动势E =Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系 (8)动量关系 (9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.2、阻尼式(1)电路特点:导体棒相当于电源。

(2)安培力的特点:安培力为阻力,并随速度减小而减小。

(3)加速度特点:加速度随速度减小而减小 (4)运动特点:加速度减小的减速运动(5)最终状态:静止 (6)能量关系:动能转化为焦耳热 (7)动量关系(8)变形:有摩擦力;磁场不与导轨垂直等1.(多选)如图所示,MN 和PQ 是两根互相平行竖直放置的光滑金属导轨,已知导轨足够长,且电阻不计.有一垂直导轨平面向里的匀强磁场,磁感应强度为B ,宽度为L ,ab 是一根不但与导轨垂直而且始终与导轨接触良好的金属杆.开始,将开关S 断开,让ab 由静止开始自由下落,过段时间后,再将S 闭合,若从S 闭合开始计时,则金属杆ab 的速度v 随时间t 变化的图象可能是( ).答案 ACD FN M m F mga m μ-=22-+=()()m F mg R r v B l μ212E mFs Q mgS mv μ=++0m Ft BLq mgt mv μ--=-22()B F B l v a m m R r ==+22B B l v F BIl R r ==+20102mv Q-=00BIl t mv -⋅∆=-0mv q Bl =Bl s q n R r R r φ∆⋅∆==++2、(单选)如图所示,足够长平行金属导轨倾斜放置,倾角为37 °,宽度为0.5 m ,电阻忽略不计,其上端接一小灯泡,电阻为1 Ω.一导体棒MN 垂直于导轨放置,质量为0.2 kg ,接入电路的电阻为1 Ω,两端与导轨接触良好,与导轨间的动摩擦因数为0.5.在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8 T .将导体棒MN 由静止释放,运动一段时间后,小灯泡稳定发光,此后导体棒MN 的运动速度以及小灯泡消耗的电功率分别为(重力加速度g 取10 m/s 2,sin 37°=0.6)( ).答案 BA .2.5 m/s 1 WB .5 m/s 1 WC .7.5 m/s 9 WD .15 m/s 9 W3.(多选)如图所示,水平固定放置的足够长的U 形金属导轨处于竖直向上的匀强磁场中,在导轨上放着金属棒ab ,开始时ab 棒以水平初速度v 0向右运动,最后静止在导轨上,就导轨光滑和导轨粗糙的两种情况相比较,这个过程( ).答案 ACA .安培力对ab 棒所做的功不相等B .电流所做的功相等C .产生的总内能相等D .通过ab 棒的电荷量相等4.(单选)如图,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中( ).答案 BA .运动的平均速度大小为12vB .下滑的位移大小为qR BLC .产生的焦耳热为qBLvD .受到的最大安培力大小为B 2L 2v R sin θ5.(多选)如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( ).答案 ACA .P =2mgv sin θB .P =3mgv sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功6、(单选)如图所示,两光滑平行导轨水平放置在匀强磁场中,磁场垂直导轨所在平面,金属棒ab 可沿导轨自由滑动,导轨一端连接一个定值电阻R ,金属棒和导轨电阻不计.现将金属棒沿导轨由静止向右拉,若保持拉力F 恒定,经时间t 1后速度为v ,加速度为a 1,最终以速度2v 做匀速运动;若保持拉力的功率P 恒定,棒由静止经时间t 2后速度为v ,加速度为a 2,最终也以速度2v 做匀速运动,则( ).答案 BA .t 2=t 1B .t 1>t 2C .a 2=2a 1D .a 2=5a 17. (多选)如图所示,足够长的光滑导轨倾斜放置,其下端连接一个定值电阻R ,匀强磁场垂直于导轨所在平面,将ab 棒在导轨上无初速度释放,当ab 棒下滑到稳定状态时,速度为v ,电阻R 上消耗的功率为P .导轨和导体棒电阻不计.下列判断正确的是( ).A .导体棒的a 端比b 端电势低 答案 BDB .ab 棒在达到稳定状态前做加速度减小的加速运动C .若磁感应强度增大为原来的2倍,其他条件不变,则ab 棒下滑到稳定状态时速度将变为原来的12D .若换成一根质量为原来2倍的导体棒,其他条件不变,则ab 棒下滑到稳定状态时的功率将变为原来的4倍8.(单选)如图所示,足够长的光滑金属导轨MN 、PQ 平行放置,且都倾斜着与水平面成夹角θ.在导轨的最上端M 、P 之间接有电阻R ,不计其他电阻.导体棒ab 从导轨的最底端冲上导轨,当没有磁场时,ab 上升的最大高度为H ;若存在垂直导轨平面的匀强磁场时,ab 上升的最大高度为h .在两次运动过程中ab 都与导轨保持垂直,且初速度都相等.关于上述情景,下列说法正确的是( ).A .两次上升的最大高度相比较为H <hB .有磁场时导体棒所受合力的功等于无磁场时合力的功C .有磁场时,电阻R 产生的焦耳热为12mv 20D .有磁场时,ab 上升过程的最小加速度大于g sin θ 答案 B9.如图所示,两根平行金属导轨固定在同一水平面内,间距为l ,导轨左端连接一个电阻.一根质量为m 、电阻为r 的金属杆ab 垂直放置在导轨上.在杆的右方距杆为d 处有一个匀强磁场,磁场方向垂直于轨道平面向下,磁感应强度为B .对杆施加一个大小为F 、方向平行于导轨的恒力,使杆从静止开始运动,已知杆到达磁场区域时速度为v ,之后进入磁场恰好做匀速运动.不计导轨的电阻,假定导轨与杆之间存在恒定的阻力.求(1)导轨对杆ab 的阻力大小f ;(2)杆ab 中通过的电流及其方向;(3)导轨左端所接电阻的阻值R .答案 (1)F -mv 22d (2)mv 22Bld a →b (3)2B 2l 2d mv -r(1)杆进入磁场前做匀加速运动,有① ② 解得导轨对杆的阻力③ (2)杆进入磁场后做匀速运动,有④ 杆ab 所受的安培力⑤ 解得杆ab 中通过的电流⑥ 杆中的电流方向自a 流向b⑦ (3)杆产生的感应电动势⑧ 杆中的感应电流⑨解得导轨左端所接电阻阻值⑩ 10.如图甲所示.一对平行光滑轨道放置在水平面上,两轨道间距l =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B =0.5 T 的匀强磁场中,磁场方向垂直轨道面向下.现在一外力F 沿轨道方向拉杆,使之做匀加速运动,测得力F 与时间t 的关系如图乙所示.求杆的质量m 和加速度a .答案 0.1 kg 10 m/s 2解:导体杆在轨道上做匀加速直线运动,用表示其速度,t 表示时间,则有:①杆切割磁力线,将产生感应电动势:② 在杆、轨道和电阻的闭合回路中产生电流③杆受到的安培力的④ 根据牛顿第二定律,有⑤ 联立以上各式,得⑥ 由图线上取两点代入⑥式,可计算得出:,答:杆的质量为,其加速度为.11、如图所示,质量m1=0.1 kg,电阻R1=0.3 Ω,长度l=0.4 m的导体棒ab横放在U型金属框架上.框架质量m2=0.2 kg,放在绝缘水平面上,与水平面间的动摩擦因数μ=0.2.相距0.4 m的MM′、NN′相互平行,电阻不计且足够长.电阻R2=0.1 Ω的MN垂直于MM′.整个装置处于竖直向上的匀强磁场中,磁感应强度B=0.5 T.垂直于ab施加F=2 N的水平恒力,ab从静止开始无摩擦地运动,始终与MM′、NN′保持良好接触.当ab运动到某处时,框架开始运动.设框架与水平面间最大静摩擦力等于滑动摩擦力,g取10 m/s2.(1)求框架开始运动时ab速度v的大小;(2)从ab开始运动到框架开始运动的过程中,MN上产生的热量Q=0.1 J,求该过程ab位移x的大小.答案(1)6 m/s(2)1.1 m(1)ab对框架的压力① 框架受水平面的支持力②依题意,最大静摩擦力等于滑动摩擦力,则框架受到最大静摩擦力③ab中的感应电动势④ MN中电流⑤MN受到的安培力⑥ 框架开始运动时⑦ 由上述各式代入数据解得⑧(2)闭合回路中产生的总热量⑨ 由能量守恒定律,得⑩代入数据解得⑪12、如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=0.5 T.质量为m的金属杆ab水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆ab,测得其在下滑过程中的最大速度为v m.改变电阻箱的阻值R,得到v m与R的关系如图乙所示.已知轨道间距为L=2 m,重力加速度g取10 m/s2,轨道足够长且电阻不计.(1)当R=0时,求杆ab匀速下滑过程中产生的感应电动势E的大小及杆中电流的方向;(2)求杆ab的质量m和阻值r;(3)当R=4 Ω时,求回路瞬时电功率每增加1 W的过程中合外力对杆做的功W.答案(1)2 V b→a(2)0.2 kg 2 Ω(3)0.6 J解:(1)由图可以知道,当时,杆最终以匀速运动,产生电动势由右手定则判断得知,杆中电流方向从(2)设最大速度为v,杆切割磁感线产生的感应电动势由闭合电路的欧姆定律:杆达到最大速度时满足计算得出:由图象可以知道:斜率为,纵截距为, 得到:计算得出:,(3)根据题意:,得,则由动能定理得联立得代入计算得出13.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ=30°角固定,两轨道间距为L =1 m .质量为m 的金属杆ab 垂直放置在轨道上,其阻值忽略不计.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5 T .P 、M 间接有阻值为R 1的定值电阻,Q 、N 间接电阻箱R .现从静止释放ab ,改变电阻箱的阻值R ,测得最大速度为v m ,得到1v m 与1R 的关系如图乙所示.若轨道足够长且电阻不计,重力加速度g 取10 m/s 2.求: (1)金属杆的质量m 和定值电阻的阻值R 1; (2)当电阻箱R 取4 Ω时,且金属杆ab 运动的加速度为12g sin θ时,此时金属杆ab 运动的速度;(3)当电阻箱R 取4 Ω时,且金属杆ab 运动的速度为v m 2时,定值电阻R 1消耗的电功率.解析 (1)总电阻为R 总=R 1R /(R 1+R ),电路的总电流I =BLv /R 总 当达到最大速度时金属棒受力平衡,有mg sin θ=BIL =B 2L 2v m R 1R (R 1+R ),1v m =B 2L 2mgR sin θ+B 2L 2mgR 1sin θ,根据图象代入数据,可以得到金属杆的质量m =0.1 kg ,R 1=1 Ω. (2)金属杆ab 运动的加速度为12g sin θ时,I ′=BLv ′/R 总 根据牛顿第二定律得mg sin θ-BI ′L =ma即mg sin θ-B 2L 2v ′R 1R (R 1+R )=12mg sin θ,代入数据,得到v ′=0.8 m/s. (3)当电阻箱R 取4 Ω时,根据图象得到v m =1.6 m/s ,则v =v m 2=0.8 m/s ,P =E 2R 1=B 2L 2v 2R 1=0.16 W.14.如图所示,竖直平面内有无限长,不计电阻的两组平行光滑金属导轨,宽度均为L =0.5 m ,上方连接一个阻值R =1 Ω的定值电阻,虚线下方的区域内存在磁感应强度B =2 T 的匀强磁场.完全相同的两根金属杆1和2靠在导轨上,金属杆与导轨等宽且与导轨接触良好,电阻均为r =0.5 Ω.将金属杆1固定在磁场的上边缘(仍在此磁场内),金属杆2从磁场边界上方h 0=0.8 m 处由静止释放,进入磁场后恰做匀速运动.(g 取10 m/s 2)(1)求金属杆的质量m 为多大?(2)若金属杆2从磁场边界上方h 1=0.2 m 处由静止释放,进入磁场经过一段时间后开始做匀速运动.在此过程中整个回路产生了1.4 J 的电热,则此过程中流过电阻R 的电荷量q 为多少?解析 (1)金属杆2进入磁场前做自由落体运动,则v m =2gh 0=4 m/s金属杆2进入磁场后受两个力而处于平衡状态,即mg =BIL ,且E =BLv m ,I =E 2r +R解得m =B 2L 2v m 2r +R g =22×0.52×42×0.5+1×10kg =0.2 kg. (2)金属杆2从下落到再次匀速运动的过程中,设金属杆2在磁场内下降h 2,由能量守恒定律得 mg (h 1+h 2)=12mv 2m +Q 解得h 2=12mv 2m +Q mg -h 1=0.2×42+2×1.42×0.2×10 m -0.2 m =1.3 m 金属杆2进入磁场到匀速运动的过程中,感应电动势和感应电流的平均值分别为E =BLh 2t 2,I =E 2r +R 故流过电阻R 的电荷量q =It 2 联立解得q =BLh 22r +R =2×0.5×1.32×0.5+1C =0.65 C.15.如图12(a)所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上.在区域Ⅰ内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b)所示.t =0时刻在轨道上端的金属棒ab 从如图所示位置由静止开始沿导轨下滑,同时下端的另一金属棒cd 在位于区域Ⅰ内的导轨上由静止释放.在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好.已知cd棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g .求:(1)通过cd 棒电流的方向和区域Ⅰ内磁场的方向;(2)当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率;(3)ab 棒开始下滑的位置离EF 的距离;(4)ab 棒从开始下滑至EF 的过程中回路中产生的热量.解析 (1)由楞次定律知通过cd 棒的电流方向为d →c 区域Ⅰ内磁场方向为垂直于纸面向上.(2)对cd 棒:F 安=BIl =mg sin θ,所以通过cd 棒的电流大小I =mg sin θBl 当ab 棒在区域Ⅱ内运动时cd 棒消耗的电功率 P =I 2R =m 2g 2R sin 2θB 2l 2. (3)ab 棒在到达区域Ⅱ前做匀加速直线运动,加速度a =g sin θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得ΔΦΔt =Blv t ,即B ·2l ·l t x =Blg sin θt x ,所以t x =2l g sin θ ab 棒在区域Ⅱ中做匀速直线运动的速度v t =2gl sin θ 则ab 棒开始下滑的位置离EF 的距离h =12at 2x +2l =3l . (4)ab 棒在区域Ⅱ中运动的时间t 2=2l v t=2lg sin θ ab 棒从开始下滑至EF 的总时间t =t x +t 2=22lg sin θ,E =Blv t =Bl 2gl sin θ ab 棒从开始下滑至EF 的过程中闭合回路产生的热量Q =EIt =4mgl sin θ.16.如图所示,两根正对的平行金属直轨道MN 、M ´N ´位于同一水平面上,两轨道之间的距离l=0.50m .轨道的MM ´端之间接一阻值R=0.40Ω的定值电阻,NN ´端与两条位于竖直面内的半圆形光滑金属轨道NP 、N ´P ´平滑连接,两半圆轨道的半径均为R 0=0.50m .直轨道的右端处于竖直向下、磁感应强度B=0.64 T 的匀强磁场中,磁场区域的宽度d=0.80m ,且其右边界与NN ´重合.现有一质量m =0.20kg 、电阻r =0.10Ω的导体杆ab 静止在距磁场的左边界s=2.0m 处.在与杆垂直的水平恒力F=2.0N 的作用下ab 杆开始运动,当运动至磁场的左边界时撤去F ,结果导体杆ab 恰好能以最小速度通过半圆形轨道的最高点PP ´.已知导体杆ab 在运动过程中与轨道接触良好,且始终与轨道垂直,导体杆ab 与直轨道之间的动摩擦因数μ=0.10,轨道的电阻可忽略不计,取g =10m/s 2,求:⑴导体杆刚进入磁场时,通过导体杆上的电流大小和方向;⑵导体杆穿过磁场的过程中通过电阻R 上的电荷量;⑶导体杆穿过磁场的过程中整个电路中产生的焦耳热.解:(1)设导体杆在F 的作用下运动至磁场的左边界时的速度为,根据动能定理则有:导体杆刚进入磁场时产生的感应电动势为:此时通过导体杆上的电流大小为:(或 根据右手定则可以知道,电流方向为由b 向a (2)设导体杆在磁场中运动的时间为t,产生的感应电动势的平均值为,则有: 通过电阻R 的感应电流的平均值为:通过电阻R 的电荷量为:(或 (3)设导体杆离开磁场时的速度大小为,运动到圆轨道最高点的速度为,因导体杆恰好能通过半圆形轨道的最高点,根据牛顿第二定律对导体杆在轨道最高点时有:对于导体杆从运动至的过程,根据机械能守恒定律有:计算得出:导体杆穿过磁场的过程中损失的机械能为:此过程中电路中产生的焦耳热为:知识点八:单杆问题(与电容器结合)电容有外力充电式(1)电路特点:导体为发电边;电容器被充电。

高考物理:带你攻克电磁感应中的典型例题(附解析)

高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。

当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。

所以D选项正确。

一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。

解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。

例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。

一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。

整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。

让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。

(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。

高中物理必修三第十三章电磁感应与电磁波初步典型例题(带答案)

高中物理必修三第十三章电磁感应与电磁波初步典型例题单选题1、下列说法正确的是()A.电荷在电场中某处不受电场力的作用,则该处的电场强度不一定为零B.一小段通电导线在某处不受安培力的作用,则该处磁感应强度一定为零C.把一个试探电荷放在电场中的某点,它受到的电场力与所带电荷量的比值表示该点电场的强弱D.把一小段通电导线放在磁场中某处,它所受到的磁场力与该小段通电导线的长度和电流的乘积的比值表示该处磁场的强弱答案:CAC.在定义电场强度和磁感应强度时,都是在场中放一个小物体,使场对它有力的作用。

在电场中放入的是试探电荷,电场强度E用E=Fq 来定义,但E与F、q无关,由E=Fq可得F=qE,故E=0时,F=0,故A错误,C正确;BD.在磁场中放入一小段通电导线在磁场中的受力大小与导线放置的方向有关,平行于磁场方向放置时,磁场力F=0,垂直于磁场方向放置时,磁场力F最大。

在定义式B=FIl中,通电导线必须垂直磁场方向放置,故BD错误。

故选C。

2、为了演示“感应电流的磁场总要阻碍引起感应电流的磁通量的变化”的现象,老师做了这样的演示实验:如图所示,铝制水平横梁两端各固定一个铝环,其中A环是闭合的,B环是断开的,横梁可以绕中间的支点在水平面内转动。

当装置静止不动时,用一磁铁的N极去接近A环,发现横梁绕支点沿顺时针(俯视)方向转动。

若不考虑空气流动对实验结果的影响,关于该实验,下列说法中正确的是()A.若其他条件相同,磁铁接近A环越快,A环中产生的感应电动势就越大B.若其他条件相同,而将磁铁的N极接近B环,则横梁将绕支点沿逆时针(俯视)方向转动C.无论磁铁靠近A环或B环,相应环中都有焦耳热产生D.若磁铁N极靠近A环,沿磁铁运动方向观察,A环会有沿环顺时针方向的感应电流答案:AA.A环闭合,磁铁接近A环越快,A环中磁通量的变化率越大,根据法拉第电磁感应定律可知产生的感应电动势越大,故A正确;B.B环不闭合,磁铁接近B环时,环内不产生感应电流,因此B环不受磁场的作用力,横杆不转动,故B错误;C.磁铁靠近A环时,在A环内会产生感应电流,从而产生焦耳热,当磁铁靠近B环时,会产生感应电动势,但不会形成感应电流,不会产生焦耳热,故C错误;D.磁铁N极靠近A环时,A环垂直于纸面向里的磁通量增大,所以A环中感应电流的磁场方向垂直于纸面向外,A环中会产生逆时针方向的感应电流,故D错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

典型例题——电磁感应与电路、电场相结合1.如图所示,螺线管的导线的两端与两平行金属板相接,一个带负电的通草球用丝线悬挂在两金属板间,并处于静止状态,若条形磁铁突然插入线圈时,通草球的运动情况是( )A 、向左摆动B 、向右摆动C 、保持静止D 、无法确定解:当磁铁插入时,穿过线圈的磁通量向左且增加,线圈产生感应电动势,因此线圈是一个产生感应电动势的电路,相当于一个电源,其等效电路图如图,因此A 板带正电,B 板带负电,故小球受电场力向左 答案:A3.如图所示,匀强磁场B=,金属棒AB 长0.4m ,与框架宽度相同,电阻为R=1/3Ω,框架电阻不计,电阻R 1=2Ω,R 2=1Ω当金属棒以5m/s 的速度匀速向左运动时,求:(1)流过金属棒的感应电流多大(2)若图中电容器C 为μF,则充电量多少(1),(2)4×10-8C解:(1)金属棒AB 以5m/s 的速度匀速向左运动时,切割磁感线,产生的感应电动势为Blv E =,得V V E 2.054.01.0=⨯⨯=, 由串并联知识可得Ω=32外R ,Ω=1总R , 所以电流 A I 2.0= (2)电容器C 并联在外电路上,V U 34.0=外 由公式NC CU Q 34.0103.06⨯⨯==-C 8104-⨯= 4.(2003上海)粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。

现使线框以同样大小的速度沿四个不同方向平移出磁场,如图100-1所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( )解:沿四个不同方向移出线框的感应电动势都是Blv E =,而a 、b 两点在电路中的位置不同,其等效电路如图100-2所示,显然图B’的Uab 最大,选B 。

5.(2004年东北三校联合考试)粗细均匀的电阻丝围成如图12-8所示的线框abcd e (ab =bc )置于正方形有界匀强磁场中,磁场方向垂直于线框平面.现使线框以同样大小的速度匀速地沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则在通过图示位置时,线框ab 边两端点间的电势差绝对值最大的是解析:线框通过图示各位置时,电动势均为E =Blv ,图A 中ab 相当于电源,U ab 最大. 答案:A6.竖直平面内有一金属环,半径为a ,总电阻为R .磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a 、电阻为R /2的导体棒AB 由水平位置紧贴环面摆下(如图).当摆到竖直位置时,B 点的线速度为v ,则这时AB 两端的电压大小为( )3 3解析:导体棒转至竖直位置时,感应电动势E =21B ·2a ·v =Bav 电路中总电阻R 总=2222R R R R +⋅+2R =43R 总电流I =总R E =REav 34 AB 两端的电压U =E -I ·2R =31Bav . 答案:D8.(04江苏35)如图100-3所示,U 形导线框MNQP 水平放置在磁感应强度B =的匀强磁场中,磁感线方向与导线框所在平面垂直,导线MN 和PQ 足够长,间距为0.5m ,横跨在导线框上的导体棒ab 的电阻r =Ω,接在NQ 间的电阻R=Ω,电压表为理想电表,其余电阻不计.若导体棒在水平外力作用下以速度ν=2.0m/s向左做匀速直线运动,不计导体棒与导线框间的摩擦.(1)通过电阻R的电流方向如何 (2)电压表的示数为多少(3)若某一时刻撤去水平外力,则从该时刻起,在导体棒运动的过程中,通过导体棒的电荷量为多少解:(1)由右手定则可判断,导体棒中的电流方向为b→a,则通过电阻R 的电流方向为N→Q(2)由感应电动势的公式,得E=Blv ①设电路中的电流为I,由闭合电路欧姆定律,得②又电压表的示数等于电阻R两端的电压值,则有U=IR ③综合①②③式,得④代入数值,得U= ⑤(3)撤去水平外力后,导体棒将在安培力的作用下,做减速运动.设在导体棒运动x=的过程中,导体棒中产生的感应电动势的平均值为E’由法拉第电磁感应定律,得⑥ 由闭合电路欧姆定律,得⑦设通过导体棒的电荷量为Q,则有Q = I △t ⑧综合⑥、⑦、⑧式,得⑨ 代入数值,得Q=×10-2C ⑩ 答案:通过电阻R 的电流方向为N→Q c 2100.2-⨯拓展1.(2003年北京海淀区模拟题) 如图所示,MN 和PQ 是固定在水平面内间距L = m 的平行金属轨道,轨道的电阻忽略不计.金属杆ab 垂直放置在轨道上.两轨道间连接有阻值为R 0= Ω的电阻,ab 杆的电阻R =Ω.ab 杆与轨道接触良好并不计摩擦,整个装置放置在磁感应强度为B = T 的匀强磁场中,磁场方向垂直轨道平面向下.对ab 杆施加一水平向右的拉力,使之以v =5.0 m/s 的速度在金属轨道上向右匀速运动.求:(1)通过电阻R 0的电流;(2)对ab 杆施加的水平向右的拉力的大小;(3)ab 杆两端的电势差.解析:(1)a 、b 杆上产生的感应电动势为E =BLv = V.根据闭合电路欧姆定律,通过R 0的电流I =R R E +0=0.25 A.(2)由于ab 杆做匀速运动,拉力和磁场对电流的安培力F 大小相等,即F 拉=F =BIL = N.(3)根据欧姆定律,ab 杆两端的电势差U ab =00R R ER +=00R R BLvR += V.答案:(1) V (2) N (3) V拓展2.如图所示,水平面上有两根相距的足够长的平行金属导轨MN 和PQ ,它们的电阻可忽略不计,在M 和 P 之间接有阻值为R 的定值电阻,导体棒ab 长l =,其电阻为r ,与导轨接触良好.整个装置处于方向竖直向上的匀强磁场中,磁感应强度B =.现使ab 以v =10m/s 的速度向右做匀速运动.(1) ab 中的感应电动势多大(2) ab 中电流的方向如何(3)若定值电阻R =Ω,导体棒的电阻r =Ω,,则电路电流大解:(1)ab 中的感应电动势为: Blv E = ① 代入数据得:E= ②(2)ab 中电流方向为b→a(3)由闭合电路欧姆定律,回路中的电流 rR E I +=③ 代入数据得:I = ④答案:(1)(2)ab 中电流方向为b→a(3)拓展3.如图所示,MN 、PQ 是两条水平放置彼此平行的金属导轨,匀强磁场的磁感线垂直导轨平面.导轨左端接阻值R =Ω的电阻,电阻两端并联一电压表,垂直导轨跨接一金属杆ab ,ab 的质量m =,电阻r =Ω.ab 与导轨间动摩擦因数μ=,导轨电阻不计,现用F =的恒力水平向右拉ab ,使之从静止开始运动,经时间t =2s 后,ab 开始做匀速运动,此时电压表示数U =.重力加速度g =10m /s 2.求:(1)ab 匀速运动时,外力F 的功率.(2)ab 杆加速过程中,通过R 的电量.(3)ab 杆加速运动的距离.解:(1)设导轨间距为L ,磁感应强度为B ,ab 杆匀速运动的速度为v ,电流为I ,此时ab 杆受力如图所示:由平衡条件得:F=μmg+ILB ① 由欧姆定律得:R U r R BLv I =+= ②由①②解得:BL =1T·m v =s ③F 的功率:P =Fv =×= ④(2)设ab 加速时间为t ,加速过程的平均感应电流为I ,由动量定理得:mv LBt I mgt Ft =--μ ⑤ 解得:C t I q 36.0=⋅= ⑥(3)设加速运动距离为s ,由法拉第电磁感应定律得tBLs t E =∆∆Φ= ⑦ 又)(r R I E += ⑧ 由⑥⑦⑧解得m m BL r R q s 72.01236.0)(=⨯=+= 9.(05天津23)图中MN 和PQ 为竖直方向的两平行长R R a bMP QB v直金属导轨,间距l 为0.40m ,电阻不计。

导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直。

质量m 为6.0×10-3kg .电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触。

导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R1。

当杆ab 达到稳定状态时以速率v 匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s2,试求速率v 和滑动变阻器接入电路部分的阻值R2。

解:由能量守恒定律得:mgv=P ①代入数据得:v=s ② E =BLv ③设电阻a R 与b R 的并联电阻为外R ,ab 棒的电阻为r ,有 111a b R R R +外= E I R r =+外 ⑤ P=IE ⑥ 代入数据得:2R =.0Ω⑦10..如图所示,在竖直面内有两平行金属导轨AB 、CD 。

导轨间距为L ,电阻不计。

一根电阻不计的金属棒ab 可在导轨上无摩擦地滑动。

棒与导轨垂直,并接触良好。

导轨之间有垂直纸面向外的匀强磁场,磁感强度为B 。

导轨右边与电路连接。

电路中的三个定值电阻阻值分别为2R 、R 和R 。

在BD 间接有一水平放置的平行板电容器C ,板间距离为d 。

(1)当ab 以速度v0匀速向左运动时,电容器中质量为m 的带电微粒恰好静止。

试判断微粒的带电性质,及带电量的大小。

(2)ab 棒由静止开始,以恒定的加速度a 向左运动。

求电容器中带电微粒达到最大速度的时间。

(设带电微粒始终未与极板接触。

)解:(1)棒匀速向左运动,感应电流为顺时针方向,电容器上板带正电。

∵微粒受力平衡,电场力方向向上,场强方向向下 ∴微粒带负电mg =q d U c U c =IR R EI 3= E = Blv 0 由以上各式求出 03Blv mgd q = (2)经时间t 0,微粒受力平衡 mg =q d U c 031Blat U c = 求出 Blaq mgdt 30=或av t 00= 当t < t 0时,a 1 = g –t mdBlaq 3,越来越小,加速度方向向下 当t = t 0时,a 2 = 0 ,此时带电粒子速度达到最大值当t > t 0时,a 3 =t mdBlaq 3– g ,越来越大,加速度方向向上 答案:⑴负电,03Blv mgd q =;⑵Blaq mgd t 30=或av t 00= 典型例题——导体在磁场中切割磁感线(一)单导体运动切割磁感线1.动——电——动 2.电——动——电1.如图所示,有一电阻不计的光滑导体框架,水平放置在磁感应强度为B 的竖直向上的匀强磁场中,框架宽为l .框架上放一质量为m 、电阻为R 的导体棒.现用一水平恒力F 作用于棒上,使棒由静止开始运动,当棒的速度为零时,棒的加速度大小为_______;当棒的加速度为零时,速度为_______.解析: 速度为零时,只受恒力F 作用,故a =m F ;又加速度为零时,受力平衡,可得方程:B R Bvl l =F ,得v =22l B FR .答案:m F 22l B FR2.(2004年黄冈市)如图所示,平行金属导轨MN 、PQ 水平放置,M 、P 间接阻值为R 的固定电阻.金属棒ab垂直于导轨放置,且始终与导轨接触良好.导轨和金属棒的电阻不计.匀强磁场方向垂直导轨所在平面.现用垂直于ab 棒的水平向右的外力F ,拉动ab 棒由静止开始向右做匀加速直线运动,则图中哪一个能够正确表示外力F 随时间变化的规律解析:由ab 棒匀加速向右运动,分析ab 棒受力可知ab 棒水平方向受向右的拉力F 和向左的安培力BIl ,则F -BIl =ma ,由闭合电路欧姆定律I =R Blv =R Blat ,可判断F =ma +R at l B 22,C 选项正确.答案:C3.如图所示,MN 、PQ 是两根足够长的固定平行金属导轨,两导轨间的距离为l ,导轨平面与水平面间的夹角为θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感应强度为B .在导轨的M 、Q 端连接一个阻值为R 的电阻,一根垂直于导轨放置的质量为m 的金属棒ab ,从静止释放开始沿导轨下滑,求ab 棒的最大速度.(要求画出ab 棒的受力图,已知ab 与导轨间的动摩擦因数为μ,导轨和金属棒的电阻不计)解析:本题考查了电磁感应定律与力学规律的综合应用.ab 下滑做切割磁感线运动,产生的感应电流方向及受力如下图所示,E =Blv ①F =BIl ② a=mN F mg μθ--sin ③由式①②③可得 a =mmg R v l B mg θμθcos /sin 22--在ab 下滑过程中v 增大,由上式知a 减小,循环过程为v ↑→E ↑→I ↑→F 安↑→F 合↓→a ↓.在这个循环过程中,ab 做加速度逐渐减小的加速运动,当a =0时(即循环结束时),速度到达最大值,设为v m ,则有mg sin θ=μmgc os θ+Rv l B m22 所以v m =22)cos (sin lB Rmg θμθ-. 拓展:若将磁场方向改为竖直向上,求ab 棒的最大速度. 答案:22)cos (sin lB mg θμθ-R4. (04北京23)如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L 。

相关文档
最新文档