用配方法求解一元二次方程 应用题

合集下载

一元二次方程根与系数的关系及应用题

一元二次方程根与系数的关系及应用题

一元二次方程根与系数的关系及应用题一、 根与系数的关系(韦达定理);1、定理来源,用配方法推导出来的一元二次方程的求根公式中,由两个根的相互运算而得,2、定理内容,(1)12b x x a +=- (2) 12cx x a=3、定理特征:和与积的形式特点。

4、定理的延伸:当二次项系数为1时,两根之和等于一次项系数的相反数,两根之积为常数项。

5、解一元二次方程的又一种方法:观察法,总结观察法的知识要点:用了根的定义和韦达定理,是一种综合性题目,是竞赛中常见的一种题型。

若0a b c ++=,则有:11x =,2c x a =,(2)若0a b c -+=,则有:11x =-,2cx a= 这里的0a b c ++=是指各项系数不变号和为零的情况,这里的0a b c -+=是指要改变一次项系数符号后和为零的情况。

如: (1)2543215432210x x ++= (2)()219981997199910x x -⨯-=例1.(1)如果x x 12、是方程3x x 2720-+=的两个根,那么x x 12+=_______ x x 12=_______. (2)如果x x 12、是方程2x x 2350--=的两个根,那么x x 12+=________ x x 12=________. (3)如果方程20542=--x x 的两个根是x 1和x 2,则21x x +________ 21x x =_________.例2 已知32-是一元二次方程042=+-c x x 的一个根,则方程的另一根是 ;例3 已知关于x 的一元二次方程230x x --=的两个实数根分别为βα、,求: (1)11αβ+;(2)()()33++βα的值; (3)22αβ+; (4)αβ-.例 4 已知βα、是关于x 的一元二次方程()03222=+++m x m x 的两个不相等的实数根,且满足1-11=+βα,求m 的值.例5 △ABC 的一边长为4,另外两边是方程23150x x m -+=的两根,求m 的取值范围.变式练习:1.设1x ,2x是方程220x -+=的两根,求1211x x +的值.2.下列方程中,两根均为正数的有 个。

中考数学与一元二次方程组有关的压轴题附详细答案

中考数学与一元二次方程组有关的压轴题附详细答案

中考数学与一元二次方程组有关的压轴题附详细答案一、一元二次方程1.关于x 的方程x 2﹣2(k ﹣1)x +k 2=0有两个实数根x 1、x 2. (1)求k 的取值范围;(2)若x 1+x 2=1﹣x 1x 2,求k 的值. 【答案】(1)12k ≤;(2)3k = 【解析】试题分析:(1)方程有两个实数根,可得240b ac ∆=-≥,代入可解出k 的取值范围; (2)由韦达定理可知,()2121221,x x k x x k +=-=,列出等式,可得出k 的值.试题解析:(1)∵Δ=4(k -1)2-4k 2≥0,∴-8k +4≥0,∴k ≤12; (2)∵x 1+x 2=2(k -1),x 1x 2=k 2,∴2(k -1)=1-k 2, ∴k 1=1,k 2=-3. ∵k ≤12,∴k =-3.2.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA ⊥NA ,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.【答案】(1)y=﹣(x+1)2+4,顶点坐标为(﹣1,4);(2)①点P ﹣1,2);②P (﹣32,154) 【解析】试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.试题解析:(1)∵抛物线2y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为1x =-,∴0{312a b c c ba++==-=-,解得:1{23a b c =-=-=,∴二次函数的解析式为223y x x =--+=2(1)4x -++,∴顶点坐标为(﹣1,4);(2)令2230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得1(舍去)或x=1,∴点P(1,2);②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =12OB•OC+12AD•PD+12(PD+OC)•OD=11131+(3)(3)()222x y y x ⨯⨯⨯+++-=333222x y -+ =2333(23)222x x x -+--+=239622x x --+=23375()228x -++, ∴当x=32-时,ABCP S 四边形最大值=758,当x=32-时,223y x x =--+=154,此时P(32-,154).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.3.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg ,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg ,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关. (1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg,用油的重复利用率将增加1.6%,例如润滑用油量为89kg时,用油的重复利用率为61.6%.①润滑用油量为80kg,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少?【答案】(1)28(2)①76%②75,84%【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg,用油的重复利用率将增加1.6%,进而求出答案;②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg);(2)①60%+1.6%(90﹣80)=76%;②设润滑用油量是x千克,则x{1﹣[60%+1.6%(90﹣x)]}=12,整理得:x2﹣65x﹣750=0,(x﹣75)(x+10)=0,解得:x1=75,x2=﹣10(舍去),60%+1.6%(90﹣x)=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%.考点:一元二次方程的应用4.解方程:233230 2121x xx x⎛⎫⎛⎫--=⎪ ⎪--⎝⎭⎝⎭.【答案】x=15或x=1【解析】【分析】设321xyx=-,则原方程变形为y2-2y-3=0, 解这个一元二次方程求y,再求x.【详解】解:设321xyx=-,则原方程变形为y2-2y-3=0.解这个方程,得y1=-1,y2=3,∴3121xx=--或3321xx=-.解得x=15或x=1. 经检验:x=15或x=1都是原方程的解. ∴原方程的解是x=15或x=1. 【点睛】考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根.5.解下列方程: (1)2x 2-4x -1=0(配方法); (2)(x +1)2=6x +6.【答案】(1)x 1=1+2x 2=1-21=-1,x 2=5. 【解析】试题分析:(1)根据配方法解一元二次方程的方法,先移项,再加减一次项系数一半的平方,完成配方,再根据直接开平方法解方程即可;(2)根据因式分解法,先移项,再提公因式即可把方程化为ab=0的形式,然后求解即可.试题解析:(1)由题可得,x 2-2x =12,∴x 2-2x +1=32.∴(x -1)2=32.∴x -1=.∴x 1=1x 2=1 (2)由题可得,(x +1)2-6(x +1)=0,∴(x +1)(x +1-6)=0. ∴x +1=0或x +1-6=0. ∴x 1=-1,x 2=5.6.某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21344m ?【答案】当13x m =时,活动区的面积达到21344m 【解析】 【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答. 【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--= 解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m 【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.7.已知关于x 的一元二次方程()2211204x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;()2若此方程的两个实数根为1x ,2x ,且满足22212121184x x x x m ++=-,求m 的值.【答案】(1)m 的最小整数值为4-;(2)3m = 【解析】 【分析】(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题. 【详解】(1)解:()22114124m m ⎛⎫∆=+-⨯⨯-⎪⎝⎭22218m m m =++-+29m =+方程有两个实数根0∴∆≥,即290m +≥92m ∴≥-∴ m 的最小整数值为4-(2)由根与系数的关系得:()121x x m +=-+,212124x x m =- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭13m ∴=,25m =-92m ≥-3m ∴=【点睛】本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.8.已知关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根. (1)求k 的取值范围;(2)当k 取最小整数时,求此时方程的解. 【答案】(1)k >﹣12;(2)x 1=0,x 2=﹣1. 【解析】 【分析】(1)由题意得△=(k +1)2﹣4×14k 2>0,解不等式即可求得答案; (2)根据k 取最小整数,得到k =0,列方程即可得到结论. 【详解】(1)∵关于x 的一元二次方程x 2+(k +1)x +214k =0 有两个不相等的实数根, ∴△=(k +1)2﹣4×14k 2>0, ∴k >﹣12; (2)∵k 取最小整数, ∴k =0,∴原方程可化为x 2+x =0, ∴x 1=0,x 2=﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.关于x 的一元二次方程ax 2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 【答案】(1)方程有两个不相等的实数根;(2)b=-2,a=1时,x 1=x 2=﹣1. 【解析】 【详解】分析:(1)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况. (2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(1)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>, ∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如: 解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根. 当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根.10.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米 【解析】 【分析】(1)设未知数,根据题目中的的量关系列出方程; (2)可以通过平移,也可以通过面积法,列出方程解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.11.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?【答案】裁掉的正方形的边长为2dm,底面积为12dm2.【解析】试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长.试题解析:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2.12.已知关于x的方程x2-(m+2)x+(2m-1)=0。

初三数学解一元二次方程——配方法及答案解析

初三数学解一元二次方程——配方法及答案解析

初三数学解一元二次方程——配方法一.选择题(共1小题)1.(2013春?奉化市校级月考)用配方法解一元二次方程y2﹣y=1,两边应同时加上的数是()2.(2013秋?湖里区校级月考)用配方法解一元二次方程x2+8x+7=0,则方程可化为.3.(2013秋?曲阜市期中)用配方法解一元二次方程x2﹣4x+2=0时,可配方得.4.用配方法解一元二次方程﹣3x2+4x+1=05.(2006秋?变为.6.(2014春?7.(2010秋?﹣)2=.8.(2006秋?h=,k=.9.(2013秋?鼓楼区期中)将一元二次方程x2﹣为.10.(1112.()化简:(213.(ax2+bx+c=0.14.(8和6,第三边长是一元二次方程x2﹣16x+60=0 15.(1=0(216.((1)4x2(2)2x2﹣2=3x(用公式法解).17.用公式法解一元二次方程:3x2+5x﹣2=0.18.(2010秋?岳池县期末)已知关于x的一元二次方程x2+kx﹣5=0(1)求证:不论k为任何实数,方程总有两个不相等的实数根;(2)当k=4时,用配方法解此一元二次方程.19.用配方法解下列关于x的一元二次方程:9x2﹣12x=1.20.(2012春?兰溪市校级期中)解下列一元二次方程:(1)用配方法解方程:x2+4x﹣12=0(2)3(x﹣5)2=2(x﹣5)初三数学解一元二次方程——配方法参考答案与试题解析一.选择题(共1小题)1.(2013春?奉化市校级月考)用配方法解一元二次方程y2﹣y=1,两边应同时加上的数是()﹣y+=1+﹣,两边应同时加上的数是.x=02﹣)x+)()﹣故答案为()8.(2006秋?西城区校级月考)用配方法解一元二次方程2x2+3x+1=0,变形为(x+h)2=k,则h=,k=.,x=﹣x+﹣x+=比较对应系数,有:故答案是:、.2﹣,()x+),=±,=)化简:=;1==1+.(x=﹣等式的两边都加上x+﹣x+x+±,,;AD===82x=,x+)﹣.),﹣±=求解即可.3x=,3x+=+,﹣﹣±,+=﹣=x==,.,进行计算即可.x==,=,=x=,x+=,即(),﹣±,=。

专题08一元二次方程(含解析)讲解

专题08一元二次方程(含解析)讲解

专题08 一元二次方程一、解读考点二、考点归纳归纳 1:一元二次的有关概念基础知识归纳:1. 一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一般形式:ax2+bx+c=0(其中a、b、c为常数,a≠0),其中ax2、bx、c分别叫做二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数.3.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.基本方法归纳:一元二次方程必须具备三个条件:(1)必须是整式方程;(2)必须只含有1个未知数;(3)所含未知数的最高次数是2.注意问题归纳:在一元二次方程的一般形式中要注意a ≠0.因为当a =0时,不含有二次项,即不是一元二次方程.【例1】若x =﹣2是关于x 的一元二次方程225x ax a 02-+=的一个根,则a 的值为( )A . 1或4B . ﹣1或﹣4C . ﹣1或4D . 1或﹣4【答案】B .考点:一元二次方程的解和解一元二次方程. 归纳 2:一元一次方程的解法 基础知识归纳: 一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b <0时,方程没有实数根.2、配方法:配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。

配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.3、公式法:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法. 一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x4、因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.基本方法归纳:(1)若一元二次方程缺少常数项,且方程的右边为0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解; (4)若用以上三种方法都不容易求解时,可考虑用公式法求解.注意问题归纳:用公式法求解时必须化为一般形式;用配方法求解时必须两边同时加上一次项的系数一半的平方.【例2】用配方法解关于x的一元二次方程ax2+bx+c=0.x x(其中b2﹣4ac≥0).【答案】12【解析】试题分析:应用配方法解一元二次方程,要把左边配成完全平方式,右边化为常数.考点:解一元二次方程-配方法.归纳 3:一元二次方程的根的判别式基础知识归纳:一元二次方程的根的判别式对于一元二次方程ax2+bx+c=0(a≠0):(1)b2-4ac>0⇔方程有两个不相等的实数根;(2)b2-4ac=0⇔方程有两个的实数根;(3)b2-4ac<0⇔方程没有实数根.基本方法归纳:若只是判断方程解得情况则根据一元二次方程的根的判别式判断即可.注意问题归纳:一元二次方程的根的判别式应用时必须满足a≠0;一元二次方程有解分两种情况:1、有两个相等的实数根;2、有两个不相等的实数根.【例3】下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x-3=0C.x2-2x+3=0 D.(x-2)(x-3)=12【答案】C.【解析】试题分析:A、方程变形为:x2+4x-10=0,△=42-4×1×(-10)=56>0,所以方程有两个不相等的实数根,故A选项不符合题意;B、△=82-4×3×(-3)=100>0,所以方程有两个不相等的实数根,故B选项不符合题意;C、△=(-2)2-4×1×3=-8<0,所以方程没有实数根,故C选项符合题意;D、方程变形为:x2-5x-6=0,△=52-4×1×(-6)=49>0,所以方程有两个不相等的实数根,故D选项不符合题意.故选C.考点:根的判别式.归纳 4:根与系数的关系基础知识归纳:一元二次方程的根与系数的关系若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=ba,x1x2=ca.基本方法归纳:一元二次方程问题中,出现方程的解得和与积时常运用根与系数的关系.注意问题归纳:运用根与系数的关系时需满足:1、方程有解;2、a≠0.【例4】若α、β是一元二次方程x2+2x-6=0的两根,则α2+β2=()A. -8B. 32C. 16D. 40【答案】C.考点:根与系数的关系.归纳 5:一元二次方程的应用基础知识归纳:1、一元二次方程的应用1. 列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题的步骤相同,即审、设、列、解、验答五步.2. 列一元二次方程解应用题中,经济类和面积类问题是常考类型,解决这些问题应掌握以下内容:(1)增长率等量关系:A.增长率=×100%;B.设a为原来量,m为平均增长率,n为增长次数,b为增长后的量,则a(1+m)n=b;当m为平均下降率,n 为下降次数,b为下降后的量时,则有a(1-m)n=b.(2)利润等量关系:A.利润=售价-成本;B.利润率=利润成本×100%.(3)面积问题3、解应用题的书写格式:设→根据题意→解这个方程→答.基本方法归纳:解题时先理解题意找到等量关系列出方程再解方程最后检验即可.注意问题归纳:找对等量关系最后一定要检验.【例5】如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草。

解一元二次方程练习题(配方法、公式法)

解一元二次方程练习题(配方法、公式法)

解一元二次方程练习题(配方法、公式法)_____。

4.解方程2x2+3x-2=0,其中b-4ac=_______,x1_______,x2_______。

二、应用题1.一个长方形的长比宽多5cm,面积为66cm2,求长和宽分别是多少厘米?2.一个圆形的半径比另一个圆形的半径多3cm,面积比另一个圆形的面积多18π cm2,求小圆半径和大圆半径分别是多少厘米?3.一个矩形的长比宽多3cm,如果把长增加5cm,宽减少2cm,面积增加20cm2,求原来矩形的长和宽分别是多少厘米?4.一个三角形的一条边比另外两条边长6cm和8cm,面积为60cm2,求这个三角形的周长和另外两条边的长分别是多少厘米?5.一个正方形的面积比另一个正方形的面积小9cm2,如果把小正方形的边长增加2cm,大正方形的边长减少1cm,面积相等,求小正方形的边长和大正方形的边长分别是多少厘米?1.已知一个矩形的长比宽多2cm,其面积为8cm²,则此矩形的周长为多少。

解析:设矩形的宽为x,则长为x+2,由题意可得。

x+2)x=8化简得:x²+2x-8=0解得:x=2或x=-4由于宽不能为负数,所以矩形的宽为2cm,长为4cm,周长为12cm。

2.用公式法解方程4y=12y+3,得到y的值。

解析:移项得:8y=-3,两边同时除以8,可得y=-3/8.3.不解方程,判断方程:①x+3x+7=0;②x+4=0;③x+x-1=0中,有实数根的方程有哪些。

解析。

①x+3x+7=0,化简得4x=-7,无实数解。

②x+4=0,解得x=-4,有实数解。

③x+x-1=0,化简得2x-1=0,解得x=1/2,有实数解。

所以有实数解的方程是②和③。

4.当x=43/8时,代数式(4x-172)/(2x-86)的值与-2互为相反数。

解析:将x=43/8代入代数式可得。

4×43/8-172)/(2×43/8-86)=-2化简得:-2=-2,等式成立。

最新初中一元二次方程计算题练习题优秀名师资料

最新初中一元二次方程计算题练习题优秀名师资料

初中一元二次方程计算题练习题精品文档初中一元二次方程计算题练习题,、解一元二次方程的方法: 1. 因式分解法:适用类型:方程本身是几个式的积为0 或常数项 c=0 。

举例: ?0x?5x?0 解:3x?2?0或 x?7?0解: x?0x1?2. 开平方法:适用类型:方程本身可以直接开平方或一次项系数 b=0 。

举例: ?50x?2?0 解: x?6?2225,x2??7x1?0,x2?2250或x?6?? 解:x2?2x?6?52或x?6??5x2?x1?52?6,x2??52?x??232x1?3. 配方法:66,x2??3适用类型:方程二次项系数a=1 ,一次项系数 b 最好为偶数。

举例:x?6x?1x?8x?7?0 解: x?6x?9?18?9解:x?8x??7?2x?8x?16??7?162221 / 13精品文档222x?3?27或x?3??22?x?3?3或x?3??3x?4?3或x?4??x1?33?3,x2??33?x1??1 ,x2??74. 公式法:适用类型:二次项系数 a?1或上面三种方法都不适用。

2举例:x2?5x?2?0x?6x?解: a?3,b??5,c??2解:x?6x?3?0 b?4ac??4?3??49a?1,b?2226,c??3?b?b2?4ac5?5?722x?,, b?4ac??4?1?,182a2?36?b?b2?4ac?6?5?75?7, x2?x?, x1?2a2?166??321x1?2, x2??,232 / 13精品文档x1?*5. 十字相乘法:依据: x2?x?ab?举例: x?6x?5?0x?x?6?0 解:?0 ?0 x1??1,x2??5x1?3,x2??2十字相乘法练习:x?8x?7?0 x?5x?6?0x?3x?10?0 x?6x?8?0222222?6?32?6?32, x2?22二、分类练习: 1. 因式分解法:=0 x?2x?0+2x=0 x2x+3=023 / 13精品文档2.开平方法: 2x2,24=022=503. 配方法: x2?4x?4x2,4x+=04.公式法:x2?x?1?02x2?10x?3?0)2 ?44)2?22)4)x2—10x,2=0 2)3x2?7x?2?0)x24 / 13精品文档??2?0 = 1 x2?4x?0 22x+x,6=0x2,6x+=0,8x 122,2x2—2x—1,0x2?7x?6?01?16x2?56x x2+3x-1=02?x2?12y2?3y12) 2?x25 / 13精品文档?514)2?3 16) 2? 数学交流卷第四学暑提供一元二次方程练习题一、填空1(一元二次方程?2x2?1,二次项系数为: ,一次项系数为: ,常数项为:。

一元二次方程应用题(含答案)整理版

一元二次方程应用题(含答案)整理版

一元二次方程应用题(含答案)整理版第一篇:一元二次方程应用题(含答案)整理版一元二次方程应用题1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600 展开后化简得:x²-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍)即每件降价4元2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?解:设增加x(8+x)(12+x)=96+69 x=3 增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。

在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价关系式解:(1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?解:设边长x 则(19-2x)(15-2x)=77 4x^2-68x+208=0 x^2-17x+52=0 (x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去故x=4 5.某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。

配方法解一元二次方程题目

配方法解一元二次方程题目

配方法解一元二次方程题目配方法求解一元二次方程一元二次方程的一般形式为 ax² + bx + c = 0,其中 a、b、c 为常数,且 a 不为 0。

配方法是一种求解一元二次方程的常用方法,其步骤如下:1. 将常数项移到方程的另一侧: ax² + bx = -c2. 将系数 b 的一半平方加上方程两侧: ax² + bx +(b/2)² = -c + (b/2)²3. 化简为完全平方三项式: (ax² + bx + (b/2)²) = -c + (b/2)²4. 提取平方根: ax² + bx + (b/2)² = ±√(-c + (b/2)²)5. 解出 x: x = (-b ± √(-c + (b/2)²)) / 2a值得注意的是,如果方程的判别式Δ = b² - 4ac < 0,那么该方程无实数根。

示例:求解方程:x² - 6x + 5 = 0步骤:1. 将常数项移到方程的另一侧:x² - 6x = -52. 将系数 b 的一半平方加上方程两侧:x² - 6x + (6/2)²= -5 + (6/2)²3. 化简为完全平方三项式:(x² - 6x + 9) = -5 + 94. 提取平方根:x - 3 = ±√(4)5. 解出 x:x = 3 ± 2因此,方程的解为 x = 5 或 x = 1。

其他注意事项:如果 a 为负数,那么在步骤 3 中添加 (b/2)²后,方程两侧的符号可能会发生变化。

如果Δ = 0,那么方程有两个相同实数根。

配方法对于求解平方差形式的方程也很有用,如 (x + a)² = b²。

在这种情况下,配方为:x = -a ± √(b² - a²)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档