07第七章 电化学
物理化学-第七章-电化学

通入的总电量:Q I t 0.23060 360库仑
电极上起化学反应物质的量:
n Q 360 0 00373mol zF 196500
析出Ag的质量: m=n×MAg=0.00373×107.88=0.403g
二、电导、电导率和摩尔电导率
体积与浓度的关系如何呢?
c n V
(mol·m-3)
若n为1mol
Vm
1 c
m
Vm
c
S·m2·mol-1
注意:c的单位:mol﹒m-3
3.电导、电导率和摩尔电导率之间的关系
G 1 R
K l A
G K
m
Vm
c
例: 298K时,将0.02mol·dm-3的KCl溶液放入 电导池,测其电阻为82.4Ω,若用同一电导池充 0.0025mol.dm-3的K2SO4溶液,测其电阻为 326Ω,已知298K时,0.02mol·dm-3的KCl溶液 的电导率为0.2768S.m-1 (1)求电导池常数; (2)0.0025mol.dm-3的K2SO4溶液的电率; (3)0.0025mol.dm-3的K2SO4溶液的摩尔电 导率。
★电池 汽车、宇宙飞船、照明、通讯、 生化和医学等方面都要用不同类型的化学 电源。
★ ⒊电分析 ★ ⒋生物电化学
§7-1 电解质溶液的导电性质 一、电解质溶液的导电机理
1.导体: 能够导电的物体叫导体。
第一类: 靠导体内部自由电子的定向运动而导电的物体
如 金属导体
石墨
性质:
A.自由电子作定向移动而导电
F:法拉第常数,即反应1mol电荷物质所需电量 1F=96500库仑/摩尔
物理化学07章电化学

(PHYSICAL CHAMISTRY)
第七章 电化学 (Electrochemistry)
2019/9/7
物理化学电子教案—第七章 电化学
电解
电能
电池
化学能
∆rGm
上一内容 下一内容 回主目录
返回
2019/9/7
• 电解质溶液
• 原电池中的电化学过程 电极上的电化学反应
• 电解池中的电化学过程
通电结束,阳极部阳、阴离子各少了3 mol,阴极部 只各少了1 mol,而中部溶液浓度仍保持不变。
上一内容 下一内容 回主目录
返回
2019/9/7
离子的电迁移现象
上一内容 下一内容 回主目录
返回
2019/9/7
思考题:
若阳离子、阴离子均为荷二价的,且阳、 阴两电极反应中的电子得失数均为2,其 余条件相同。试考虑前面两种电迁移情况 有何不同?
电解质溶液的导电性质
上一内容 下一内容 回主目录
返回
2019/9/7
(一)电解质溶液
主要内容
电化学的基本概念和法拉第定律 离子的电迁移和迁移数 电导 强电解质溶液理论简介
上一内容 下一内容 回主目录
返回
2019/9/7
1.1 电化学的基本概念
电化学研究对象
电化学主要是研究电能和化学能之间的 相互转化及转化过程中有关规律的科学。
= 1 7 6 3 C
(2 )t Q I 0 1 .7 0 6 2 3 5 C A 7 .0 5 1 0 4s
(3) n(O2)1 4n(1 3Au) =1 4197.01g .20 m g ol1/34.57103m ol
上一内容 下一内容 回主目录
物理化学第7章 电化学

放置含有1 mol电解质的溶液,这时溶液所具有的
电导称为摩尔电导率 Λ m
Λ m
def
kVm
=
k c
Vm是含有1 mol电解质的溶液
的体积,单位为 m3 mol1,c 是电解
质溶液的浓度,单位为 mol m3 。
摩尔电导率的单位 S m2 mol1
注意:
Λ 在 后面要注明所取的基本单元。 m
b、强电解质: 弱电解质:
强电解质的Λ m
与
c
的关系
随着浓度下降,Λ 升高,通 m
常当浓度降至 0.001mol dm3 以下
时,Λ 与 m
c 之间呈线性关系。德
国科学家Kohlrausch总结的经验
式为:
Λ m
=Λm (1
c)
是与电解质性质有关的常数
将直线外推至 c 0
得到无限稀释摩尔电导率Λm
-
- 电源 +
e-
+
e-
阴
阳
极
极
CuCl2
电解池
阳极上发生氧化作用
2Cl aq Cl2(g) 2e
阴极上发生还原作用
Cu2 aq 2e Cu(s)
三、法拉第定律
Faraday 归纳了多次实验结果,于1833年总结出该定律
1、内容:当电流通过电解质溶液时,通过电极 的电荷量与发生电极反应的物质的量成正比;
作电解池 阴极: Zn2 2e Zn(s)
阳极 2Ag(s) 2Cl 2AgCl(s) 2e
净反应: 2Ag(s) ZnCl2 Zn(s) 2AgCl(s)
2.能量变化可逆。要求通过的电流无限小。
二、可逆电极的种类
1、第一类电极
chap7 电化学

第七章 电化学7.0 绪言7.0.1电化学定义电化学定义:研究电能和化学能的相互转化及转换过程中有关规律的科学。
化学反应通常伴随着热的吸放(反应热效应),不涉及到电能。
而作为电化学则讨论在消耗外电功的情况下进行的反应或作为电能来源的反应。
显然,从热力学的观点看,电化学反应与一般的化学反应不同,电化学是一门独立的学科。
应该说,上述的电化学定义是相当概括的定义。
1970年,Bockris 在其名著《ModernElectrochemistry 》中把电化学定义为:电化学是研究带电界面的现象的科学,即研究电子导体和离子导体界面现象的 科学。
区分、认识电化学反应的两个关键因素: (1)反应必须发生在两类导体的界面上;(2)反应中应有电子的得失。
电化学中的能量转换: 电 能 → 化学能:电解(池);化学能 → 电 能:原电池。
7.0.2电化学与化学反应的区别以下列反应为例:+++++=+223Cu Fe Cu Fe若这个反应以化学反应的方式进行,它将具有以下的特点:(1) 反应只有当反应物在碰撞时才可能发生,及反应质点必须碰撞;(2) 在碰撞的一瞬间,当反应质点相互靠近时,电子从一个质点转移到另一个质点成为可能。
这个电子转移的实际上能否发生,取决于反应质点的内能以及内能与活化能的比值。
活化能是化学反应本性的函数;在离子反应中,这个能量通常是不大的。
电子所经过的途径也是非常小的;(3)对于简单离子反应,不管反应质点彼此相对位置如何,在反应区间的任何一点都可能发生碰撞。
因此,电子可能在空间任一方向上转移。
反应质点间碰撞的混乱性,以及由此引起的电子混乱运动;(4)由于这些特点,其能量效应采用热的方式释放。
如果这个反应以电化学的方式进行,反应条件必须改变:(1)电能的获得和损失是与电流的通过有关的,而电流是电子在一定方向上的流动。
只有当电子通过的路径与原子的大小相比很大时,电能的利用才有可能。
因此,在电化学反应中,电子从一种参加反应的物质转移到另一种物质必须经过足够长的路径。
第七章 电化学

第七章电化学教学目的与要求了解电解质溶液的导电机理和法拉第定律、离子独立运动定律理解离子迁移数、电导率, 摩尔电导率的概念。
理解电导测定的应用。
理解电解质活度和离子平均活度系数的概念。
了解离子氛的概念和Debye-Huckel极限公式。
理解可逆电池及韦斯顿标准电池,理解原电池电动势和热力学函数的关系。
掌握能斯特方程及其计算。
掌握电动势测定方法与其主要应用。
掌握各种类型电极的特征。
理解把电池反应设计成电池的方法*。
理解电极极化的原因和超电势的概念。
了解分解电压、析出电势的概念以及析出反应次序与析出电势的关系*。
教学重点与难点重点:电化学系统中的基本原理及其应用。
难点:离子氛的概念,电解质活度、离子平均活度系数和超电势的计算.作业: 7.1 7.5 7.7 7.11 7.13 7.16 7.19 7.25 7.29 7.30 7.36 7.40 电化学主要研究电能和化学能相互转化的一门科学。
是物理化学的一个重要分支。
研究的主要内容:电解质溶液、电化学平衡电极过程热力学、应用问题7-1 电解质溶液的导电机理及法拉第定律一、基本概念1、导体分类第一类导体(电子导体):依靠电子在电场下作定向移动导体。
如金属、石墨等A.自由电子作定向移动而导电B.导电过程中导体本身不发生变化C.温度升高,电阻也升高D.导电总量全部由电子承担第二类导体(又称离子导体),如电解质溶液、熔融电解质等。
依靠正负离子在电场作用下移动导电。
A.正、负离子作反向移动而导电B.导电过程中有化学反应发生C.温度升高,电阻下降D.导电总量分别由正、负离子分担2、电池(电解池、原电池)(1)电解池装置(2)原电池装置3. 阴极、阳极和正、负极的确定①按电势的高低高→正极低→负极②按得失电子的不同失电子,发生氧化反应→阳极得电子,发生还原反应→阴极4. 分析对照图讲解原电池中:负极(阳极),正极(阴极)电解池中:负极(阴极),正极(阳极)5. 电解质溶液的导电机理正、负离子的定向移动以及在电极溶液界面上发生化学反应而实现。
物理化学课件第七章_电化学

§7.2 电解质溶液的电导
一、电导G、电导率 、摩尔电导率m
二、电导的测定: 电阻R电导G 电导率 三、电导率和摩尔电导率随浓度的变化 四、离子独立运动定律
17
一、电导G、电导率 、摩尔电导率m
电阻:R=U/I(欧姆定律) 电阻率: = R(A / l) 单位: m
对于弱电解质:
m:全部电离,离子间无作用力
m :部分电离,离子间有作用力
若电离度比较小,离子浓度比较低,则相互作用力可
忽略,导电能力全部决定于电离度。
= m / m
31
电离度
= m / m
M + A c c
(1-1价型) MA 平衡时: c(1 - )
(c ) 2 Kc c(1 )
15
解
1.20 g 1 (1) Q nzF 3 96500 C mol 197.0 g mol-1 = 1763 C
(2) t Q 1763 C 7.05104 s I 0.025 A
(3) n(O2 ) 3 n(Au) 4 1.20 g 3 mol = 3 4.57 10 4 197.0 g mol1
⒊ 电化学分析 ⒋ 生物电化学
2
电
化
学
(一)电解质溶液 ☆ (二)可逆电池电动势 ☆ (三)不可逆电极过程
3
§7.1 离子的迁移
1.电解质溶液的导电机理
能够导电的物质称为导体。 第一类导体:金属——靠自由电子的迁移导电。 第二类导体:电解质溶液,熔融电解质,固体电解 质——靠离子的迁移导电。 电解质溶液的连续导电过程必须在电化学装置中 实现,而且总是伴随着电化学反应及化学能和电能 相互转换发生。
物理化学电子课件第七章电化学基础
第二节 电解质溶液
六、电导测定的应用
2. 难溶盐或微溶盐在水中的溶解度很小,很难用普通的滴定方法测 定出来,但是可以用电导的方法测定。用一已预先测定了电导率的高 纯水,配置待测微溶或难溶盐的饱和溶液,测定此饱和溶液的电导率 κ,则测出值为盐和水的电导率之和,故
第二节 电解质溶液
3. 在科学研究及生产过程中,经常需要纯度很高的水。例如,半导 体器件的生产和加工过程,清洗用水若含有杂质会严重影响产品质量 甚至变为废品。
第二节 电解质溶液
表7-2 25 ℃时几种浓度KCl水溶液的电导率
第二节 电解质溶液
四、摩尔电导率与浓度的关系
科尔劳施 (Kolrausch)对电解质溶液的摩尔电导率进行了深入的 研究,根据实验结果得出结论:在很稀的溶液中,强电解质的摩尔电 导率Λm与其浓度c的平方根呈直线关系,即科尔劳施经验式:
第七章 电化学基础
第一节 电化学的基本概念 第二节 电解质溶液第三节 可逆电池及原电池热力学 第四节 电极电势 第五节 不可逆电极过程 第六节 电化学的基本应用
第一节电化学的基本概念
一、电解池与原电池
电化学的根本任务是揭示化学能与电能相互转换的规律,实现这 种转换的特殊装置称为电化学反应器,分为电解池和原电池两类。电 解池是将电能转化为化学能的装置,而原电池是将化学能转化为电能
第三节 可逆电池及原电池热力学
四、可逆电池的热力学 1.可逆电池的电动势E与电池反应的摩尔反应吉布斯函数ΔrGm的关
在恒温、恒压且电池可逆放电过程中,系统吉布斯函数的变化量等 于系统与环境间交换的可逆电功,即等于电池的电动势E与电量Q的乘积。 根据法拉第定律,每摩尔电池反应的电量为zF,故
第三节 可逆电池及原电池热力学
第7章-电化学基础
标准电极电势的测定
例5 简述测定Pt | Fe3+(1.0), Fe2+(1.0)的标准电极电势的方法及结果。 解 将Pt | Fe3+(1.0), Fe2+(1.0)与标准氢电极组成电池。从实验电流的方向确定此待测电极为正极,标准氢电极为负极。 测得电动势为0.771V,则 EΘ= E+Θ - E- Θ = EΘFe3+ /Fe2+ - EΘH+/H2
2.电极反应
任何氧化还原反应都可拆分为两个氧化还原电对的半反应(半电池反应,电极反应): Fe3+ + e → Fe2+ Sn2+ → Sn4+ + 2e 氧化-还原反应的实质: 两个共轭电对之间的电子转移反应。
3.电对拆分:
2MnO4-+5H2C2O4 + 6H+ → 2Mn2+ + 10CO2 + 8H2O MnO4- + 8H+ + 5e → Mn2+ + 4H2O ① H2C2O4 → 2CO2 + 2H+ + 2e ② MnO4- / Mn2+; CO2 /H2C2O4
例1 用离子-电子法配平下列氧化还原反应: K2Cr2O7 + KI + H2SO4 →K2SO4 + Cr2(SO4)3+I2+H2O 解:先写成离子反应式: Cr2O72- + I- + H+→ Cr3+ + I2 + H2O 将离子反应式分成两个半反应: I- → I2(电对:I2 /I- ) Cr2O72- + H+ → Cr3+ + H2O(电对:Cr2O72- /Cr3+) 分别配平两个半反应: 2I- = I2 + 2e Cr2O72- + 14 H+ + 6e = 2Cr3+ +7 H2O
第七章氧化还原反应与电化学
B cB RT pA p*A xA Tb K b mB Tf K f mB
一.电解质溶液的导电机理
1.导体的分类
电子导体 离子导体 混合导体
两类导体的比较
第一类导体(电子导体) 如金属、石墨等
第二类导体(离子导体) 如电解质溶液、熔融电解质等
A.自由电子作定向移动而导电 A.正、负离子定向移动而导电 B.导电过程中导体本身不发 B.导电过程中一般有化学反应发生 生变化
E电 极
E电0 极
0.0592 z
lg
[氧 化 态] [还 原 态]
ECo3 /Co2
E0 Co3 /Co2
0.0592
lg
[Co [Co
3 2
] ]
E1,Co3/Co2 1.74V E2,Co3/Co2 1.92V
1.80V
含氧酸盐的E与酸度的关系
例:
Cr2O
Zn+CuSO4 ⇌ Cu+ZnSO4
E<E外充电
Zn|H2SO4|Cu不是可逆电池
E>E外:Zn+2H+→Zn2++H2 E<E外:Cu+2H+ →Cu2++H2
2.可逆电极
Zn
Cu
①金属-金属离子电极
ZnSO4 溶液
CuSO4 溶液
②非金属电极:气体-离子电极 ③微溶盐或微溶氧化物电极 ④氧化—还原电极 Fe3+/Fe2+
状态时的电极电势
E E E
EO
E
O
E
O
H
电化学
负离子传输的电荷量 Q t 总电荷量Q
t t 1
由于正、负离子迁移的速率不同,所带的电荷不 等,因此它们在迁移电量时所分担的分数也不同。
溶液中离子的浓度为c+, c-,离子迁移速率u+, u单位时间内通过溶液某一截面的电量为Q=Q++Q-
③类型:
银电量计、铜电量计、气体电量计等。
以电极上析出(固体或气体)或溶解的物质的量测 定电量。如:铜电量计,银电量计和气体电量计。 例:阴极上析出0.4025g银,则通过的电量为: Q=nF=(0.4025/109) ×96500=356.3C 阴极上析出0.2016g铜,则通过的电量为: Q=nF=(0.2016/63.5) ×2 96500=612.7C
现在离子都是一价的,则离子运输电荷的 数量只取决于离子迁移的速度。
r r ,则导电任 1)设正、负离子迁移的速率相等, 务各分担2 mol,在假想的AA,BB平面上各有2 mol正、 负离子逆向通过。
当通电结 束,阴、阳两 极部溶液浓度 相同,但比原 溶液各少了 2 mol 而中部溶液浓度不变。
= 96485.309 C . mol-1 ≈ 96485 C . mol-1 ≈ 96500 C.mol-1
(2)例:
1 摩尔电子通过 AgNO3 1 mol Ag+ → Ag 107.868 g Ag↓
1 摩尔电子通过 CuSO4
1 / 2 mol Cu2+ → Cu 63.546 / 2 = 31.773 g Cu↓
AgNO3 KNO3
NaAc
0.465 0.508
0.544
0.465 0.509
0.555
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章电化学7.1用铂电极电解溶液。
通过的电流为20A,经过15min后,问:(1)在阴极上能析出多少质量的?(2)在的27ØC,100kPa下的?解:电极反应为电极反应的反应进度为因此:7.2在电路中串联着两个电量计,一为氢电量计,另一为银电量计。
当电路中通电1h后,在氢电量计中收集到19ØC、99.19kPa的;在银电量计中沉积。
用两个电量计的数据计算电路中通过的电流为多少。
解:两个电量计的阴极反应分别为电量计中电极反应的反应进度为对银电量计对氢电量计7.3用银电极电解溶液。
通电一定时间后,测知在阴极上析出的,并知阴极区溶液中的总量减少了。
求溶液中的和。
解:解该类问题主要依据电极区的物料守恒(溶液是电中性的)。
显然阴极区溶液中的总量的改变等于阴极析出银的量与从阳极迁移来的银的量之差:7.4用银电极电解水溶液。
电解前每溶液中含。
阳极溶解下来的银与溶液中的反应生成,其反应可表示为总反应为通电一定时间后,测得银电量计中沉积了,并测知阳极区溶液重,其中含。
试计算溶液中的和。
解:先计算是方便的。
注意到电解前后阳极区中水的量不变,量的改变为该量由两部分组成(1)与阳极溶解的生成,(2)从阴极迁移到阳极7.5用铜电极电解水溶液。
电解前每溶液中含。
通电一定时间后,测得银电量计中析出,并测知阳极区溶液重,其中含。
试计算溶液中的和。
解:同7.4。
电解前后量的改变从铜电极溶解的的量为从阳极区迁移出去的的量为因此,7.6在一个细管中,于的溶液的上面放入的溶液,使它们之间有一个明显的界面。
令的电流直上而下通过该管,界面不断向下移动,并且一直是很清晰的。
以后,界面在管内向下移动的距离相当于的溶液在管中所占的长度。
计算在实验温度25ØC下,溶液中的和。
解:此为用界面移动法测量离子迁移数7.7已知25ØC时溶液的电导率为。
一电导池中充以此溶液,在25ØC时测得其电阻为。
在同一电导池中装入同样体积的质量浓度为的溶液,测得电阻为。
计算(1)电导池系数;(2)溶液的电导率;(3)溶液的摩尔电导率。
解:(1)电导池系数为(2)溶液的电导率(3)溶液的摩尔电导率7.8已知25ØC时溶液的电导率为。
一电导池中充以此溶液,在25ØC时测得其电阻为。
在同一电导池中装入同样体积的浓度分别为,,和的溶液,测出其电阻分别为,,和。
试用外推法求无限稀释时的摩尔电导率。
解:的摩尔电导率为造表如下作图如下无限稀释时的摩尔电导率:根据Kohlrausch方程拟和得到7.9已知25ØC时,。
试计算及。
解:离子的无限稀释电导率和电迁移数有以下关系7.10已知25ØC时溶液的电导率为。
计算的解离度及解离常熟。
所需离子摩尔电导率的数据见表7.3.2。
解:的解离反应为查表知因此,7.1125ØC时将电导率为的溶液装入一电导池中,测得其电阻为。
在同一电导池中装入的溶液,测得电阻为。
利用表7.3.2中的数据计算的解离度及解离常熟。
解:查表知无限稀释摩尔电导率为因此,7.12已知25ØC时水的离子积,、和的分别等于,和。
求25ØC时纯水的电导率。
解:水的无限稀释摩尔电导率为纯水的电导率7.13已知25ØC时的溶度积。
利用表7.3.2中的数据计算25ØC时用绝对纯的水配制的饱和水溶液的电导率,计算时要考虑水的电导率(参见题7.12)。
解:查表知的无限稀释摩尔电导率为饱和水溶液中的浓度为因此,7.14已知25ØC时某碳酸水溶液的电导率为,配制此溶液的水的电导率为。
假定只考虑的一级电离,且已知其解离常数,又25ØC无限稀释时离子的摩尔电导率为,。
试计算此碳酸溶液的浓度。
解:由于只考虑一级电离,此处碳酸可看作一元酸,因此,7.15试计算下列各溶液的离子强度:(1);(2);(3)。
解:根据离子强度的定义7.16应用德拜-休克尔极限公式计算25ØC时溶液中、和。
解:离子强度7.17应用德拜-休克尔极限公式计算25ØC时下列各溶液中的:(1);(2)。
解:根据Debye-Hücke l极限公式,25ØC水溶液中7.1825ØC时碘酸钡在纯水中的溶解度为。
假定可以应用德拜-休克尔极限公式,试计算该盐在中溶液中的溶解度。
解:先利用25ØC时碘酸钡在纯水中的溶解度求该温度下其溶度积。
由于是稀溶液可近似看作,因此,离子强度为设在中溶液中的溶解度为,则整理得到采用迭代法求解该方程得所以在中溶液中的溶解度为7.19电池在25ØC时电动势为,电动势的温度系数为。
(1)写出电池反应;(2)计算25ØC时该反应的,以及电池恒温可逆放电时该反应过程的。
解:电池反应为该反应的各热力学函数变化为7.20电池电动势与温度的关系为(1)写出电池反应;(2)计算25ØC时该反应的以及电池恒温可逆放电时该反应过程的。
解:(1)电池反应为(2)25ØC时因此,7.21电池的电池反应为已知25ØC时,此电池反应的,各物质的规定熵分别为:;;;。
试计算25ØC时电池的电动势及电动势的温度系数。
解:该电池反应的各热力学函数变化为因此,7.22在电池中,进行如下两个电池反应:应用表7.7.1的数据计算两个电池反应的。
解:电池的电动势与电池反应的计量式无关,因此7.23氨可以作为燃料电池的燃料,其电极反应及电池反应分别为试利用物质的标准摩尔生成Gibbs函数,计算该电池在25ØC时的标准电动势。
解:查表知各物质的标准摩尔生成Gibbs函数为电池反应的标准摩尔Gibbs函数为7.24写出下列各电池的电池反应,并写出以活度表示的电动势公式。
解:(1)(2)7.25写出下列各电池的电池反应,应用表7.7.1的数据计算25ØC时各电池的电动势及各电池反应的摩尔Gibbs函数变,并指明各电池反应能否自发进行。
解:(1),反应可自发进行。
(2),反应可自发进行。
7.26写出下列各电池的电池反应。
应用表7.7.1的数据计算25ØC时各电池的电动势、各电池反应的摩尔Gibbs函数变及标准平衡常数,并指明的电池反应能否自发进行。
解:(1)电池反应根据Nernst方程(2)电池反应(3)电池反应7.27写出下列各电池的电池反应和电动势的计算式。
解:该电池为浓差电池,其电池反应为因此,7.28写出下列电池的电池反应。
计算25ºC时的电动势,并指明反应能否自发进行。
(X表示卤素)。
解:该电池为浓差电池(电解质溶液),电池反应为根据Nernst方程,由于,该电池反应可以自发进行。
7.29应用表7.4.1的数据计算下列电池在25ØC时的电动势。
解:该电池为浓差电池,电池反应为查表知,7.30电池在25ØC 时电动势为,试计算HCl溶液中HCl的平均离子活度因子。
解:该电池的电池反应为根据Nernst方程7.31浓差电池,其中,已知在两液体接界处Cd2+离子的迁移数的平均值为。
1.写出电池反应;2.计算25ºC时液体接界电势E(液界)及电池电动势E。
解:电池反应由7.7.6式电池电动势7.32为了确定亚汞离子在水溶液中是以Hg+还是以形式存在,涉及了如下电池测得在18ºC时的E=29mV,求亚汞离子的形式。
解:设硝酸亚汞的存在形式为,则电池反应为电池电动势为作为估算,可以取,。
所以硝酸亚汞的存在形式为。
7.33与生成配离子,其通式可表示为,其中为正整数。
为了研究在约的硫代硫酸盐溶液中配离子的形式,在16ØC时对如下两电池测得求配离子的形式,设溶液中主要形成一种配离子。
解:(略)7.34电池在25ØC时测得电池电动势,试计算待测溶液的pH。
解:电极及电池反应为查表知(表7.8.1),在所给条件下甘汞电极的电极电势为,则:7.35电池在25ºC,当某溶液为pH= 3.98的缓冲溶液时,测得电池的电动势;当某溶液换成待测pH的溶液时,测得电池的电动势。
试计算待测溶液的pH。
解:电池反应根据Nernst方程,电池电动势为设在两种情况下H2O的活度相同,则7.36将下列反应设计成原电池,并应用表7.7.1的数据计算25ºC时电池反应的解:(1)(2)(3)7.37(1)应用表7.7.1的数据计算反应在25ºC时的平衡常数。
(2)将适量的银粉加入到浓度为的溶液中,计算平衡时Ag+的浓度(假设各离子的活度因子均等于1)。
解:(1)设计电池(2)设平衡时Fe2+的浓度为x,则因此,,解此二次方程得到。
7.38(1)试利用水的摩尔生成Gibbs函数计算在25ºC于氢-氧燃料电池中进行下列反应时电池的电动势。
(2)应用表7.7.1的数据计算上述电池的电动势。
(3)已知,计算25ºC时上述电池电动势的温度系数。
解:(1)查表知,因此,(2)设计电池(3)7.39已知25ºC时,。
试计算应25ºC时电极的标准电极电势。
解:上述各电极的电极反应分别为显然,,因此,7.40已知25ºC时AgBr的溶度积,,。
试计算25ºC时(1)银-溴化银电极的标准电极电势;(2)的标准生成吉布斯函数。
解:(1)设计电池,电池反应为根据Nernst方程沉淀反应平衡时,所以(2)设计电池,电池反应为该反应为的生成反应,7.4125ºC时用铂电极电解的。
(1)计算理论分解电压;(2)若两电极面积均为,电解液电阻为,和的超电势与电流密度的关系分别为问当通过的电流为1mA时,外加电压为若干。
解:(1)电解溶液将形成电池,该电池的电动势1.229V即为的理论分解电压。
(2)计算得到和的超电势分别为电解质溶液电压降:10-3x100=0.1V因此外加电压为:。