人教版2018年 九年级数学上册 二次函数abc符号问题 培优练习(含答案)
人教版九年级(上)数学 第二十二章 二次函数 培优测试卷(附答案)

二次函数培优测试卷一.选择题1.下列函数中,一定是二次函数的是()A.y=﹣x2+1 B.y=ax2+bx+c C.y=2x+3 D.y=2.抛物线y=4(x+3)2+12的顶点坐标是()A.(4,12)B.(3,12)C.(﹣3,12)D.(﹣3,﹣12)3.关于抛物线y1=(2+x)2与y2=(2﹣x)2的说法,不正确的是()A.y1与y2的顶点关于y轴对称B.y1与y2的图象关于y轴对称C.y1向右平移4个单位可得到y2的图象D.y1绕原点旋转180°可得到y2的图象4.抛物线y=ax2+bx+c与x轴的交点是(﹣4,0),(6,0),则抛物线的对称轴是()A.1 B.直线x=1 C.2 D.直线x=25.二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一直角坐标系中的图象大致是()A.B.C.D.6.二次函数y=x2+bx+c的图象向左平移2个单位,再向上平移3个单位,得到函数解析y =x2﹣2x+1,则b与c分别等于()A.2,﹣2 B.﹣8,14 C.﹣6,6 D.﹣8,187.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t﹣5t2,当小球达到最高点时,小球的运动时间为()A.1秒B.2秒C.4秒D.20秒8.若函数y=(a﹣3)x2﹣2ax+a﹣与x轴有交点,且关于x的不等式组无解,则符合条件的整数a的和为()A.7 B.10 C.12 D.159.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①abc>0;②4a+b=0;③9a+c>3b;④5a+2c>0,其中正确的结论有()A.1个B.2个C.3个D.4个10.知:如图抛物线y=ax2+bx+与y轴交于点A,与x轴交于点B、点C.连接AB,以AB为边向右作平行四边形ABDE,点E落在抛物线上,点D落在x轴上,若抛物线的对称轴恰好经过点D,且∠ABD=60°,则这条抛物线的解析式为()A.y=﹣x2xB.y=﹣x2xC.y=﹣x2xD.y=﹣x2﹣xE.故函数的表达式为:y=﹣x2x二.填空题(共6小题)11.抛物线y=x2﹣2x,当y随x的增大而减小时x的取值范围为.12.某种火箭背向上发射时,它的高度h(m)与时间t(s)的关系可以用公式h=﹣5t2+160t+10表示.经过s,火箭到达它的最高点.13.已知点P(x,y)在抛物线y=(x﹣1)2+2的图象上,若﹣1<x<2,则y的取值范围是.14.若二次函数y=x2﹣2x+k的部分图象如图所示,则关于x的一元二次方程x2﹣2x+k=0的解一个为x1=3,则方程x2﹣2x+k=0另一个解x2=.15.开口向下的抛物线y=a(x+1)(x﹣3)与x轴交于A、B两点,当抛物线与x轴围成的封闭区域(不包含边界)内,仅有4个整数点(整数点就是横、纵坐标均为整数的点)时,a的取值范围是.16.将二次函数y=2x2向上平移1个单位,得到的抛物线的解析式是.三.解答题17.在平面直角坐标系xOy中,二次函数y=mx2﹣(2m+1)x+m﹣4的图象与x轴有两个公共点,m取满足条件的最小的整数(1)求此二次函数的解析式(2)当n≤x≤1时,函数值y的取值范围是﹣5≤y≤1﹣n,求n的值=ax2+bx+c,它与y轴交于C(0,4),与x轴交于A(﹣1,0)、B(k,0),18.若抛物线上y1P是抛物线上B、C之间的一点.(1)当k=4时,求抛物线的方程,并求出当△BPC面积最大时的P的横坐标;(2)当a=1时,求抛物线的方程及B的坐标,并求当△BPC面积最大时P的横坐标;(3)根据(1)、(2)推断P的横坐标与B的横坐标有何关系?19.已知二次函数y=x2﹣2ax+4a+2.(1)若该函数与x轴的一个交点为(﹣1,0),求a的值及该函数与x轴的另一交点坐标;(2)不论a取何实数,该函数总经过一个定点,①求出这个定点坐标;②证明这个定点就是所有抛物线顶点中纵坐标最大的点.20.施工队要修建一个横断面为抛物线的公路隧道,其高度为8米,宽度OM为16米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A.D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.21.血橙以果肉酷似鲜血的颜色而得名,果实一般在1月下旬成熟,由于果农在生产实践中积累了丰富的经验,采取了留树保鲜技术措施,将鲜果供应期拉长到了5月初.重庆市万州区孙家村晚熟柑橘以血橙为主,主要销售市场是成都、重庆市区、万州城区,据以往经验,孙家村上半年1﹣5月血橙的售价y(元/千克)与月份x之间满足一次函数关系y=x+2.5(1≤x≤5,且x是整数).其销售量P(千克)与月份x之间的函数关系如图.(1)请你求出月销售量P(千克)与月份x之间的函数关系式(不必写出自变量的取值范围);(2)血橙在上半年1﹣5月的哪个月出售,可使销售金额W(元)最大?最大金额是多少(3)由于气候适宜以及留树保鲜技术的提高,预计该产区今年5月将收获60000千克的血橙,由于人力、物力等各方面成本的增加,孙家村决定,将5月的销售价格提高a%,当以提高后的价格销售50000千克血橙后,由于保存技术的限制,剩下的血橙制成一种新型研发出的果肉饼进行销售,每千克的血橙可生产0.8千克果肉饼,果肉饼的售价格在血橙提高后的价格的基础上将再提高a%,最后该产区将这批果肉饼全部售完后,血橙和果肉饼的销售总金额达到了480000元.求a的值.22.在平面直角坐标系xOy 中,O 为坐标原点,线段AB 的两个端点A (0,2),B (1,0),分别在y 轴和x 轴的正半轴上,点C 为线段AB 的中点,现将线段BA 绕点B 按顺时针方向旋转90°得到线段BD ,抛物线y =ax 2+bx +c (a ≠0)经过点D .(1)求点D 的坐标.(2)如图1,若该抛物线经过原点O ,且a =﹣.①求该抛物线的解析式;②连结CD .问:在抛物线上是否存在点P ,使得∠POB 与∠BCD 互余?若存在,请求出所有满足条件的点P 的坐标;若不存在,请说明理由;(3)如图2,若该抛物线y =ax 2+bx +c (a ≠0)经过点E (1,1),点Q 在抛物线上,且满足∠QOB 与∠BCD 互余.若符合条件的Q 点的个数是4个,请直接写出a 的取值范围.23.如图1.已知直线l :y =﹣1和抛物线L :y =ax 2+bx +c (a ≠0),抛物线L 的顶点为原点,且经过点A (2,)直线y =kx +1与y 轴交于点F ,与抛线L 交于点B (x 1,y 1),C (x 2,y 2),且x 1<x 2.(1)求抛物线L 的解析式;(2)求证:无论k 为何值,直线l 总是与以BC 为直径的圆相切;(3)①如图2,点P 是抛物线L 上的一个动点,过点P 作PM ⊥l 于点M ,试判断PM 与PF 之间的数量关系,并说明理由;②将抛物线L 和点F 都向右平移2个单位后,得到抛物线L 1和点F 1,Q 是抛物线L 1上的一动点,且点Q在L的对称轴的右侧,过点Q作QN⊥l于点N,连接QA.求|QA﹣QN|的1最大值,并直接写出此时点Q的坐标.参考答案一.选择题1.解:A 、是二次函数,故本选项符合题意;B 、当a =0时,函数不是二次函数,故本选项不符合题意;C 、不是二次函数,故本选项不符合题意;D 、不是二次函数,故本选项不符合题意;故选:A .2.解:∵抛物线y =4(x +3)2+12,∴该抛物线的顶点坐标为(﹣3,12),故选:C .3.解:∵抛物线y 1=(2+x )2=(x +2)2,∴抛物线y 1的开口向上,顶点为(﹣2,0),对称轴为直线x =﹣2;抛物线y 2=(2﹣x )2=(x ﹣2)2,∴抛物线y 2的开口向上,顶点为(2,0),对称轴为直线x =2;∴y 1与y 2的顶点关于y 轴对称,∴它们的对称轴相同,y 1与y 2的图象关于y 轴对称,y 1向右平移4个单位可得到y 2的图象,∵y 1绕原点旋转180°得到的抛物线为y =﹣(x +2)2,与y 2开口方向不同, ∴关于抛物线y 1=(2+x )2与y 2=(2﹣x )2的说法,不正确的是D ,故选:D .4.解:∵抛物线与x轴的交点为(﹣4,0),(6,0),∴两交点关于抛物线的对称轴对称,则此抛物线的对称轴是直线x==1,即x=1.故选:B.5.解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,排除B、C;当a>0时,二次函数开口向上,一次函数经过一、三象限,排除D;当a<0时,二次函数开口向下,一次函数经过二、四象限,A正确;故选:A.6.解:∵得到函数解析y=x2﹣2x+1∴y=(x﹣1)2∴将新二次函数y=(x﹣1)2向下平移3个单位,再向右平移2个单位,得到的解析式为y=(x﹣1﹣2)2﹣3,即y=x2﹣6x+6又∵y=x2+bx+c∴b=﹣6,c=6故选:C.7.解:∵h=20t﹣5t2=﹣5t2+20t中,又∵﹣5<0,∴抛物线开口向下,有最高点,此时,t=﹣=2.故选:B.8.解:当a﹣3≠0且△=4a2﹣4×(a﹣3)(a﹣)≥0,解得a>且a≠3,当a﹣3=0,函数为一次函数,它与x轴有一个交点,所以a>,解两个不等式得,因为不等式组无解,所以a≤5,所以a的范围为<a≤5,所以满足条件的a的值为0,1,2,3,4,5所以所有满足条件的整数a之和为0+1+2+3+4+5=15.故选:D.9.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a>0,∵抛物线与x轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣4a,∴4a+b=0,所以②正确;∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,所以③错误;把(﹣1,0)代入解析式得a﹣b+c=0,而b=﹣4a,∴c=﹣5a,∴5a+2c=5a﹣10a=﹣5a>0,所以④正确.故选:B.10.解:如下图所示,OA=,∠ABD=60°,则OB==1,过点B(﹣1,0),∵四边形ABDE平行四边形,则∠AED=∠ABD=60°,OH=OA=,同理可得:HE=1=AH,过点E(2,),将点B、E的坐标代入函数表达式得:,解得:,故函数的表达式为:y=﹣x2x故选:B.二.填空题11.解:∵抛物线y=x2﹣2x=(x﹣1)2﹣1,∴当y随x的增大而减小时x的取值范围为x<1,故答案为:x<1.12.解:函数的对称轴为:t=﹣=﹣=16,即经过16s,火箭到达它的最高点,故答案为16.13.解:∵抛物线y=(x﹣1)2+2,∴该函数开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵点P(x,y)在抛物线y=(x﹣1)2+2的图象上,﹣1<x<2,1﹣(﹣1)=2,2﹣1=1,∴当x=1时,y取得最小值,此时y=2,当x=﹣1时,y取得最大值,此时y=(﹣1﹣1)2+2=6,∴﹣1<x<2,则y的取值范围是2≤y≤6,故答案为:2≤y≤6.=3,14.解:∵关于x的一元二次方程x2﹣2x+k=0的解一个为x1∴二次函数y=x2﹣2x+k与x轴的一个交点坐标为(3,0),∵抛物线的对称轴为直线x=1,∴二次函数y=x2﹣2x+k与x轴的另一个交点坐标为(﹣1,0),=﹣1.∴方程x2﹣2x+k=0另一个解x2故答案为﹣1.15.解:∵y=a(x+1)(x﹣3)=a(x﹣1)2﹣4a,∴顶点P的坐标为(1,﹣4a).当x=0时,y=a(x+1)(x﹣3)=﹣3a,∴抛物线与y轴的交点坐标为(0,﹣3a).则,解得:﹣≤a<﹣,故答案为:﹣≤a<﹣.16.解:将抛物线y=2x2向上平移1个单位,得到的抛物线的解析式为y=2x2+1.故答案为:y=2x2+1.三.解答题17.解:(1)∵二次函数y=mx2﹣(2m+1)x+m﹣4的图象与x轴有两个公共点,∴关于x的方程mx2﹣(2m+1)x+m﹣4=0有两个不相等的实数根,∴解得:m >﹣且m ≠0.∵m >且m ≠0,m 取其内的最小整数,∴m =1, ∴二次函数的解析式为y =x 2﹣3x ﹣3;(2)∵抛物线的对称轴为x =﹣=,∵1>0,∴当x ≤时,y 随x 的增大而减小.又∵n ≤x ≤1时,函数值y 的取值范围是﹣5≤y ≤1﹣n ,∴n 2﹣3n ﹣3=1﹣n ,1﹣3﹣3=﹣5,解得:n =1﹣.18.解:(1)k =4时,由交点式得y =a (x +1)(x ﹣4),(0,4)代入得a =﹣1,∴y =﹣3x 2+3x +4,则B (4,0),连OP ,设P (m ,﹣m 2+3m +4),S △BCP =S △OPB +S △OPB ﹣S △OBC ==﹣2(m ﹣2)2+8m =2时,最大值为8,∴P 的横坐标为2时有最大值.(2)a =1时,c =4,设y =x 2+bx +4,A (﹣1,0)代入得b =5,∴y=x2+5x+4.令y=0求得B(﹣4,0),则直线BC方程为y=x+4,过P作PH平行于y轴交直线BC于H,设P(n,n2+5n+4)、H(n,n+4),==﹣2(n+2)2+8n=﹣2面积最大值为8,此时P的横坐标为﹣2.(3)由(1)知,当面积最大时,P的横坐标等于B的横坐标的一半,由(2)知,面积最大时,P的横坐标等于B的横坐标的一半,故:可以推断,当面积最大时,P的横坐标等于B的横坐标的一半.19.解:(1)(﹣1,0)代入得0=1+2a+4a+2,∴,∴y=x2+x,∴另一交点为(0,0).(2)①整理得y=a(4﹣2x)+x2+2,令x=2代入y=6,故定点为(2,6),②∵y=x2﹣2ax+4a+2=(x﹣a)2+(﹣a2+4a+2),顶点为(a,﹣a2+4a+2),而﹣a2+4a+2=﹣(a﹣2)2+6,当a=2时,纵坐标有最大值6,此时x=2,y=6,顶点(2,6),故定点(2,6)是所有顶点中纵坐标最大的点.20.解:(1)抛物线的顶点坐标为(8,8),则其表达式为:y=a(x﹣8)2+8,将点O(0,0)代入上式得:0=64a+8,解得:a=﹣,故函数的表达式为:y=﹣(x﹣8)2+8,(0≤x≤16);(2)双向行车道,正中间是一条宽1米的隔离带,则每个车道宽为7.5米,车沿着隔离带边沿行驶时,车最左侧边沿的x=7.5﹣3.5=4,当x=4时,y=6,即允许的最大高度为6米,5.8<6,故该车辆能通行;(3)点A、D关于函数对称轴对称,则设AD=2m,则点A(8﹣m,y),则AB=y=﹣(x﹣8)2+8=8﹣m2,设:w=AB+AD+DC=2m+2AB=﹣m2+2m+16,∵﹣<0,故w有最大值,当m=4时,w的最大值为20,故AB、AD、DC的长度之和的最大值是20.21.解:(1)设P=kx+b,将(1,70000),(5,50000)代入得:,解得∴P=﹣5000x+75000.(2)∵上半年1﹣5月血橙的售价y(元/千克)与月份x之间满足一次函数关系y=x+2.5(1≤x≤5,且x是整数)∴W=Py=(﹣5000x+75000)(x+2.5)=﹣2500x2+25000x+187500∴当x=﹣=5时,销售金额W(元)最大,最大金额是250000元.(3)设a%=t,5月份的销售价格y=×5+2.5=5由题意得:5(1+t)×50000+(60000﹣50000)×0.8×5(1+t)(1+)=480000 ∴25(1+t)+4(1+t)(1+t)=48∴化简得:6t2+35t﹣19=0∴(2t﹣1)(3t+19)=0∴t=50%或t=﹣(舍)故a=50.22.解:(1)过点D作DF⊥x轴于点F,如图1,∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,∴∠DBF=∠BAO,又∵∠AOB=∠BFD=90°,AB=BD,在△AOB和△BFD中,,∴△AOB≌△BFD(AAS)∴DF=BO=1,BF=AO=2,∴D的坐标是(3,1),(2)①根据题意,得a=﹣,c=0,且a×32+b×3+c=1,解得:b=,∴抛物线的解析式为y=.②∵点A(0,2),B(1,0),点C为线段AB的中点,∴C(,1),∵C、D两点的纵坐标都为1,∴CD∥x轴,∴∠BCD=∠ABO,∴∠BAO与∠BCD互余,要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,),(Ⅰ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图2,则tan∠POB=tan∠BAO,即,∴,=0(舍去),,解得:x1∴,∴点P的坐标为().(Ⅱ)当P在x轴的下方时,过P作PG⊥x轴于点G,如图3,则tan∠POB=tan∠BAO,即,∴,=0(舍去),,解得:x1∴,∴P点坐标为(),综上所述,在抛物线上是否存在点P()或,使得∠POB与∠BCD 互余.(3)如图4,∵D(3,1),E(1,1),抛物线y=ax2+bx+c过点E、D,代入可得,解得,∴y=ax2﹣4ax+3a+1.分两种情况:①当抛物线y=ax2+bx+c开口向下时,若满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个,则点Q在x轴的上、下方各有两个.(i)当点Q在x轴的下方时,直线OQ与抛物线有两个交点,满足条件的Q有2个;(ii)当点Q在x轴的上方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,抛物线y=ax2+bx+c与x轴的交点必须在x轴的正半轴上,与y轴的交点在y轴的负半轴,∴3a+1<0,解得a<﹣;②当抛物线y=ax2+bx+c开口向上时,点Q在x轴的上、下方各有两个,(i)当点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个;(ii)当点Q在x轴的下方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个.根据(2)可知,要使得∠QOB与∠BCD互余,则必须∠QOB=∠BAO,∴,设Q(2a,﹣a)在直线OQ上,设直线OQ的解析式为y=kx,∴k=﹣,则直线OQ的解析式为y=﹣x,要使直线OQ与抛物线y=ax2+bx+c有两个交点,∴方程ax2﹣4ax+3a+1=﹣x有两个不相等的实数根,∴,整理得:,解得:或(舍去),综上所示,a的取值范围为a<﹣或.23.解:(1)抛物线的表达式为:y=ax2,将点A坐标代入上式得:=a(2)2,解得:a=,故抛物线的表达式为:y=x2;(2)将抛物线的表达式与直线y=kx+1联立并整理得:x2﹣4kx﹣4=0,则x1+x2=4k,x1x2=﹣4,则y1+y2=k(x1+x2)+2=4k2+2,则x2﹣x1==4,设直线BC的倾斜角为α,则tanα=k,则cosα=,则BC==4(k2+1),BC=2k2+2,设BC的中点为M(2k,2k2+1),则点M到直线l的距离为:2k2+2,故直线l总是与以BC为直径的圆相切;(3)①设点P(m, m2)、点M(m,﹣1),点F(0,1),则PF2=m2+(m2﹣1)2=(m2+4)2,PM=m2+1=(m2+4)=PF,即:PM与PF之间的数量关系为:PM=PF;②抛物线新抛物线的表达式为:y=(x﹣2)2…①,如图2,设平移后点F的对应点为F′(2,1),由①知:PM=PF,同理QN=QF′,故当A、F′、Q三点共线时,|QA﹣QN|有最大值,|QA﹣QN|的最大值=|QA﹣QF′|=AF′,则AF′==;将点A、F′的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AF′的表达式为:y=x﹣…②,联立①②并解得:x=1或6(舍去1),故点Q(6,4);故:|QA﹣QN|的最大值为,此时点Q的坐标为(6,4).。
人教版数学九年级上册期末培优专项训练:《二次函数》(含答案)

人教版数学九年级上册期末培优专项训练:《二次函数》(含答案)1.如图,在平面直角坐标系中,已知点B的坐标为(﹣1,0),且OA=OC=4OB,抛物线y=ax2+bx+c(a≠0)图象经过A,B,C三点.(1)求A,C两点的坐标;(2)求抛物线的解析式;(3)若点P是直线AC下方的抛物线上的一个动点,作PD⊥AC于点D,当PD的值最大时,求此时点P的坐标及PD的最大值.2.如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.(1)求抛物线的解析式.(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.3.如图①,抛物线y=x2﹣﹣3交轴于A、B两点,交y轴于点C,点D为点C 关于抛物线对称轴的对称点.(1)若点P是抛物线上位于直线AD下方的一个动点,在y轴上有一动点E,x轴上有一动点F,当△PAD的面积最大时,一动点G从点P出发以每秒1个单位的速度沿P→E→F的路径运动到点F,再沿线段FB以每秒2个单位的速度运动到B点后停止,当点F的坐标是多少时,动点G的运动过程中所用的时间最少?(2)如图②,在(1)问的条件下,将抛物线沿直线PB进行平移,点P、B平移后的对应点分别记为点P'、B',请问在y轴上是否存在一动点Q,使得△P'QB'为等腰直角三角形?若存在,请直接写出所有符合条件的Q点坐标;若不存在,请说明理由.4.在平面直角坐标系中,抛物线y=ax2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C,连接AC,BC,将△OBC沿BC所在的直线翻折,得到△DBC,连接OD.(1)用含a的代数式表示点C的坐标.(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.(3)设△OBD的面积为S1,△OAC的面积为S2,若=,求a的值.5.如图,已知二次函数的图象经过点A(4,4)、B(5,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P 的坐标;如果不存在,请说明理由.6.在平面直角坐标系中,抛物线y=mx2﹣2x+n与x轴的两个交点分别为A(﹣3,0),B(1,0),C为顶点.(1)求m、n的值.(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由.7.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式,x满足什么值时y<0?(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.8.如图,抛物线y=﹣x2+bx+c与一条直线相交于A(﹣1,0),C(2,3)两点.(1)求抛物线和直线的解析式;(2)若动点P在抛物线上位于直线AC上方运动,求△APC的面积最大值.9.抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),求抛物线的表达式.10.如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C.(1)求抛物线的顶点坐标;(2)点D为抛物线上一点,是否存在点D使,若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求直线BE的解析式.11.一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.12.抛物线y=﹣x2+2x+3的顶点为D,它与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求顶点D的坐标;(2)求直线BC的解析式;(3)求△BCD的面积;(4)当点P在直线BC上方的抛物线上运动时,△PBC的面积是否存在最大值?若存在,请求出这个最大值,并且写出此时点P的坐标;若不存在,请说明理由.13.已知:抛物线y=x2+4x+4+m的图象与y轴交于点C,点B与点C的纵坐标相同,一次函数y=kx+b的与二次函数交于A、B两点,且A点坐标为(﹣1,0).(1)求二次函数与一次函数的解析式;(2)若抛物线对称轴上存在一点P,使得△PAC的周长最小,求P点坐标及△PAC周长的最小值.14.如图,已知在平面直角坐标系xOy中,顶点为M的抛物线C1:y=ax2+bx(a<0)经过点A和x轴上的点B,AO=OB=2,∠AOB=120°.(1)求该抛物线的表达式;(2)连结AM,求S△AOM;(3)设点F是x轴上一点,如果△MBF与△AOM相似,求所有符合条件的点F的坐标.15.已知:抛物线y=﹣x2+bx+c与x轴交点A(﹣1,0)和点B(3,0),与y轴交于点C,连接AC、BC,点P在抛物线上,当∠BCP=∠ACO时,求点P的坐标.参考答案1.解:(1)OA=OC=4OB=4,故点A、C的坐标分别为(4,0)、(0,﹣4);(2)抛物线的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),即﹣4a=﹣4,解得:a=1,故抛物线的表达式为:y=x2﹣3x﹣4;(3)直线CA过点C,设其函数表达式为:y=kx﹣4,将点A坐标代入上式并解得:k=1,故直线CA的表达式为:y=x﹣4,过点P作y轴的平行线交AC于点H,∵OA=OC=4,∴∠OAC=∠OCA=45°,∵PH∥y轴,∴∠PHD=∠OCA=45°,设点P(x,x2﹣3x﹣4),则点H(x,x﹣4),PD=HP sin∠PFD=(x﹣4﹣x2+3x+4)=﹣x2+2x,∵<0,∴PD有最大值,当x=2时,其最大值为2,此时点P(2,﹣6).2.解:(1)由题可列方程组:,解得:∴抛物线解析式为:y=x2﹣x﹣2;(2)由题,∠AOC=90°,AC=,AB=4,设直线AC的解析式为:y=kx+b,则,解得:,∴直线AC的解析式为:y=﹣2x﹣2;当△AOC∽△AEB时=()2=()2=,∵S△AOC=1,∴S△AEB=,∴AB×|y E|=,AB=4,则y E=﹣,则点E(﹣,﹣);由△AOC∽△AEB得:∴;(3)如图2,连接BF,过点F作FG⊥AC于G,则FG=CF sin∠FCG=CF,∴CF+BF=GF+BF≥BE,当折线段BFG与BE重合时,取得最小值,由(2)可知∠ABE=∠ACO∴BE=AB cos∠ABE=AB cos∠ACO=4×=,|y|=OB tan∠ABE=OB tan∠ACO=3×=,∴当y=﹣时,即点F(0,﹣),CF+BF有最小值为;(4)①当点Q为直角顶点时(如图3):由(3)易得F(0,﹣),∵C(0,﹣2)∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.则Rt△QHM∽Rt△FQM∴QM2=HM•FM,∴12=(2﹣m)(m+),解得:m=,则点Q(1,)或(1,)当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:同理可得:点Q(1,﹣);综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).3.解:(1)y=x2﹣﹣3,令y=0,则x=4或﹣,故点A、B的坐标分别为(﹣,0)、(4,0),点C(0,﹣3)、点D(3,﹣3),将点A、D的坐标代入一次函数表达式:y=kx+b并解得:直线AD的表达式为:y=﹣x﹣,过点作y轴的平行线交AD于点S,设点P(x, x2﹣﹣3),点S(x,﹣x﹣)S△PAD=SP×(x D﹣x A)=2(﹣x﹣﹣x2++3)=﹣x2+3x+,∵﹣<0,∴S△PAD有最大值,当x=﹣=时,函数取得最大值,此时点P(,﹣);作点P关于y轴的对称点P′(﹣,﹣),过点B作与x轴负方向夹角为30°的直线BH,过点P′作PH⊥BH交于点H,P′H于y轴、x轴分别交于点E、F,则此时t最小,∵直线BH与x轴负方向夹角为30°,则FH=BF,t=PE+EF+FB=P′E+EF+FH=P′H,设:直线BH的表达式为:y=﹣x+s,将点B的坐标代入上式并解得:直线BH的表达式为:y=﹣x+4…①,同理可得直线P′H的表达式为:y=x+3﹣…②,则点F(﹣,0),则直线P′H的倾斜角为60°,联立①②并解得:x=,y=,即点H(,)t=P′H=2(x H﹣x P′)=;故点为F(﹣,0)时,t最小();(2)存在,理由:同理可得直线PB的表达式为:y=x﹣6,则tan∠GB′P′==tanα,则cosα=,sinα=,P′B′=PB=,则点B′在点P′右侧的距离为:PB cos∠α=3,同理点B′在点P′上方的距离为:,则设:点P′、B′的坐标分别为:(m, m﹣6),(m+3, m﹣),①当∠B′QP′为直角时,如图(左侧图),过点B′作B′G⊥y轴于点G,∵∠B′QG+∠P′OH=90°,∠B′QG+∠GB′Q=90°,∴∠GB′Q=∠P′OH,∠B′GQ=∠QHP′=90°,QP′=QB′,∴△B′GQ≌△QHP′(AAS),则B′G=OH,GQ=P′H,即: m﹣﹣n=m,m+3=n﹣m+6,解得:m=,n=﹣;同理当直线向下平移时:n=﹣;②当∠QB′P′为直角时,同理可得:m+3﹣m=n﹣m+, m﹣﹣m+6=m+3,解得:m=,n=,同理当直线向下平移时:n=﹣;③当∠QP′B′为直角时,经验证同②重复;综上,点Q的坐标为:(0,﹣)或(0,﹣)或(0,)或(0,﹣).4.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即c=﹣3a,则点C(0,﹣3a);(2)过点B作y轴的平行线BQ,过点D作x轴的平行线交y轴于点P、交BQ于点Q,∵∠CDP+∠PDC=90°,∠PDC+∠QDB=90°,∴∠QDB=∠DCP,设:D(1,n),点C(0,﹣3a),∠CPD=∠BQD=90°,∴△CPD∽△DQB,∴,其中:CP=n+3a,DQ=3﹣1=2,PD=1,BQ=n,CD=﹣3a,BD=3,将以上数值代入比例式并解得:a=±,∵a<0,故a=﹣,故抛物线的表达式为:y=﹣x2+x+;(3)如图2,当点C在x轴上方时,连接OD交BC于点H,则DO⊥BC,过点H、D分别作x轴的垂线交于点N、M,设:OC=m=﹣3a,S1=S△OBD=×OB×DM=DM,S2=S△OAC=×1×m,而=,则DM=,HN=DM==OC,∴BN=BO=,则ON=3﹣=,则DO⊥BC,HN⊥OB,则∠BHN=∠HON,则tan∠BHN=tan∠HON,则HN2=ON×BN==()2,解得:m=±6(舍去负值),CO=|﹣3a|=6,解得:a=﹣2(不合题意值已舍去),故:a=﹣2.当点C在x轴下方时,同理可得:a=2;故:a=﹣2或a=2 5.解:(1)设y=ax(x﹣5),把A点坐标(4,4)代入得:4a(4﹣5)=4,解得a=﹣1,函数的解析式为y=﹣x2+5x,答:二次函数的解析式是y=﹣x2+5x.(2)解:0<m<4,PC=PD﹣CD,∵D(m,0),PD⊥x轴,P在y=﹣x2+5x上,C在直线OA上,A(4,4),∴P(m,﹣m2+5m),C(m,m)∴PC=PD﹣CD=﹣m2+5m﹣m=﹣m2+4m,=﹣(m﹣2)2+4,∵a=﹣1<0,开口向下,∴有最大值,当D(2,0)时,PC max=4,答:当点P在直线OA的上方时,线段PC的最大值是4.(3)当0<m<4时,仅有OC=PC,∴﹣m2+4m=m,解得m=4﹣,∴P(4﹣,2+3);当m≥4时,PC=CD﹣PD=m2﹣4m,OC=m,由勾股定理得:OP2=OD2+DP2=m2+m2(m﹣5)2,①当OC=PC时,m2﹣4m=m,解得:m=4+或m=0(舍去),∴P(4+,2﹣3);②当OC=OP时,( m)2=m2+m2(m﹣5)2,解得:m1=6,m2=4,∵m=4时,P和A重合,即P和C重合,不能组成△POC,∴m=4舍去,∴P(6,﹣6);③当PC=OP时,m2(m﹣4)2=m2+m2(m﹣5)2,解得:m=5,∴P(5,0),答:存在,P的坐标是(4﹣,2+3)或(4+,2﹣3)或(6,﹣6)或(5,0).6.解:(1)把A(﹣3,0),B(1,0)代入y=mx2﹣2x+n得,,解得:;故m的值为﹣1,n的值为3;(2)存在,理由:过C作CE⊥y轴于E,∵抛物线的解析式为y=﹣x2﹣2x+3,∴y=﹣(x+1)2+4,∴C(﹣1,4),∴CE=1,OE=4,设D(0,a),则OD=a,D E=4﹣a,∵△ACD是以AC为斜边的直角三角形,∴∠CDE+∠ADO=90°,∴∠CDE=∠DAO,∴△CDE∽△DAO,∴=,∴=,∴a1=1,a2=3,∴点D的坐标为(0,1)或(0,3).7.解:(1)函数表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),﹣3a=2,解得:a=﹣,抛物线的表达式为:y=﹣x2﹣x+2,当x<﹣3或x>1时,y<0;(2)存在,理由:过点P作平行于y轴的直线交AC于点H,将点A(﹣3,0)、C(0,2)的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AC的表达式为:y=x+2,设点P(x,﹣x2﹣x+2),则点H(x, x+2),△ACP面积S=×PH×OA=×3(﹣x2﹣x+2﹣x﹣2)=﹣x2﹣3x,∵<0,故当x=﹣时,S有最大值,此时点P(﹣,);(3)设点M的坐标为:(m,n),则n=﹣m2﹣m+2,点Q(s,0),点A、C的坐标分别为:(﹣3,0)、(0,2),①当AC是平行四边形的一条边时,点A向右平移3个单位、向上平移2个单位得到C,同样点M(Q)向右平移3个单位、向上平移2个单位得到Q(M),即:m+3=s,n+2=0或m﹣3=s,n﹣2=0,且n=﹣m2﹣m+2,解得:s=2或﹣5;②当AC是平行四边形的对角线时,则m+s=﹣3,n+0=2,且n=﹣m2﹣m+2,解得:s=﹣1,故点Q的坐标为:(﹣1,0)或(﹣5,0)或(2,0)或(2﹣,0).8.解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0),C(2,3),得:,解得:,∴抛物线的函数解析式为y=﹣x2+2x+3.设直线AC的函数解析式为y=mx+n.把A(﹣1,0),C(2,3)代入,得,解得,∴直线AC的函数解析式为y=x+1;(2)如图,过点P作PQ⊥x轴于点H,交AC于点Q,设P(x,﹣x2+2x+3),则Q(x,x+1).∴PQ=﹣x2+2x+3﹣(x+1)=﹣x2+x+2,∴S△APC=S△APQ+S△CPQ=PQ×3=(﹣x2+x+2)=﹣(x﹣)2+,∵﹣<0,∴当x=时,△APC的面积最大,最大值为.9.解:设关系式为y=a(x+3)(x﹣1)把(﹣2,1)代入得:1=a(﹣2+3)(﹣2﹣1)a=﹣∴抛物线的表达式为y=﹣(x+3)(x﹣1),即y=﹣x2﹣x+1.10.解:(1)将点A、B的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+2=﹣(x﹣)2+,故抛物线的顶点坐标为(,);(2)存在,共四个点,令x=0,y=2,则点C(0,2),设点P(m,n),∵,则AB×2=×AB|n|,解得:n=±3,将n=±3代入二次函数表达式得:﹣x2+x+2=±3,解得:x=1或2或﹣2或5,故点D的坐标为:(1,3)或(2,3)或(﹣2,﹣3)或(5,﹣3);(3)过点C作CM⊥BE交BE于点M,过M作MN⊥y轴于点N,过点M作MH⊥x轴于点H,∵∠CBE=45°,∠CNB=90°,∴∠MCB=45°=∠CBM,∴CM=MB,∵∠AMC+∠CMH=90°,∠CMH+∠BMH=90°,∴∠NCM=∠HBM,而∠MNC=∠MHB=90°,∴△NCM≌△HBM(AAS),∴CN=HB=a,MN=MH=b,4﹣a=b,b=a+2,解得:a=1,b=3,故点M(3,3),将点B、M的坐标代入一次函数表达式:y=kx+b并解得:则BM(BE)的解析式为y=﹣3x+12.11.解:(1)由题意得,k+4=2,解得k=﹣2,又∵二次函数顶点为(0,4),∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=﹣2(2)由(1)得二次函数解析式为y=﹣2x2+4,令y=m,得2x2+m﹣4=0∴,设B,C两点的坐标分别为(x1,m)(x2,m),则,∴W=OA2+BC2=∴当m=1时,W取得最小值712.解:(1)函数的对称轴为:x=1,当x=1时,y=﹣1+2+3=4,故点D(1,4);(2)y=﹣x2+2x+3的顶点为D,它与x轴交于A,B两点,与y轴交于点C,则点A、B、C的坐标分别为:(﹣1,0)、(3,0)、(0,3),将点B、C的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线BC的表达式为:y=﹣x+3;(3)过点D作DG∥y轴交BC于点G,则点G(1,2),△BCD的面积=×DG×OB=(4﹣2)×3=3;(4)过点P作y轴的平行线交BC于点H,设点P(x,﹣x2+2x+3),点H(x,﹣x+3),则S△PBC=×PH×OB=(﹣x2+2x+3+x﹣3)=﹣x(x﹣3),∵,∴S△PBC有最大值,最大值为:,此时点P(,).13.解:(1)∵点A(﹣1,0)在抛物线y=x2+4x+4+m上,∴m=﹣1,∴二次函数的解析式为y=x2+4x+3,∴C点的坐标为(0,3),则B点的坐标为(﹣4,3),设直线AB的解析式为y=kx+b,,解得,k=﹣1 b=﹣1,∴直线AB的解析式为:y=﹣x﹣1,即二次函数的解析式为y=x2+4x+3,一次函数的解析式是y=﹣x﹣1;(2)∵二次函数y=x2+4x+3的对称轴为直线x=﹣=﹣2,由题意可知A和B关于对称轴x=﹣2对称,直线AB交直线x=﹣2于P,此时PA+PC 的值最小,即△PAC的周长的值最小,∴把x=﹣2代入y=﹣x﹣1得y=1,∴P(﹣2,1),∵A(﹣1,0),B(﹣4,3),C(0,3),由勾股定理可得AB==3,AC==,∴△PAC周长的最小值为AB+AC=3+.14.解:(1)过点A作AN⊥x轴于点N,∵∠AOB=120°,则∠AON=60°,ON=OA=1,AN=,故点A(﹣1,﹣),将点A、B(2,0)的坐标代入抛物线表达式得:,解得:,故抛物线的表达式为:y=﹣x2+;(2)如上图,连接AM交x轴于点H,将点A、M(1,)的坐标代入一次函数的表达式并解得:直线AM的表达式为:y=x﹣,故OH=,S△AOM=×OH(x M﹣x A)=×2=;(3)由点的坐标知:OA=2,OM=,AM=,MB=,①当∠BMF为钝角时,当△OAM∽△MBF时,则,即:=,解得:BF=;当△OAM∽△MFB时,同理可得:BF=,故点F的坐标为:(,0)或(,0);∵∠MBO=30°,当∠BMF=150°时,∠BFM=0°,三角形不存在了,故点F舍去;②当∠MBF为钝角时,同理可得:点F的坐标为:(4,0)或(,0);综上,点F的坐标为:(4,0)或(,0).15.如图,当点P在BC下方时,∠BCP1=∠ACO时,过点A作AH⊥CP1,由题意知,OA=1,OC=3,∴AC=,∵∠BCP1=∠ACO,∴∠ACH=45°,∴AH=,∵S△ACK=AK•OC=CK•AH,∴==,设AK=,CK=3m,OK=m﹣1,在Rt△COK中,OC2+OK2=CK2,解得m=,∴K(,0),∴直线CK解析式为y=﹣2x+3,∴P1(n,﹣2n+3)∵P1在抛物线y=﹣x2+2x+3上,∴P1(4,﹣5);②当点P在BC上方时,同理可得:P2(,)∴P点坐标为(4,﹣5)或(,).。
九年级数学 二次函数的专项 培优练习题含详细答案

九年级数学 二次函数的专项 培优练习题含详细答案一、二次函数1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标;(2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =. 【解析】【分析】(1)先利用对称轴公式x=2a 12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值.【详解】解:(1)∵2a x 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=.∵2y ax ax 3=-+人最大值为4,∴抛物线过点()1,4.得a 2a 34-+=,解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -.易得直线CD 的方程为y x 3=+.把()P t,0代入,得t 3=-.∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩ 设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-. ∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=. 当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点. 所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=. ()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】 本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.2.如图,抛物线y =ax 2+bx (a ≠0)过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H .(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积;(3)点P 是抛物线上一动点,且位于第四象限,是否存在这样的点P ,使得△ABP 的面积为△ABC 面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由;(4)若点M 在直线BH 上运动,点N 在x 轴正半轴上运动,当以点C ,M ,N 为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN 的面积.【答案】(1)y =-x 2+4x ;(2)C (3,3),面积为3;(3)P 的坐标为(5,-5);(4)52或5. 【解析】 试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C 的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P 所处象限的特点即可求;(4)分情况进行讨论,确定点M 、N ,然后三角形的面积公式即可求.试题解析:(1)将A (4,0),B (1,3)代入到y =ax 2+bx 中,得16403a b a b +=⎧⎨+=⎩ ,解得14a b =-⎧⎨=⎩ , ∴抛物线的表达式为y =-x 2+4x .(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.3.二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n >0且n为整数),与y轴交于C点.(1)若a=1,①求二次函数关系式;②求△ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.4.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH ⊥OB 于H ,∴∠DHB=∠AOB=90°,∴DH ∥AO ,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE ∥x 轴、PD ⊥x 轴,∴∠DPE=90°,若△PDE 为等腰直角三角形,则∠EDP=45°,∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4,即点P (4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.5.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y1 3 =x2﹣3;(3)M的坐标为(33,6)或(3,﹣2).【解析】【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【详解】(1)将C(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:390ba b=-⎧⎨+=⎩,解得:133ab⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y13=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°3=设DC为y=kx﹣33,0),可得:k3=联立两个方程可得:233133y xy x⎧=-⎪⎨=-⎪⎩,解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩,, 所以M 1(33,6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=33,设EC 为y =kx ﹣3,代入(33,0)可得:k 33=, 联立两个方程可得:233133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩,, 所以M 2(3,﹣2).综上所述M 的坐标为(33,6)或(3,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.6.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。
人教版九年级数学上册第二十二章 《二次函数》培优训练题(含答案)

人教版九年级数学上册第二十二章《二次函数》培优训练题(含答案)一.选择题1.在同一坐标系内,函数y=kx2和y=kx+2(k≠0)的图象大致如图()A.B.C.D.2.抛物线y=x2的图象向左平移3个单位,所得抛物线的解析式为()A.y=x2﹣3 B.y=(x﹣3)2C.y=x2+3 D.y=(x+3)23.对于二次函数y=3(x﹣2)2+1的图象,下列说法正确的是()A.顶点坐标是(2,1)B.对称轴是直线x=﹣2C.开口向下D.与x轴有两个交点4.已知二次函数y=ax2﹣4ax+4,当x分别取x1、x2两个不同的值时,函数值相等,则当x取x1+x2时,y的值为()A.6 B.5 C.4 D.35.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m6.某商场降价销售一批名牌衬衫,已知所获利利y(元)与降价金额x(元)之间满足函数关系式y=﹣2x2+60x+800,则获利最多为()A.15元B.400元C.800元D.1250元7.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b8.已知二次函数y=mx2﹣3mx﹣4m(m≠0)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C 且∠ACB=90°,则m的值为()A.±2 B.±4 C.±D.±9.抛物线y=ax2+bx+c的顶点D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确的结论是()A.③④B.②④C.②③D.①④二.填空题 10.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为 . 11.若抛物线y =a (x ﹣h )2+k 经过(﹣1,0)和(5,0)两点,则关于x 的一元二次方程a (x +h ﹣2)2+k =0的解为 .12.抛物线经过原点O ,还经过A (2,m ),B (4,m ),若△AOB 的面积为4,则抛物线的解析式为 . 13.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 达到警戒水位时,水面CD 的宽是10m .如果水位以0.25m /h 的速度上涨,那么达到警戒水位后,再过 h 水位达到桥拱最高点O .14.如图,抛物线解析式为y =x 2,点A 1的坐标为(1,1),连接OA 1;过A 1作A 1B 1⊥OA 1,分别交y 轴、抛物线于点P 1、B 1;过B 1作B 1A 2⊥A 1B 1分别交y 轴、抛物线于点P 2、A 2;过A 2作A 2B 2⊥B 1A 2,分别交y 轴、抛物线于点P 3、B 2…;则点P n 的坐标是 .三.解答题16.已知抛物线G :y =mx 2﹣2mx ﹣3有最低点P .(1)求二次函数y =mx 2﹣2mx ﹣3的最小值(用含m 的式子表示);(2)若点P 关于坐标系原点O 的对称点仍然在抛物线上,求此时m 的值;(3)将抛物线G 向右平移m 个单位得到抛物线G 1.经过探究发现,随着m 的变化,抛物线G 1顶点的纵坐标y 与横坐标x 之间存在一个函数关系,求这个函数关系式,并写出自变量x 的取值范围.17.“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降2元,则每月可多销售10条,设每条裤子的售价为x 元(x 为正整数),每月的销售量为y 条.(1)直接写出y 与x 的函数关系式;(2)设该网店每月获得的利润为w 元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少? (3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生,为了保证捐款后每月利润不低于4175元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?18.在平面直角坐标系中,抛物线y =mx 2﹣4mx +n (m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且S △ABC :S △BCE =3:4.(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上,①求直线CE 的解析式;②求抛物线的解析式.19.如图,二次函数y=ax2+bx+4的图象与坐标轴分别交于A、B、C三点,其中A(﹣3,0),点B在x轴正半轴上,连接AC、BC.点D从点A出发,沿AC向点C移动;同时点E从点O出发,沿x轴向点B移动,它们移动的速度都是每秒1个单位长度,当其中一点到达终点时,另一点随之停止移动,连接DE,设移动时间为ts.(1)若t=3时,△ADE与△ABC相似,求这个二次函数的表达式;(2)若△ADE可以为直角三角形,求a的取值范围.20.某班“数学兴趣小组”对函数y=﹣x2+3|x|+4的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y…﹣6 0 4 6 6 4 6 6 4 0 m…其中,m=.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)直线y=kx+b经过(,),若关于x的方程﹣x2+3|x|+4=kx+b有4个不相等的实数根,则b的取值范围为.参考答案一.选择题1.解:由一次函数解析式为:y=kx+2可知,图象应该与y轴交在正半轴上,故A、B、C错误;D符合题意;故选:D.2.解:∵抛物线y=x2的图象向左平移3个单位,∴平移后的抛物线的顶点坐标为(﹣3,0),∴所得抛物线的解析式为y=(x+3)2.故选:D.3.解:A、顶点坐标是(2,1),说法正确;B、对称轴是直线x=2,故原题说法错误;C、开口向上,故原题说法错误;D、与x轴没有交点,故原题说法错误;故选:A.4.解:∵y=ax2﹣4ax+4=a(x﹣2)2﹣4a+4,当x分别取x1、x2两个不同的值时,函数值相等,∴x1+x2=4,∴当x取x1+x2时,y=a(4﹣2)2﹣4a+4=4,故选:C.5.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.6.解:对于抛物线y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∵a=﹣2<0,∴x=15时,y有最大值,最大值为1250,故选:D.7.解:∵m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,∴二次函数y=﹣(x﹣a)(x﹣b)+1的图象与x轴交于点(m,0)、(n,0),∴将y=﹣(x﹣a)(x﹣b)+1的图象往下平移一个单位可得二次函数y=﹣(x﹣a)(x﹣b)的图象,二次函数y=﹣(x﹣a)(x﹣b)的图象与x轴交于点(a,0)、(b,0).画出两函数图象,观察函数图象可知:m<a<b<n.故选:A.8.解:设y=0,则=mx2﹣3mx﹣4m=0,解得:m=4或m=﹣1,∵点A在点B的左侧,∴OA=1,OB=4,设x=0,则y=﹣4m,∴OC=|﹣4m|,∵∠ACO+∠OCB=90°,∠CAO+∠ACO=90°,∴∠CAO=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴,∴OC2=OA•OB,即16m2=4,解得:m=±,故选:C.9.解:∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;∵抛物线y=ax2+bx+c的顶点D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,而抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a﹣b+c<0,所以②错误;∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∵x=﹣1时,y=2,即a﹣b+c=2,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵抛物线y=ax2+bx+c的顶点D(﹣1,2),即x=﹣1时,y有最大值2,∴抛物线与直线y=2只有一个公共点,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:A.二.填空题(共5小题)10.解:∵抛物线的顶点坐标为(2,9),∴抛物线的对称轴为直线x=2,∵抛物线在x轴截得的线段长为6,∴抛物线与x轴的交点为(﹣1,0),(5,0),设此抛物线的解析式为:y=a(x﹣2)2+9,代入(5,0)得,9a+9=0,解得a=﹣1,∴抛物线的表达式为y=﹣(x﹣2)2+9,故答案为y=﹣(x﹣2)2+9.11.解:将抛物线y=a(x﹣h)2+k关于y轴对称得新抛物线为y′=a(x+h)2+k,∵抛物线y=a(x﹣h)2+k经过(﹣1,0)和(5,0)两点,∴抛物线为y′=a(x+h)2+k与x轴的交点为(﹣5,0)和(1,0),将新抛物线y′=a(x+h)2+k向右平移2个单位得抛物线y″=a(x+h﹣2)2+k,其与x轴的两个交点为(﹣3,0)和(3,0),∴方程a(x+h﹣2)2+k=0的解为x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.12.解:∵抛物线经过A(2,m),B(4,m),∴对称轴是:x=3,AB=2,∵△AOB的面积为4,∴AB•|m|=4,m=±4,当m=4时,则A(2,4),B(4,4),设抛物线的解析式为:y=a(x﹣3)2+h,把(0,0)和(2,4)代入得:,解得:,∴抛物线的解析式为:y=﹣(x﹣3)2+,即y=﹣x2+3x;当m=﹣4时,则A(2,﹣4),B(4,﹣4),设抛物线的解析式为:y=a(x﹣3)2+h,把(0,0)和(2,﹣4)代入得:,解得:,∴抛物线的解析式为:y=(x﹣3)2﹣=x2﹣3x;综上所述,抛物线的解析式为:y=﹣x2+3x或y=x2﹣3x,故答案为y=﹣x2+3x或y=x2﹣3x.13.解:设抛物线解析式为y=ax2,因为抛物线关于y轴对称,AB=20,所以点B的横坐标为10,设点B(10,n),点D(5,n+3),由题意:,解得,∴y=﹣x2,当x=5时,y=﹣1,故t==4(h),答:再过4小时水位达到桥拱最高点O.故答案为:4.14.解:∵点A1的坐标为(1,1),∴直线OA1的解析式为y=x,∵A1B1⊥OA1,∴OP1=2,∴P1(0,2),设A1P1的解析式为y=kx+b1,∴,解得,∴直线A1P1的解析式为y=﹣x+2,解求得B1(﹣2,4),∵A2B1∥OA1,设B1P2的解析式为y=x+b2,∴﹣2+b2=4,∴b2=6,∴P2(0,6),解求得A2(3,9)设A1B2的解析式为y=﹣x+b3,∴﹣3+b3=9,∴b3=12,∴P3(0,12),…∴P n(0,n2+n),故答案为(0,n2+n).三.解答题(共6小题)15.证明:(1)∵点E为CD中点,∴CE=DE.∵EF=BE,∴四边形DBCF是平行四边形.(2)∵四边形DBCF是平行四边形,∴CF∥AB,DF∥BC.∴∠FCG=∠A=30°,∠CGF=∠CGD=∠ACB=90°.在Rt△FCG中,CF=6,∴,.∵DF=BC=4,∴DG=1.在Rt△DCG中,CD==216.解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点,∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3;(2)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,∴抛物线的顶点P为(1,﹣m﹣3),∴点P关于坐标系原点O的对称点(﹣1,m+3),∵对称点仍然在抛物线上,∴m+3=m+2m﹣3,解得m=3;(3)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1).17.解:(1)由题意可得:y=100+×10=100+5(80﹣x)=﹣5x+500,∴y与x的函数关系式为:y=﹣5x+500;(2)由题意得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500,∵a=﹣5<0,∴当x=70时,w有最大利润,最大利润是4500元;∴应降价80﹣70=10(元).∴当销售单价降低10元时,每月获得的利润最大,最大利润是4500元;(3)由题意得:﹣5(x﹣70)2+4500=4175+200,解得:x1=65,x2=75,∵抛物线开口向下,对称轴为直线x=70,∴当65≤x≤75时,符合该网店要求,而为了让顾客得到最大实惠,故x=65.∴当销售单价定为65元时,既符合网店要求,又能让顾客得到最大实惠.18.解:(1)如图,过点C作CF⊥AB于F,∵抛物线y=mx2﹣4mx+n(m>0),∴对称轴为直线x=2,∴AF=BF,点F(2,0),即OF=2,∵S△ABC :S△BCE=3:4,∴S△ABC =3S△ABE,∴3××AB×OE=AB×CF,∴CF=3OE,∵CF⊥AB,OE⊥AB,∴CF∥OE,∴,∴AF=3OA,∵OF=OA+AF=2,∴OA=,AF=,∴点A坐标为(,0),∵AB=2AF=3,∴OB=,∴点B坐标为(,0);(2)①∵抛物线y=mx2﹣4mx+n(m>0)过点A(,0),∴0=m﹣2m+n,∴n=m,∴y=mx2﹣4mx+n=m(x﹣2)2﹣m,∴点C(2,﹣m),如图2,过点C作CF⊥OB于F,CH⊥y轴于H,又∵∠FOH=90°,∴四边形OFCH是矩形,∴CF=OH=m,∵将△BCO绕点C逆时针旋转一定角度后,点B与点A重合,点O恰好落在y轴上,∴OC=O'C,OB=O'A=,又∵CH⊥OO',∴OO'=2OH=m,∵OA2+O'O2=O'A2,∴+m2=,∴m=,∴点C坐标为(2,﹣),设直线CE的解析式为y=kx+b,∴,解得:∴直线CE的解析式为y=﹣x+;②∵m=,∴y=x2﹣x+.19.解:(1)∵二次函数y=ax2+bx+4的图象与y轴交于点C,∴C(0,4),∴OC=4,∵A(﹣3,0),∴OA=3,∴AC===5,∵t=3,∴AD=OE=3,AE=6,当△ADE∽△ACB时,∴,即,∴AB=10,∴B(7,0),∵二次函数y=ax2+bx+4的图象过点A(﹣3,0),点B(7,0),∴解得:∴抛物线解析式为:,当△ADE∽△ABC时,,即,∴(舍去),综上,二次函数的表达式为:;(2)若△ADE可以为直角三角形,显然∠ADE=90°,∴△ADE∽△AOC,∴,∴,解得:.设B(x,0),则,设抛物线对称轴为直线,∵A(﹣3,0),∴①.把x=﹣3,y=0代入y=ax2+bx+4,得②,把②代入①,∵a<0,解得:.20.解:(1)把x=5代入函数y=﹣x2+3|x|+4中,得y=﹣25+15+4=﹣6,∴m=﹣6,故答案为:﹣6;(2)连线得,(3)由函数图象可知①该函数的图象关于y轴对称:②该函数的图象有最高点:(答案不唯一)(4)∵直线y=kx+b经过(,),∴,∴k=∵关于x的方程﹣x2+3|x|+4=kx+b有4个不相等的实数根,∴x2﹣3x﹣4+kx+b=0和方程x2+3x﹣4+kx+b=0各有两个不相等的实数根,即方程x2﹣(3﹣)x﹣4+b=和0x2+(3+)x﹣4+b=0各有两个不相等的实数根,∴,解得b≠,且b>或b<,∴b的取值范围为b>或b<.故答案为:b>或b<.。
人教版九年级上册22章:二次函数 单元培优测试(有答案)

人教版九年级上册23章:二次函数单元培优测试一、单选题(40分)1.在平面直角坐标系xOy 中,将抛物线23y x =-先向左平移3个单位长度,再向下平移4个单位长度后所得到的抛物线的表达式为( )A .()2334y x =-+-B .()2334y x =--C .()2334y x =++D .()2334y x =--+2.下列函数的图象,不经过原点的是( )A .32x y =B .y =2x 2C .y =(x ﹣1)2﹣1D .3y x= 3.将二次函数y =(x ﹣1)2+2的图象向上平移3个单位长度,得到的拋物线相应的函数表达式为( ) A .y =(x +2)2﹣2B .y =(x ﹣4)2+2C .y =(x ﹣1)2﹣1 D .y =(x ﹣1)2+54.抛物线2y ax bx c =++的部分图象如图所示,当0y <时,x 的取值范围是( )A .x >2 或x <-3B .-3<x <2C .x >2或x <-4D .-4<x <25.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A .43米B .52米C .213米D .7米6.在同一直角坐标系中,二次函数2y ax bx c =++与一次函数y ax c =+的大致图象可能( )A .B .C .D .2x… 0 1 2 4 … y … m k m n … 8.如图,四边形ABCD 是菱形,2,60AB ABC =∠=︒,点P 从D 点出发,沿DA AB BC →→运动,过点P 作直线CD 的垂线,垂足为Q ,设点P 运动的路程为x ,DPQ ∆的面积为y ,则下列图象能正确反映y 与x 之间的函数关系的是( ).A .B .C .D .9.将函数22(04)y x x m x =-++≤≤在x 轴下方的图像沿x 轴向上翻折,在x 轴上方的图像保持不变,得到一个新图像.若使得新图像对应的函数最大值与最小值之差最小,则m 的值为( )A .2.5B .3C .3.5D .410.如图是抛物线y 1=ax 2+bx +c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y 2=mx +n(m≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x<4时,有y 2<y 1,其中正确的是( )A .①④⑤B .①③④⑤C .①③⑤D .①②③二、填空题(24分)11.二次函数223y x x =--+的图像的顶点坐标是_________.12.二次函数y =3x 2-6x -3图象的对称轴是_________.13.把一个小球以20米/秒的速度竖直向上弹出,它在空中的高度h (米)与时间t (秒),满足关系:h=20t-5t 2,当小球达到最高点时,小球的运动时间为第_________秒时.14.如图,在平面直角坐标系中,菱形OABC 的边长为2,∠AOC =60°,点D 为AB 边上的一点,经过O ,A ,D 三点的抛物线与x 轴的正半轴交于点E ,连结AE 交BC 于点F ,当DF ⊥AB 时,CE 的长为__.15.如图抛物线223y x x =+-与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE DF +的最小值为_____.16.若函数图象上存在点(),Q m n ,满足1n m =+,则称点Q 为函数图象上的奇异点.如:直线23y x =-上存在唯一的奇异点()4,5Q .若y 关于x 的二次函数211(1)22y x a h x b h =+-+++的图象上存在唯一的奇异点,且当32a -≤≤时,b 的最小值为2-,则h 的值为__________.三、解答题(86分)(8分)17.已知二次函数23y x bx =+- (b 是常数)的图象经过点()1,0A -,求这个二次函数的解析式和这个二次函数的最小值.(8分)18.已知抛物线21y ax bx =++经过点(1,﹣2),(﹣2,13).(1)求a ,b 的值;(4分)(2)若(5,1y ),(m ,2y )是抛物线上不同的两点,且2112y y =-,求m 的值.(4分)(10分)19.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2+bx +c =0的两个根;(3分)(2)写出不等式ax 2+bx +c >0的解集;(3分)(3)若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取值范围.(4分)(8分)20.如图,已知直线y=-2x+3与抛物线y=x 2相交于A,B 两点,O 为坐标原点.(1)求点A 和B 的坐标;(4分)(2)连结OA,OB,求△OAB 的面积.(4分)(10分)21.“普洱茶”是云南有名的特产,某网店专门销售某种品牌的普洱茶,成本为30元/盒,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系式;(4分)(2)如果规定每天该种普洱茶的销售量不低于240盒,该网店店主热心公益事业,决定从每天的销售利润中捐出500元给扶贫基金会,当销售单价为多少元时,每天获取的净利润最大,最大净利润是多少?(注:净利润=总利润-捐款)(6分)(14分)22.我们知道,经过原点的抛物线解析式可以是()2y=ax bx a 0+≠。
人教版九年级数学上册 22.1 二次函数的图象和性质 同步培优训练(含答案)

人教版九年级数学上册22.1 二次函数的图象和性质同步培优训练一、选择题1. 抛物线y=2(x-3)2+1的顶点坐标是()A. (3,1)B. (3,-1)C. (-3,1)D. (-3,-1)2. 将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2-13 B.y=(x-5)2-3C.y=(x-5)2-13 D.y=(x+1)2-33. 二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是()A. y=(x-1)2+2B. y=(x-1)2+3C. y=(x-2)2+2D. y=(x-2)2+44. 如图,在平面直角坐标系中,抛物线的函数解析式为y=-2(x-h)2+k,则下列结论正确的是()A.h>0,k>0 B.h<0,k>0C.h<0,k<0 D.h>0,k<05. 已知抛物线y=ax2(a>0)过A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0 D.y2>y1>06. 二次函数2x …-5-4-3-2-10…y …40-2-204…A. 抛物线的开口向下B. 当x>-3时,y随x的增大而增大C. 二次函数的最小值是-2D. 抛物线的对称轴是x=-5 27. 已知二次函数y=ax2+bx+c的图象如图,则()A.b>0,c>0B.b>0,c<0C.b<0,c<0D.b<0,c>08. 下图是二次函数y=ax2+bx+c的图象,图象上有两点分别为A(2.18,-0.51),B(2.68,0.54),则方程ax2+bx+c=0的一个根可能是()A.2.18 B.2.68 C.-0.51 D.2.459. 已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A. m=12n B. m=14n C. m=12n2 D. m=14n210. 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c>-1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为-1 a.其中正确的结论个数有() A. 1个 B. 2个 C. 3个 D. 4个二、填空题11. 某抛物线的形状、开口方向与抛物线y=12x2-4x+3相同,顶点坐标为(-2,1),则该抛物线的函数解析式为________________.12. 已知抛物线y=2(x-1)2上有两点(x1,y1),(x2,y2),且1<x1<x2,则y1与y2的大小关系是________.13. 如图所示,已知抛物线y=-x2+bx+c的对称轴为直线x=1,且与x轴的一个交点的坐标为(3,0),那么它对应的函数解析式是______________.14. 顶点坐标是(2,0),且与抛物线y=-3x2的形状、开口方向都相同的抛物线的解析式为________.15. 如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随着x的增大而增大.正确的说法有________.(请写出所有正确说法的序号)16. 已知二次函数y=2(x+1)2+1,且-2≤x≤1,则函数y的最小值是________,最大值是________.三、解答题17. 如图,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3).(1)求此二次函数的解析式;(2)设抛物线与x轴的另一交点为B,在抛物线上存在一点P,使△ABP的面积为10,请直接写出点P的坐标.18. 杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线y=-35x2+3x+1的一部分,如图.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.19. 在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=-12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.20. 已知抛物线y=3x2+mx+n.(1)当抛物线经过点(-1,0),(1,4)时,求抛物线的解析式.(2)当m=2,n=-1时,①求抛物线的开口方向、对称轴、顶点坐标;②求抛物线与x轴、y轴的交点坐标;③当x为何值时,y随x的增大而减小?当x为何值时,y随x的增大而增大?y 有最大值还是最小值?最大(小)值是多少?④当-2<x≤3时,求y的取值范围;⑤当y>7时,求x的取值范围.(3)若m=2,且-1<x<1时,抛物线与x轴有且只有一个公共点,求n的取值范围.人教版九年级数学上册22.1 二次函数的图象和性质同步培优训练-答案一、选择题1. 【答案】A2. 【答案】D3. 【答案】B4. 【答案】A5. 【答案】C6. 【答案】D7. 【答案】B8. 【答案】D9. 【答案】D10. 【答案】C二、填空题11. 【答案】y=12(x+2)2+112. 【答案】y1<y2∴其对称轴是直线x=1,抛物线的开口向上,∴在对称轴右侧,y随x的增大而增大.又∵抛物线y=2(x-1)2上有两点(x1,y1),(x2,y2),且1<x1<x2,∴y1<y2.13. 【答案】y =-x 2+2x +3解得b =2.∵抛物线y =-x 2+2x +c 与x 轴的一个交点的坐标为(3,0),∴0=-9+6+c ,解得c =3.故抛物线的函数解析式为y =-x 2+2x +3.14. 【答案】y =-3(x -2)215. 【答案】①②④16. 【答案】1 9 当x =-1时,有最小值1.三、解答题17. 【答案】解:(1)∵二次函数y =x 2+bx +c 的图象过点A(1,0),C(0,-3),∴⎩⎨⎧1+b +c =0,c =-3,解得⎩⎨⎧b =2,c =-3.∴此二次函数的解析式为y =x 2+2x -3. (2)∵当y =0时,x 2+2x -3=0,解得x 1=-3,x 2=1,∴B(-3,0),∴AB =4. 设点P 的坐标为(m ,n). ∵△ABP 的面积为10, ∴12AB·|n|=10,解得n =±5. 当n =5时,m 2+2m -3=5,解得m =-4或m =2,∴P(-4,5)或P(2,5); 当n =-5时,m 2+2m -3=-5,此方程无解. 故点P 的坐标为(-4,5)或(2,5).18. 【答案】解:(1)y =-35x 2+3x +1=-35(x -52)2+194. ∵-35<0,∴函数的最大值是194.答:演员弹跳的最大高度是194米.(2)当x =4时,y =-35×42+3×4+1=3.4=BC ,所以这次表演成功.19. 【答案】解:(1)把B(-2,6),C(2,2)代入抛物线的解析式得: ⎩⎨⎧6=a·(-2)2+b·(-2)+22=a·22+b·2+2,(1分)解得⎩⎪⎨⎪⎧a =12b =-1,(2分)∴抛物线的解析式为y =12x 2-x +2.(3分)(2)抛物线解析式化为顶点式:y =12(x -1)2+32,则抛物线顶点D(1,32),(4分) 如解图①所示,过点B 、D 、C 分别向x 轴作垂线,垂足分别为点M 、N 、H ,则有:S △BCD =S 梯形BMHC -S 梯形BMND -S 梯形DNHC =12(6+2) ×4-12(6+32)×3-12(32+2) ×1 =3.(6分)解图①解图② (3)如解图②所示,连接BC ,∵直线BC 斜率k BC =2-62-(-2)=-1<-12,∴过点C 作直线MN 与直线y =-12x 平行,设直线MN 的解析式为y =-12x +b 1,代入C(2,2), ∴b 1=3.(7分)作直线EF 与抛物线相切,且与直线y =-12x 平行,设直线EF 的解析式为y =-12x +b 2,联立抛物线解析式得, ⎩⎪⎨⎪⎧y =12x 2-x +2y =-12x +b 2, ∴x 2-x +4-2b 2= 0, ∵直线EF 与抛物线相切,∴b 2-4ac =0,即(-1)2-4(4-2b 2)=0,(9分)∴b 2=158,(11分) ∴158<b ≤3.(12分) 注:斜率知识为高中知识,但常渗透于中考压轴题,与二次函数相结合考查,做题时注意其性质的应用.20. 【答案】解:(1)∵抛物线y =3x 2+mx +n 经过点(-1,0),(1,4), ∴⎩⎨⎧0=3-m +n ,4=3+m +n ,解这个方程组,得⎩⎨⎧m =2,n =-1,∴抛物线的解析式为y =3x 2+2x -1. (2)当m =2,n =-1时,y =3x 2+2x -1. ①∵a =3>0,∴抛物线开口方向向上. ∵y =3x 2+2x -1=3(x +13)2-43,∴抛物线的对称轴为直线x =-13,顶点坐标为(-13,-43). ②令y =0,则0=3x 2+2x -1, 解得x 1=13,x 2=-1,∴抛物线与x 轴的交点坐标为(13,0),(-1,0); 令x =0,则y =3x 2+2x -1=-1, ∴抛物线与y 轴的交点坐标为(0,-1).③由于抛物线开口方向向上,∴当x <-13时,y 随x 的增大而减小;当x >-13时,y 随x 的增大而增大;当x =-13时,y 有最小值,最小值为-43.④当-2<x ≤3时,在x =-13时,y 取得最小值,最小值为-43,在x =3时,y 取得最大值,最大值为y =3x 2+2x -1=3×32+2×3-1=32, ∴y 的取值范围为-43≤y ≤32.⑤由3x 2+2x -1=7,解得x 1=-2,x 2=43.又由于抛物线开口方向向上,因此当x >43或x <-2时,y >7. (3)∵抛物线与x 轴有公共点,∴对于方程3x 2+2x +n =0,判别式Δ=4-12n ≥0,∴n ≤13. 当n =13时,由方程3x 2+2x +13=0,解得x 1=x 2=-13.此时抛物线为y =3x 2+2x +13,与x 轴只有一个公共点(-13,0);当n <13时,令x 1=-1,则y 1=3-2+n =1+n ;令x 2=1,则y 2=3+2+n =5+n .由-1<x <1时,该抛物线与x 轴有且只有一个公共点,抛物线的对称轴为直线x =-13,可知y 1≤0,且y 2>0,即1+n ≤0,且5+n >0. 解得-5<n ≤-1.综上所述,n 的取值范围是n =13或-5<n ≤-1.。
【同步培优】人教版2018年 九年级数学上册 二次函数图象性质 专题培优卷(含答案)
2018年九年级数学上册二次函数图象性质专题培优卷一、选择题:1.如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为( )2.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x+1)22+2C.y=(x-1)2+4D.y=(x-1)22+23.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是().A.y=-(x+1)2+2B.y=-(x-1)2+4C.y=-(x-1)2+2D.y=-(x+1)2+44.若一次函数y=(m+1)x+m的图像过第一、三、四象限,则函数y=mx2-mx( )A.有最大值为0.25mB.有最大值为-0.25mC.有最小值为0.25mD. 有最小值为-0.25m5.若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为( )A.x1=-3,x2=-1B.x1=1,x2=3C.x1=-1,x2=3D.x1=-3,x2=16.向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0),若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒7.对于抛物线y=﹣x2+2x+3,有下列四个结论:①它的对称轴为x=1;②它的顶点坐标为(1,4);③它与y轴的交点坐标为(0,3),与x轴的交点坐标为(﹣1,0)和(3,0);④当x>0时,y随x的增大而减小.其中正确的个数为()A.1 B.2 C.3 D.48.已知A(﹣3,y)、B(﹣2,y2)、C(2,y3)在二次函数y=x2+2x+c的图象上,比较y1、y2、y3的大小( )1A.y1>y2>y3B.y2>y3>y1C.y2>y1>y3D.y3>y1>y29.已知点(1,y)、(-2,y2)、(-4,y3)都是抛物线y=-2ax2-8ax+3(a<0)图象上的点,则下列各式中正确的1是( )A.y1<y3<y2B.y3<y2<y1C.y2<y3<y1D.y1<y2<y310.如图,二次函数y=ax2+bx+c的图象与x轴的交点的横坐标分别为﹣1,3,则下列结论正确的个数有()①ac<0;②2a+b=0;③4a+2b+c>0;④对于任意x均有ax2+bx≥a+b.A.1B.2C.3D.411.已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有()A.1B.2C.3D.412.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根”.请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1-(x-a)(x-b)=0的两根,且a < b, 则a、b、m、n 的大小关系是()A.m<a<b<nB.a<m<n<bC.a<m<b<nD.m<a<n<b二、填空题:13.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.14.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.15.如图,二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+m(k≠0)的图象相交于点A(-2,4),B(8,2),则使y1>y2成立的x的取值范围是__ _.16.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为.17.体育公园的圆形喷水池的水柱(如图1)如果曲线APB表示落点B离点O最远的一条水流(如图2),其上的水珠的高度)y(米)关于水平距离x(米)的函数解析式为y=﹣x2+4x+2.25,那么圆形水池的半径至少为米时,才能使喷出的水流不落在水池外.18.若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2-b2+5的最小值为__________.三、解答题:19.已知函数y=0.5x2+x﹣2.5.请用配方法写出这个函数的对称轴和顶点坐标.20.如图所示,抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,且抛物线的对称轴为直线x=4.(1)求出抛物线与x轴的两个交点A,B的坐标.(2)试确定抛物线的解析式.21.我们称顶点相同的两条抛物线为同位抛物线,已知抛物线C:y=2x2﹣4x+3.1(1)下列抛物线中,与C1是同位抛物线的是______.A.y=2x2﹣4x+4B.y=3x2﹣6x+4C.y=﹣2x2﹣4x+3D.y=2x2(2)若抛物线C2:y=ax2﹣2ax+c(a≠0)与C1是同位抛物线,则a与c需满足什么关系?22.在坐标系中,已知抛物线y=x2﹣2x+n﹣1与y轴交于点A,其对称轴与x轴交于点B.(1)当△OAB是等腰直角三角形时,求n的值;(2)点C的坐标为(3,0),若该抛物线与线段OC有且只有一个公共点,结合函数的图象求n的取值范围.23.如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,交y轴于C点,其中B点坐标为(3,0),C点坐标为(0,3),且图象对称轴为直线x=1.(1)求此二次函数的关系式;(2)P为二次函数y=ax2+bx+c在x轴下方的图象上一点,且S△ABP=S△ABC,求P点的坐标.24.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)求证:该方程有两个实数根;(2)如果抛物线y=mx2+(3m+1)x+3与x轴交于A、B两个整数点(点A在点B左侧),且m为正整数,求此抛物线的表达式;(3)在(2)的条件下,抛物线y=mx2+(3m+1)x+3与y轴交于点C,点B关于y轴的对称点为D,设此抛物线在﹣3≤x≤﹣0.5之间的部分为图象G,如果图象G向右平移n(n>0)个单位长度后与直线CD有公共点,求n的取值范围.参考答案1.A2.D3.B4.B5.C6.B.7.C8.D9.C10.C11.D.12.A13.答案为:x=﹣1或x2=3.114.答案为:_815.答案为:x<-2或x>816.答案为3.17.答案为:4.5.18.答案为:1;19.解:y=x2+x﹣,=(x2+2x+1)﹣﹣,=(x+1)2﹣3,20.解:(1)∵抛物线y=ax2+bx+c与直线y=﹣x+6分别交于x轴和y轴上同一点,交点分别是点B和点C,∴将x=0代入y=﹣x+6得,y=6;将y=0代入y=﹣x+6,得x=6.∴点B的坐标是(6,0),点C的坐标是(0,6).∵抛物线y=ax2+bx+c与x轴交于点A、B两点,对称轴为直线x=4,∴点A的坐标为(2,0).即抛物线与x轴的两个交点A,B的坐标分别是(2,0),(6,0).(2)∵抛物线y=ax2+bx+c过点A(2,0),B(6,0),C(0,6),∴4a+2b+c=0,36a+6b+c=0,c=6,解得a=0.5,b=﹣4,c=6.∴抛物线的解析式为:y=0.5x2-4x+6.21.解:抛物线C:y=2x2﹣4x+3.y=2(x2﹣2x+1﹣1)+31y=2(x﹣1)2+1,顶点为(1,1)A、y=2x2﹣4x+4=2(x﹣1)2+2,顶点为(1,2),所以A不正确;B、y=3x2﹣6x+4=3(x﹣1)2+1,顶点为(1,1),所以B正确;C、y=﹣2x2﹣4x+3=﹣2(x+1)2+5,顶点为(﹣1,5),所以C不正确;D、y=2x2,顶点为(0,0),所以D不正确;故选B.(2)抛物线C2:y=ax2﹣2ax+cy=a(x2﹣2x+1﹣1)+cy=a(x﹣1)2﹣a+c,顶点为(1,﹣a+c)由抛物线C2:y=ax2﹣2ax+c(a≠0)与C1是同位抛物线得:﹣a+c=1,c﹣a=1∴a与c需满足的关系式为:c﹣a=122.解:(1)二次函数的对称轴是x=﹣1,则B的坐标是(1,0),当△OAB是等腰直角三角形时,OA=OB=1,则A的坐标是(0,1)或(0,﹣1).抛物线y=x2﹣2x+n﹣1与y轴交于点A的坐标是(0,n﹣1).则n﹣1=1或n﹣1=﹣1,解得n=2或n=0;(2)①当抛物线的顶点在x轴上时,△=(﹣2)2﹣4(n﹣1)=0,解得:n=2;②当抛物线的顶点在x轴下方时,如图,由图可知当x=0时,y<0;当x=3时,y≥0,即,解得:﹣2≤n<1,综上,﹣2≤n<1或n=2.23.解:(1)根据题意,得,解得.故二次函数的表达式为y=﹣x2+2x+3.(2)由S△ABP=S△ABC,得y P+y C=0,得y P=﹣3,当y=﹣3时,﹣x2+2x+3=﹣3,解得x1=1﹣,x2=1+.故P点的坐标为(1﹣,﹣3)或(1+,﹣3).24.(1)证明:由根的判别式,可得:△=(3m+1)2﹣4×m×3=(3m﹣1)2,∵(3m﹣1)2≥0,∴△≥0,∴原方程有两个实数根;(2)解:令y=0,那么mx2+(3m+1)x+3=0,解得:x1=﹣3,x2=﹣,∵抛物线与x轴两个交点的横坐标均为整数,且m为正整数,∴m=1,∴抛物线的解析式为:y=x2+4x+3;(3)如图,∵当x=0时,y=3,∴C(0,3),∵当y=0时,x1=﹣3,x2=﹣1,又∵点A在点B的左侧,∴A(﹣3,0),B(﹣1,0),∵点D与点B关于y轴对称,∴D(1,0),设直线CD的解析式为:y=kx+b,∴,解得:,∴直线CD的表达式为:y=﹣3x+3,又∵当x=﹣时,y=,∴点E(﹣,),∴平移后,点A,E的对应点分别为A′(﹣3+n,0),E′(﹣+n,),当直线y=﹣3x+3经过点A′(﹣3+n,0)时,得:﹣3(﹣3+n)+3=0,解得:n=4,当直线y=﹣3x+3经过点E′(﹣+n,),时,得:﹣3(﹣+n)+3=,解得:n=,∴n的取值范围是≤n≤4.。
人教版九年级数学上册《二次函数》培优测试题
人教版九年级数学上册《二次函数》培优测试题一.选择题1.已知函数y=是二次函数,则m的值为()A. ﹣3B. ±3C. 3D. ±2.二次函数y=x2+bx+1的图象与x轴只有一个公共点,则此公共点的坐标是()A. (1,0)B. (2,0)C. (﹣1,0)或(﹣2,0)D. (﹣1,0)或(1,0)3.已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A. y3最小,y1最大B. y3最小,y4最大C. y1最小,y4最大D. 无法确定4.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A. ﹣3<x<1B. x<﹣1或x>3C. ﹣1<x<3D. x<﹣3或x>15. 二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b+c,N=a-b+c,P=4a+b,则()A. M>0,N>0,P>0B. M>0,N<0,P>0C. M<0,N>0,P>0D. M<0,N>0,P<06.下列关于二次函数y=﹣2(x﹣2)2+1图象的叙述,其中错误的是()A. 开口向下B. 对称轴是直线x=2C. 此函数有最小值是1D. 当x>2时,函数y随x增大而减小7.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①方程=ax2+bx+c=0的两个根是x1=﹣1,x2=3:②a﹣b+c=0;③8a+c<0;④当y>0时,x的取值范围是﹣1<x<3;⑤当y 随x的增大而增大时,一定有x<O.其中结论正确的个数是()A. 1个B. 2个C. 3个D. 4个8.如图,排球运动员站在点O处练习发球,将球从D点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D 点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A. 球不会过网B. 球会过球网但不会出界C. 球会过球网并会出界D. 无法确定9.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[m﹣1,1+m,﹣2m]的函数的一些结论:①当m=3时,函数图象的顶点坐标是(﹣1,﹣8);②当m>1时,函数图象截x轴所得的线段长度大于3;③当m<0时,函数在x>时,y随x的增大而减小;④不论m取何值,函数图象经过两个定点.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个10.若二次函数y=(a﹣2)x2﹣2ax+a﹣与x轴有两个交点,且关于x的不等式组无解,则符合条件的整数a的值有()个.A. 2B. 3C. 4D. 511.一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图象可能是()A. B.C. D.12.已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P 是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0,②x=3是ax2+bx+3=0的一个根,③△PAB周长的最小值是+3.其中正确的是()A. ①②③B. 仅有①②C. 仅有①③D. 仅有②③二.填空题13.将二次函数y=x2+3x﹣化为y=a(x﹣h)2+k的形式,其结果是_____.14.二次函数y=x2﹣3x+k的图象与x轴有两个交点,则实数k的取值范围是_____.15.如图,点D,C的坐标分别为(﹣1,4)和(﹣5,4),抛物线的顶点在线段CD上运动(抛物线随顶点一起平移),与x轴交于A,B两点(A在B的左侧),点B的横坐标最大值为3,则点A的横坐标最小值为_____.16.公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行_____m才能停下来.17.已知抛物线y=x2,以D(﹣2,1)为直角顶点作该抛物线的内接Rt△ADB(即A.D.B 均在抛物线上).直线AB必经过一定点,则该定点坐标为_____.18.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(﹣,y2)在该图象上,则y1>y2.其中正确的结论是_____(填入正确结论的序号)三.解答题19.如图所示,二次函数y=﹣2x2+4x+6的图象与x轴的正半轴交于点A,与y轴交于点C.(1)求AC的长;(2)求顶点的坐标.20.五家尧草莓是我旗的特色农产品,深受人们的喜欢.某超市对进货价为10元/千克的某种草莓的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)为了让顾客得到实惠,商场将销售价定为多少时,该品种草莓每天销售利润为150元?(3)应怎样确定销售价,使该品种草莓的每天销售利润最大?最大利润是多少?21.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在一点M,使△ACM的周长最小?若存在,请求出M点的坐标,若不存在,请说明理由.=8,并(3)设抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时.满足S△PAB求出此时P点的坐标.22.如图,抛物线y=ax2+bx+c与x轴交于A,B(1,0)两点,与y轴交于点C,直线y=x﹣2经过A,C两点,抛物线的顶点为D.(1)求抛物线的解析式及顶点D的坐标;(2)在直线AC上方的抛物线上存在一点P,使△PAC的面积最大,请直接写出P点坐标及△PAC面积的最大值;(3)在y轴上是否存在一点G,使得GD+GB的值最小?若存在,求出点G的坐标;若不存在,请说明理由.23.如图1所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系图象如图2所示,请回答:(1)线段BC的长为cm.(2)当运动时间t=2.5秒时,P、Q之间的距离是cm.24.如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A 点的右侧),与轴交于C点.(1)A点的坐标是;B点坐标是;(2)直线BC的解析式是:;(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC 的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.25.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C,点C关于抛物线对称轴的对称点为点D,抛物线顶点为H(1,2).(1)求抛物线的解析式;(2)点P为直线AD上方抛物线的对称轴上一动点,连接PA,PD.当S△PAD=3,若在x轴上存在一动点Q,使PQ+QB最小,求此时点Q的坐标及PQ+QB的最小值;(3)若点E为抛物线上的动点,点G,F为平面内的点,以BE为边构造以B,E,F,G为顶点的正方形,当顶点F或者G恰好落在y轴上时,求点E的横坐标.。
人教版数学九年级上册第22章《二次函数》培优检测题(解析版)
•选择题1.2.3.4.5. 《二次函数》培优检测题二次函数y= x2- 2x的顶点坐标是(A.( 1,1)B. (1,- 1) 已知抛物线y = x2-( 2m- 1) x+2n i 大,则抛物线的顶点在(A.第一象限把函数y=的图象(A.B.C.D.C. (- 1,- 1)D. (- 1, 1) 的顶点为A,当-3 v x v 2时,y随x的增大而增B.第二象限C.第三象限D.第四象限向左平移向左平移向右平移向右平移:>2的图象,经过怎样的平移变换以后,可以得到函数1个单位,1个单位,1个单位,1个单位,再向下平移再向上平移再向上平移再向下平移已知两点A (- 6, yj, B (2, y2)是该抛物线的顶点,若y o> y1> y2, A. x o v- 6 B. x o v- 2个单位个单位个单位个单位y「(x- 1) 2+1均在抛物线y= ax2+bx+c (a* 0)上,点C (X o, y°) 则X o的取值范围是(C.- 6 v x o v- 2D.- 2 v x o v 2y= x2- 2x - 3的图象与x轴交于A B两点,与y轴交于点C,则下列说如图,二次函数B./ OC R 45°C. 当x > 3时,D. 当x > 0时, y随x的增大而减小图象上两点(x i, y i), (X2, y2)满足x i<X2< 1,则y i>y2;④当1<x< 3 时,x + (b- 1)x+c< 0.其中正确的有()个.D. 1&二次函数y= ax2+bx+c (a* 0),经过点(1.0 ),对称轴I如图所示,若M= a+b- c, N=)个.D. 39. 已知二次函数y= ax2+bx+c (a*0)的图象如图所示,则下列结论正确的是()10. 如图是二次函数 y = ax 2+bx +c 的部分图象,图象过点 A (- 3, 0),对称轴为直线x =-1, 给出四个结论:① b 2> 4ac :②3a +c = 0③2a +b = 0④若点B(-§, y i ), C (-丄,y ?)2 2为函数图象上的两点,贝Uy i v y 2,其中正确结论是()二.填空题11. _______________________________________ 抛物线y = . (x +3) 2+4的对称轴是 . 12. ________________________________________________________________________ 二次函数y = x 2- 2mx"1在x < 1时y 随x 增大」而减小,则 m 的取值范围是 _________________ . 13.点P (2, 17)为二次函数y = ax 2+4ax +5图象上一点,其对称轴为 I ,则点P 关于I 的对称点的坐标为 _________ . 14. 若点A 「- 3,n )、B(mn )在二次函数y = a(x +2)2+h 的图象上,则m 的值为 _______ .15•利用计算机中“几何画板”软件面出的函数 y = x 2(x - 3)和y = x - 3的图象如图所示.根 据图象可知方程x 2 (x - 3) = x - 3的解的个数为3个,若m n 分别为方程x 2 (x - 3)A. abc v 0B. b 2- 4ac v 0C. a - b +c v 0D. 2a +b = 0C.①③D.②④16. 若二次函数y = ax1 2-bx+5(a^ 5)的图象与x轴交于(1,0),则b- a+2014的值是 __________ .17. 某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件•则商场按___________ 元销售时可获得最大利润.18. 如图,在平面直角坐标系中,抛物线y =-( x- h) 2+2 ( h表示常数,且h> 0)的顶点为M函数图象与x轴负半轴交于点A,将此抛物线绕坐标原点O旋转180°得到的抛物线顶点为N,函数图象与x轴正半轴交于点B.则四边形MANE的面积表示为(用含h的代数式表示)三.解答题19. 设二次函数y= m£+nx-( m- n) (m n是常数,m^0).1 请求出m的值;2 某同学根据上表数据,在如图所示的平面直角坐标系中描点,并画出了该二次函数图象的一部分,请观察图象直接写出当y>0时,x的取值范围;(1 )判断该二次函数图象与x轴交点•:的个数,并说明理由;(2)若该二次函数图象经过点A(2, 3), B( 1, 4),求该二次函数图象与x轴的交点坐标.2(3)求出这个二次函数的解析式(也称为函数关系式)21 •某网店经市场调查,发现进价为40元的某新型文具每月的销售量y (件)与售价x(元)的相关信息如下:售价x (元) 60708090销售量y (件) 280260240220(1) _________________________________________________________ 试用你学过的函数来描述y与x的关系,这个函数可以是___________________________________ (填“一次函数”“反比例函数”或“二次函数”),求这个函数关系式;(2) _______________ 当售价为______________________________________ 元时,当月的销售利润最大,最大利润是 ____ 元;(3) 若获利不得高于进价的80%那么售价定为多少元时,月销售利润达到最大?22. 如图,已知二次函数y = ax2+bx-4的图象M经过A (- 1, 0) , C( 2,- 6)两点,顶点为P.(1 )求该二次函数的解析式和顶点P的坐标(2)设图象M的对称轴为I,点D( m n) (- 1v R K 2)是图象M上一动点,当△ ACD的面积•「为时,点D关于I的对称点为E,能否在图象M和I上分别找到点P, Q使口得以点D E、P、Q为顶点的是四边形为平行四边形?若能,求出点P的坐标;若不能,23. 如图,抛物线y=- x2+bx+c过等腰Rt△ OAB勺A, B两点,点B在点A的右侧,直角顶点A (0, 3).(1 )求b, c的值.(2) P是AB上方抛物线上的一点,作PQLAB交“0B于点Q,连结AP,是否存在点P,使四边形APQOI平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由.2324. 如图①,抛物线y=- x2< x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交£于点C,连接BC(1)过点A且平行于BC的直线交于y轴于点D,求AD的解析式;(2)如图②,P是直线BC上方抛物线上的一动点,在抛物线的对称轴I上有一动点M 在x轴上有一动点N,连接PM MN当厶PAD勺面积最大时,求PMMN^BN的最小值;5(3)如图③,Q为直线AD与抛物线的另一个交点,E为抛物线上一动点,F为抛物线的对称轴I上的一动点,是否存在E、F两点,使得以A、Q E、F四点为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.團①團②團③参考答案一•选择题2 21 解:••• y= X - 2x=( x- 1) - 1,•••二次函数y= X2+4X的顶点坐标是:(1, - 1),故选:B.2. 解:T y= x2-( 2m- 1) x+2n i- 1•••对称轴为x=-厶」丄=二^-,且抛物线开口向上,2 2•••当x>上」-时,y随x的增大而增大,2•••当-3 v x v 2时,y随x的增大而增大,•••亘一w- 3,解得me -',2 2•2nrl v o 站二b? = 4) -(2inT ) ' =( )2-> o'' - ” ,•抛物线的顶点在第二象限,故选:B.3. 解:抛物线y =- *2的顶点坐标是(0, 0),抛物线线y =-寺(x- 1) 2+1的顶点坐标是(1, 1),所以将顶点(0, 0)向右平移1个单位,再向上平移1个单位得到顶点(1, 1),即将函数y=- ,:x2“的图象向右平移1个单位,再向上平移1个单位得到函数y =- ,: (x -1) 2+1的图象.故选:C.4. 解:•••点C( X。
2018年九年级数学上册二次函数培优练习卷含答案
()
A.y=60(300+20x)
B.y=(60﹣x)(300+20x)
C.y=300(60﹣20x)
D.y=(60﹣x)(300﹣20x)
9、已知二次函数 y=﹣x2+2bx+c,当 x>1 时,y 的值随 x 值的增大而减小,则实数 b 的取值范围是( )
A.b≥﹣1
B.b≤﹣1
C.b≥1
D.b≤1
23、如图,已知二次函数 y=x2+bx+c 的图象经过点 A(0,3)且对称轴是直线 x=2. (1)求该函数的表达式; (2)在抛物线上找点,使△PBC 的面积是△ABC 的面积的 2 倍,求点 P 的坐标.
第5页共8页
24、如图,已知抛物线 y=−x2+bx+c 与 x 轴、y 轴分别相交于点 A(−1,0)、B(0,3)两点,其顶点为 D. (1)求这条抛物线的解析式; (2)若抛物线与 x 轴的另一个交点为 E. 求△ODE 的面积;抛物线的对称轴上是否存在点 P 使得△PAB 的周 长最短。若存在请求出 P 点的坐标,若不存在说明理由。
21、已知二次函数 y=x2+bx+c 的图象过点 A(﹣3,0)和点 B(1,0),且与 y 轴交于点 C,D 点在抛物线上 且横坐标是﹣2. (1)求抛物线的解析式; (2)抛物线的对称轴上有一动点 P,求出 PA+PD 的最小值.
第4页共8页
22、某服装店购进一批秋衣,价格为每件 30 元.物价部门规定其销售单价不高于每件 60 元,不低于每件 30 元.经市场调查发现:日销售量 y(件)是销售单价 x(元)的一次函数,且当 x=60 时,y=80;x=50 时,y=100. 在销售过程中,每天还要支付其他费用 450 元. (1)求出 y 与 x 的函数关系式,并写出自变量 x 的取值范围. (2)求该服装店销售这批秋衣日获利 w(元)与销售单价 x(元)之间的函数关系式. (3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年九年级数学上册二次函数abc符号问题培优练习
一、选择题:
1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()
A.图象关于直线x=1对称
B.函数y=ax2+bx+c(a≠0)的最小值是-4
C.-1和3是方程ax2+bx+c=0(a≠0)的两个根
D.当x<1时,y随x的增大而增大
2.若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是( )
A.x=1 B.x=2 C.x=3 D.x=4
3.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④
当-1<x<3时,y>0,其中正确的个数为( )
A.1 B.2 C.3 D.4
4.二次函数y=-x2+bx+c的图象如图所示:若点A(x
,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则
1
y1与y2的大小关系是( )
A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()
①a>0;②b>0;③c<0;④b2﹣4ac>0.
A.1 B.2 C.3D.4
6.已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=()
A.a+b B.a﹣2b C.a﹣b D.3a
7.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x
﹣3,则b、c的值为()
A.b=2,c=2 B.b=2,c=0 C.b=﹣2,c=﹣1 D.b=﹣3,c=2
8.若A(﹣5,y
),B(﹣2,y2),C(1,y3)为二次函数y=ax2+2ax+2016(a<0)的图象上的三
1
点,则y1,y2,y3的大小关系是()
A.y1<y3<y2B.y2<y3<y1C.y1<y2<y3D.y3<y1<y2
9.不论m为何实数,抛物线y=x2﹣mx+m﹣2()
A.在x轴上方B.与x轴只有一个交点C.与x轴有两个交点 D.在x轴下方
10.在同一坐标系下,抛物线y
=﹣x2+4x和直线y2=2x的图象如图,那么不等式﹣x2+4x>2x的解集
1
是()
A.x<0 B.0<x<2 C.x>2 D.x<0或 x>2
11.已知二次函数y=ax2+bx+c的图象如图所示,其对称轴为直线x=-1,给出下列结果:
(1)b2>4ac.(2)abc>0. (3)2a+b=0.(4)a+b+c>0.(5)a-b+c<0.
则正确的结论是( )
A.(1)(2)(3)(4) B.(2)(4)(5) C.(2)(3)(4) D.(1)(4)(5)
12.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与X轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;
④b2+8a>4ac.其中正确的有()
A.1个B.2个 C.3个D.4个
二、填空题:
13.抛物线y=﹣x2+bx+c的部分图象如图所示,若y=0,则x= .
14.抛物线的部分图象如图所示,则当y<0时,x的取值范围是.
15.如图,抛物线y
=-x2+2向右平移1个单位得到的抛物线y2.回答下列问题:
1
(1)抛物线y2的解析式是,顶点坐标为;
(2)阴影部分的面积 ;
(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,则抛物线y3的解析式
为,开口方向_____,顶点坐标为 .
16.如图,抛物线y=﹣x2+bx+c过A(0,2),B(1,3),CB⊥x轴于点C,四边形CDEF为正方形,点D在线段BC上,点E在此抛物线上,且在直线BC的左侧,则正方形CDEF的边长为.
17.如图,已知⊙P的半径为2,圆心P在抛物线y=0.5x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为.
18.如图,是抛物线y
=ax2+bx+c(a≠0)的一部分图象,抛物线的顶点坐标是A(1,3),与x轴的
1
一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:
①abc>0;②方程ax2+bx+c=3有两个相等的实数根;
③抛物线与x轴的另一个交点是(-1,0);④当1<x<4时,有y2>y1;
⑤x(ax+b)≤a+b. 其中正确的结论是 .(只填写序号)
三、解答题:
19.已知二次函数y=ax2-4x+c的图象过点(-1, 0)和点(2,-9).
(1) 求该二次函数的解析式并写出其对称轴;
(2) 已知点P(2 , -2),连结OP , 在x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).
20.如图,抛物线y=x2-3x+k与x轴交于A,B两点,与y轴交于点C(0,-4) .
(1)k= ;
(2)点A的坐标为,B的坐标为;
(3)设抛物线y=x2-3x+k的顶点为M,求四边形ABMC的面积.
21.如图,抛物线y
=(x-2)2+m与x轴交于点A和B,与y轴交于点C,点D是点C关于抛物线对称
1
轴的对称点,若点A的坐标为(1,0),直线y2=kx+b经过点A,D.
(1)求抛物线的函数解析式;
(2)求点D的坐标和直线AD的函数解析式;
(3)根据图象指出,当x取何值时,y2>y1.
22.如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A.B两点.
(1)求该抛物线的函数关系式;
(2)在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD,请求出P点的坐标.
23.已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
(1)求这个二次函数的关系式;
(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?
24.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,
与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
25.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为
B,连结OA.
(1)求△OAB的面积;
(2)若抛物线y=-x2-2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB 的边界),求m的取值范围(直接写出答案即可)。
参考答案
1.D
2.C
3.C
4.B
5.B
6.D
7.B
8.A
9.C
10.B
11.D
12.D
13.答案为:﹣3或1
14.答案为:x>3或x<﹣1.
15.答案为:(1)y
=-(x-1)2+2,(1,2);(2)S=2;(3)y3=(x+1)2-2,向上,顶点坐标为(-1,-2).
2
16.答案为:
17.答案是:(,2)或(﹣,2).
18.答案为:②⑤.
19.解:(1)对称轴是x=2
(2)
20.解:(1); (2), ;(3)∵∴ ,
设抛物线的对称轴与轴交于,则
∴四边形ABMC的面积是
21.(1)∵点(1,0)在抛物线上,∴,,∴;
(2)抛物线的对称轴为,与的交点的坐标为(0,3),
∵点是点关于对称轴的对称点,∴点的坐标为(4,3),
直线经过点点,,∴,解得,,∴;
(3)当时,.
22.解:(1)∵抛物线的顶点D的坐标为(1,﹣4),∴设抛物线的函数关系式为y=a(x﹣1)2﹣4,
又∵抛物线过点C(0,﹣3),∴﹣3=a(0﹣1)2﹣4,解得a=1,
∴抛物线的函数关系式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;
(2)∵S△PAB=S△ABD,且点P在抛物线上,∴点P到线段AB的距离一定等于顶点D到AB的距离,
∴点P的纵坐标一定为4.令y=4,则x2﹣2x﹣3=4,解得x1=1+2,x2=1﹣2.
∴点P的坐标为(1+2,4)或(1﹣2,4).
23.解:(1)由题意,得解得∴二次函数的关系式是y=x2-1.
(2)设点P坐标为(x,y),则当⊙P与两坐标轴都相切时,有y=±x.
由y=x,得x2-1=x,即x2-x-1=0,解得x=.
由y=-x,得x2-1=-x,即x2+x-1=0,解得x=.∴⊙P的半径为r=|x|=.
(3)设点P坐标为(x,y),∵⊙P的半径为1,∴当y=0时,x2-1=0,即x=±1,即⊙P与y轴相切,
又当x=0时,y=-1,∴当y>0时,⊙P与y相离;当-1≤y<0时, ⊙P与y相交.
24.⑴设抛物线的解析式为y =ax2+bx+c,则有:
解得:,所以抛物线的解析式为y =x2-2x-3.
⑵令x2-2x-3=0,解得x1=-1,x2=3,所以B点坐标为(3,0).
设直线BC的解析式为y =kx+b,则,解得,所以直线解析式是y =x-3.
当x=1时,y=-2.所以M点的坐标为(1,-2)
25.。