手扶自走式草坪修剪机的设计毕业设计(论文) 精品
毕业设计——环保型草坪剪草机设计说明书

第一章绪论1.1我国草坪业的发展现状随着经济的发展和社会进步,人们对生存环境的要求越来越高。
草坪绿化已成为衡量一个国家、地区或城市文明与发展程度的一个重要指标,在美化环境、固土护坡、净化空气等方面已成为人类的共识,在生态环境建设和保护方面将扮演着越来越重要的角色。
我国的草坪建设也得到了迅速发展,如城市园林绿化、兴建休闲场所等都需要大量的高质量草坪,江河堤坝、高速公路、铁路等交通水利设施的护坡以及屋顶花园、室内绿化也都需要优质草坪。
据不完全统计,在全国500城市66万hm²绿地面积中,草坪占18万hm²,1994 年上海草坪绿化面积为300 hm²1997 年为800 hm²,以后每年以400hm²的速度增长;1997 年北京绿地面积已突破2 000hm²,人均公共绿地面积为7. 8m²,现在每年草坪以300 hm²的速度增长。
修剪是草坪区别于其它一些植物的特殊要求。
草坪通过修剪,可以阻止草坪的草抽穗、开花、结果;修剪可以阻止草坪的草一味地向上生长,使草横向发展而成为坪;修剪可以有效地阻止杂草的生长和病虫害。
因此,草坪业的迅猛发展必并将带动一系列产业的兴起。
我国的草坪业发展自20 世纪80 年代才起步,在90 年代后期发展迅速,到2000 年为止,全国已建成各类草坪3 亿m²以上,经营草业的公司有5000多家,草坪业从业人员20 多万人,总产值超过100亿元,而且规模呈逐年扩大趋势。
在我国500 个城市66 万h m²绿地面积中,草坪占18 万h m²,并呈高速增长趋势。
90 年代以来我国的草坪业年增长率高达30 %~40 %。
随着人们对环境保护、固土防沙意识的日益增强,退耕还草政策的进一步实行,草坪业必然快速发展。
修剪是草坪区别于其它一些植物的特殊要求,草坪业的迅猛发展,意味着草坪剪草机械的大量需求[]15。
割草机的设计范文

割草机的设计范文割草机设计引言:割草机是一种用于修剪草坪的设备,广泛应用于公园、花园、球场等地方。
它的设计要考虑到效率、安全性和操作的便利性,以提高工作效率和用户的体验。
本文将讨论割草机的设计,包括机身结构、刀片和动力系统。
一、机身结构设计:割草机的机身结构要具备稳定性和轻便性。
首先,机身应采用坚固耐用的材料,如钢材或铝合金,以确保长时间的使用。
其次,机身的设计应考虑到工作的稳定和平衡性。
在机身底部应装备稳定的支撑脚,以使机身稳定地保持在地面上。
同时,机身底部应设计有合适的排气孔,以排除废气和热气,保持机身内部的通风和散热。
二、刀片设计:割草机的刀片设计应考虑到切割效果和安全性。
首先,刀片应采用锋利的特殊合金材料,如碳化钨。
这种材料具有良好的耐磨性和锋利性,能够有效地切割草坪。
其次,刀片应具备一定的自清洁功能,以避免草坪残渣对刀片的堆积影响工作效果。
此外,刀片还应具备防护措施,以确保安全使用。
例如,刀片周围可以设置安全护罩,防止草坪残渣飞溅伤人。
刀片的转速应适中,既能保证切割效果,又能降低事故概率。
三、动力系统设计:割草机的动力系统设计应注重功率、可靠性和环保性。
首先,动力系统应具备合适的功率,以确保割草机能够顺畅地工作。
一般来说,割草机可采用电动或燃油动力。
电动动力系统应具备强大的电机和适当的电池容量,以满足工作时间的需要。
而燃油动力系统应具备合适的发动机和燃油箱容量,能够提供充足的动力和持久的工作时间。
其次,动力系统应具备良好的可靠性,以降低故障率和维修成本。
关键部件应采用耐用的材料,并具备一定的防护措施。
例如,电动动力系统可设置过载保护装置,燃油动力系统可设置燃油滤清器和进气滤清器,以防止杂质对动力系统的损害。
最后,动力系统的设计应注重环保性。
如电动动力系统应使用高效节能的电机和电池,减少对环境的污染。
燃油动力系统应采用低排放的发动机,并且有合适的排放控制装置,以降低尾气排放对空气质量的影响。
手推割草机毕业设计(论文)word格式

本科毕业设计(论文)手推割草机设计Design of Hand-Push Reel Mower学院:机械工程专业班级:机械设计制造及其自动化学生姓名:学号:指导教师:200 年6月目录1 绪论 (1)1.1 割草机的发展历史 (1)1.2 我国割草机的发展 (2)1.3 手推割草机的使用 (3)2 割草机概述 (5)2.1 割草机的分类 (5)2.2 割草机割草的基本要求 (5)2.3 割草机的结构特点 (5)3 割草机的总体方案设计 (7)4 割草机传动部分设计 (10)4.1 割草机齿轮设计 (10)4.2 割草机行走轮设计 (15)5 割草机割草机构设计 (18)5.1 刀片材料选择 (18)5.2 滚刀刀片设计 (18)6 滚刀轴设计 (21)6.1 轴的概述 (21)6.2 轴的设计 (21)6.3 轴材料选择 (22)6.4 轴的计算 (22)7 轴承的选择 (26)7.1 轴承材料 (26)7.2 轴瓦结构 (27)7.3 滑动轴承润滑剂的选用 (27)7.4 径向滑动轴承的计算 (28)结论 (30)致谢 (31)参考文献 (32)1 绪论1.1 割草机的发展历史在割草机问世之前,草坪的修剪主要工具是镰刀,放牧牛羊也是保持草地平整的重要方法。
随着高尔夫球、网球及足球等运动的兴起,人们拥有平整美观的草地做运动场地的要求越来越迫切。
1805年英国人普拉克内特发明了第一台收割谷物并能切割杂草的机器,由人推动机器,通过齿轮传动带动旋刀割草,这就是旋刀割草机的雏形。
1830年,英国纺织工程师比尔.布丁取得了滚筒割草机的专利,1832年兰赛姆斯农机公司开始批量生产滚筒割草机,1902年英国人伦敦恩斯制造了内燃机做动力的滚筒式割草机,其原理至今还在使用。
在西方发达国家,20世纪初期,割草机就得到了快速的发展。
随着社会的进步和经济的发展,人们对生存环境的要求也越来越高,城市环境的保护得到越来越多的重视。
手推式绿篱修剪机的设计(定稿)

江苏农林职业技术学院毕业设计(论文)SNL/QR7.5.4-3 手推式绿篱修剪机的设计专业机械设计与制造学生姓名赵男见班级 10机械设计与制造2班学号 ************指导教师戴有华完成日期 2013年05月30日成绩评议答辩小组评议意见摘要:绿篱可以被修剪成各种造型,从而提高了观赏效果和隔离防护的作用,因而绿篱在城市道路和园林绿化中占有重要地位。
规则式绿篱每年须修剪数次,以使绿篱基部光照充足、枝叶繁茂。
目前,园林绿地中绿篱修剪仍然主要靠人工进行,不仅劳动量大、效率低,还常常伴有危险发生,因此迫切需要研制一种适应园林绿化中成块面积相对较小,并具有一定自动化程度的移动式绿篱作业机械来提高林业机械的装备水平。
手推式绿篱修剪机正是要解决绿篱修剪表面平齐性、提高修剪效率和保证作业安全、降低工人的工作强度、并且适用于园林绿地的绿篱修剪设备。
本文以实现手推式绿篱修剪机的主要功能为目标,首先制订了手推式绿篱修剪机的总体设计方案,然后对手推式绿篱修剪机的各主要零件进行了结构设计,接着应用UG软件对手推式绿篱修剪机进行了三维建模和静力学分析,在此基础上确定手推式绿篱修剪机的结构尺寸,最后给出了手推式绿篱修剪机的应用情况。
本文的创新点主要有:⒈应用UG软件对手推式绿篱修剪机进行了静力学分析,使得设计结果更为精确合理;⒉在支撑架部分运用了齿轮齿条传动,做到了修剪高度可以调节;⒊支撑刀头部分可以左右移动,可以调节修剪宽度范围。
4.设计了篱刀的角度位置调节机构,可以实现水平修剪和竖直修剪。
关键词:绿篱修剪机;结构设计;静力学分析;UGAbstract :Hedge can be cut into various shapes, so as to improve the viewing effect and function of isolation, and therefore hedge in occupies an important place in the city roads and landscaping. Rule type hedge must be cut several times a year to make hedge sufficient sunlight, leafy at base. Gardens now, still mainly rely on artificial to hedge pruning, not only large amount of labor, the efficiency is low, and often accompanied by danger happening, so urgent need to develop a piece up to adapt to the afforestation area is relatively small, and have certain mobile hedge operation of machinery and automation to improve the level of forestry machinery and equipment.Hand push type hedge trimmer is to solve hedge pruning surface flush, pruning and improve efficiency and ensure operation safety, reduce working intensity, and is suitable for the botanical garden green space hedge pruning device.This paper in order to realize the hand push type hedge cutting machine's main function as the goal, with his hand push type hedge pruning machine overall design scheme, the opponent then push hedge trimmer has carried on the structure design of the main parts, and then using UG software rivals push hedge trimmer for 3D modeling and static mechanics analysis, on the basis of determine the structure size hand push type hedge pruning machine, hand push type hedge pruning machine is given the actual application situation.Innovation points of this paper are: Firstly,using UG software rivals push hedge trimmer statics analysis, makes the design result is more accurate and reasonable; Secondly, the supporting frame part using the gear rack transmission, achieved pruning height can be adjusted; Thirdly, support the head part can move around, adjustable cutting width.Fourthly,design of the hedge cutter Angle position regulating mechanism, can achieve level trimming and vertical clip.key words: Hedge trimmer; Structure design; Statics analysis; UG目录第一章绪论 (1)1.1课题的研究背景及意义 (1)1.2国外绿篱修剪机的研究现状 (1)1.3国内绿篱修剪机的研究现状 (2)1.4论文的研究内容与结构 (2)第二章手推式绿篱修剪机的整体设计方案 (3)2.1手推式绿篱机的功能规划 (3)2.2手推式绿篱机的结构组成 (3)2.3手推式绿篱修剪机的工作原理 (5)2.4手推式绿篱机的总体尺寸要求 (5)2.5手推式绿篱机的设计步骤 (6)第三章手推式绿篱机关键零部件的设计 (7)3.1手推式绿篱修剪机总体尺寸的确定 (7)3.2推车架的设计 (7)3.3悬伸横梁的设计 (8)3.4可升降的支撑架的设计 (10)3.5可升降支撑架的高度调节机构的设计 (11)3.6可升降支撑架的位置锁紧机构的设计 (11)3.7悬伸横梁的伸出长度调节机构的设计 (12)3.8篱刀角度位置调节机构的设计 (12)第四章基于UG的手推式绿篱修剪机的三维设计 (14)4.1 UG软件概述 (14)4.2基于UG的手推式绿篱修剪机的三维建模过程 (14)4.3基于UG的手推式绿篱修剪机的建模参数 (14)4.3基于UG的手推式绿篱修剪机的虚拟装配 (18)第五章基于UG的手推式绿篱修剪机的分析与优化 (19)5.1 UG高级仿真概述 (19)5.2基于UG的静力学分析的工作流程 (19)5.3确定手推式绿篱修剪机中要分析的零部件 (20)5.4对悬伸横梁的静力学分析 (20)5.5悬伸横梁的分析结果 (22)5.6悬伸横梁的结构优化 (23)5.7对可升降支撑架的分析与优化 (23)第六章手推式绿篱修剪机的应用 (25)6.1 手推式绿篱修剪机的设计图纸 (25)6.2 手推式绿篱修剪机的安装过程指示 (25)6.3 手推式绿篱修剪机的使用说明 (26)第七章总结和展望 (28)7.1总结 (28)7.2展望 (28)参考文献 (29)致谢 (30)赵男见:手推式绿篱修剪机的设计第一章绪论1.1课题的研究背景及意义绿篱是由灌木或小乔木以近距离株行密植,形成紧密结合的规则的植物篱笆。
手动草坪机 毕业论文

目录1绪论 (1)1.1引言 (1)1.2 草坪机在国内外现状和发展趋势 (1)1.2.1 草坪修剪机械 (1)1.2.2 草坪通气养护机械 (2)1.2.3 草坪施肥机械 (2)1.2.4 其它机械设备 (2)1.3 设计手动草坪机的意义 (2)1.4作品的科学性与先进性 (3)2 总体结构设计方案 (5)2.1主要任务以及主要技术指标 (5)2.1.1总体要求 (5)2.1.2.手动草坪机设计与制作的具体任务 (5)2.1.3主要技术指标 (5)2.2手动草坪机的工作原理 (5)3手动草坪机的零部件设计 (7)3.1 机械零件的设计方法 (7)3.1.1 传统的设计方法 (7)3.1.2 现代设计方法 (7)3.2 机械零件的选择原则及材料选择 (7)3.2.1材料的选择原则 (7)3.2.2钢 (8)3.2.3铸铁 (8)3.3销的选择 (9)3.4链传动 (9)3.4.1链传动的特点和应用: (9)3.4.2链传动的计算: (9)3.5轴 (14)3.5.1 轴的选材 (15)3.5.2 滚刀转轴的计算 (15)3.6滚动轴承的选择 (20)3.6.1 滚动轴承的校核 (20)4 切削用量的选择原则和计算 (23)4.1 切削用量的选择原则 (23)4.1.1切削深度ap (23)4.1.2进给量f (23)4.1.3切削速度V (23)4.2 切削用量的计算 (23)附录1:手动草坪机效果图 (27)总结 (28)参考文献 (29)致谢 (30)附录2: (31)摘要本设计为手动草坪机的设计,针对以人力为主驱动源,达到最大化利用资源,减少对能源的依赖。
依照这个思路设计了一种异于现市场的家庭式割草机。
整个草坪机分二级链传动部分、机架部分和刀具部分,割草机构及推杆机构的连接框架,传动机构与割草机构相连接。
设计链传动手动草坪修剪机,有滚刀的设计,链传动设计,机架设计,且将实物制作出来。
其特点在于:所述的割草机构由滚刀构成;所述的传动机构与割草机构的连接为齿轮与割草机构滚刀的转轴连接。
实用型多功能割草机的研制英语文献

毕业设计(论文)英文文献学院:机电工程学院专业年级: 07机械一班学生姓名:赵丽学号: 20071092 设计(论文)题目:手扶自走旋刀式草坪修剪机的设计指导教师:丁敬平教研室负责人:日期: 2011年 4月 10日Autonomous Utility MowerM. ZeitzewNavCom Technology, Inc, A John Deere Company,20780 MadronaAvenue,Torrance,CA 90503, USA.E-mail: mzeitzew@ABSTRACTTwo off-the-shelf John Deere utility mowers were modified for X-by-wire control for the purposes of constructing autonomous vehicles usable in sports-turf mowing applications. The purpose of these mules was to enable the gathering of requirements and customer feedback on such a system. The environment selected initially was that of a baseball stadium.These areas can be characterized as flat, highly controlled and well-groomed, for which precise mowing patterns are necessities.Typically the operators of these mowers are highly skilled; an autonomous system has the benefits of saving time and labor,permitting the efficient usage of less-skilled employees,and allowing skilled personnel to focus on more complex tasks (such as infield mowing and warning track grooming).For this application,there are stringent requirements on navigation,path planning and path tracking,while the safeguarding requirements are challenging,but more relaxed than,say,the requirements for golf courses.The calculation of precise position and orientation in this environment requires sensor fusion and is complicated by the fact that frequently the operating area is surrounded by very high walls,limiting sky visibility and preventing the usage of GPScentric navigation systems.Furthermore, it was desirable to mature the design far enough so that it could be operated regularly by non-technical operators.These results were achieved by developing an accurate local positioning system,making the hardware and software subsystems robust against unexpected failures and constructing a very simple graphical user interface.This paper will review other relevant existing systems,describe the hardware and softwaresystems utilized,and conclude with descriptions on the performance,customer learning,and description of properties of autonomous systems that enable theirintegration into a worksite.Keywords:Mowing,robotic,stadium,turf1.INTRODUCTIONThis paper describes a project to fully automate a utility mower for a sports-turf application.The target environment selected is that of a professional baseball stadium.The primary goal for this project is to learn about the durability, performance and value of autonomous systems in real use environments as a means of progressing towards a commercial autonomous machine that meets customer needs and application requirements.Potential customer benefits include saving time and labor,permitting the efficient use of less-skilled employees,and allowing skilled personnel to focus on more complex tasks (such as infield mowing and warning track grooming).As researchers, the benefits of choosing the baseball stadium environment are that they are typically characterized by flat,hard terrain and highly controlled.While the performance requirements are still quite challenging,the aforementioned qualities tend relax them considerably as compared to,say, mowing a public golf course.The overall intent is that this system represents the first generation of a family of autonomous machines with increasing capability and performance levels.In recent times,several autonomous consumer mowers have begun to appear on the market from manufacturers including Friendly Robotics,Toro, Husqvarna,Ambrogio, Zucchetti,Electrolux,and Belrobotics.None of these machines is near capable of meeting the requirements of a sportsturf application.There has also been a significant amount of research from academia in the area of autonomous mowing, including Carnegie Melon University (Batavia et. al.,2002; Roth and Batavia,2002) and the University of Florida (Chandler et al.,2000).Also,the Institute of Navigation has been sponsoring a mowing contest for the past two years and this has stirred greater academic interest in the problem domain.More recently,the companies Self-Guided Systems LLC, Michigan,USA and McMurtry Ltd.,Gloucestershire,UK have advertised commercial mowers tailored toward the same application space discussed here.The efforts of these two companies in particular are notable since they have attempted to address the issues of highly accurate,precise mowing patterns in areas with sky obstruction,where GPS-centric navigation systems typically degrade beyond system tolerances.First,a brief review of application-specific requirements is given.This is followed by a description of the system hardware and software.Next,a summary of actual performance is presented and then a review of customer learning accomplished during a season of use by two customers. Finally, the conclusion section ends the paper and discusses future work.2. STADIUM MOWINGStadium mowing is considered an art work and generally requires a group of highly skilled groundskeepers working together.While the stadium infield and side line area are usually mowed using a walk-behind mower, the outfield mowing is done using a spinning reel mower,such as the John Deere 2653A (fig. 1)..Figure 1. John Deere 2653A utility mowerOutfield mowing patterns come in many varieties,but a common feature is that they are constructed by driving straight lines to produce the desired striping effect (fig. 2).It is imperative that the mowing stripes have uniform width in order to provide a nice look. The striping itself is caused by the blades of grass being pushed in opposing directions and necessitates that adjacent swaths are mowed in opposite directions.Excessive overlap or any gaps between adjacent stripes, and oscillations or other irregularities while driving can ruin the appearance of the field.It was estimated that the composite error in navigation and control (path tracking) needs to stay below 5 cm during mowing in order to produce acceptable results.Cursory evaluation has shown that expert operators of these machines at normal operating speeds achieve this accuracy.The outfield mowing task can itself take several hours depending on the desiredpattern and may involve more than one mower operating simultaneously.When two mowers operate concurrently, generally they will be mowing in different directions to produce checkered patterns.In general, each stadium may have different sets of mowing patterns they utilize.Throughout the season, the mowing patterns on the field will change.One reason to change mowing patterns is to prevent excessive turf wear. The checkered mowing pattern in figure 2 is produced by mowing the field in the direction from home plate to center field,and also mowing in the direction from foul pole to foul pole.This picture was taken after a day of testing.During this test,the mower was not actually cutting the grass,the reels were lowered while making the passes but were not spinning;the visible striping effect was produced from the rollers on the front of the reels.Figure 2. Chase Field, Phoenix, Az.Normal mowing operating speed is around 1.5 - 2.5 m/s.At low speeds or when the mower is stationary,the reels are raised to prevent damage to the turf.The reels are also raised any time the vehicle leaves the grass area.Excessive turning on the outfield grass is also frowned upon. In many cases,the groundskeepers will empty the clippings from the baskets during operation as opposed to letting them fall to the surface.Depending on the length of the grass,this emptying can occur as often as once per pass across the field. This additional task can greatly increase the operation time and either requires coordination with an additional vehicle used to store and haul the clippings or driving the mower itself to a container off the field somewhere.Particularly on the day of a baseball game,there are many tasks beyond the outfield mowing that must be performed,such as raking and infield mowing.Another motivation for making the mower autonomous is to free the workers to do these other tasks.3. CONCEPT OF OPERATIONThe current prototype systems are installed by first mounting fixed navigation beacons around the stadium.Next, the field boundaries are surveyed using the navigation system and are input into a map file.The map, together with each set of pattern preferences,is used to create the respective mission plan using an engineering user interface.An example mission plan is shown graphically in figure 3.With this current design autonomously mowing a checkered pattern requires two separate operations,one for each direction.The system is intended to be used in the field by a non-technical operator.As such, it was necessary to not only execute the desired mowing patterns and meet the performance requirements mentioned above,but also provide a simple and intuitive,small, handheld user interface with wireless connectivity to the vehicle.Figure 3 Foul pole to foul pole patternThe following steps are performed by the operator to execute the autonomous mowing feature:1. Inspects and adjusts machine (mowing height, reel to bedknife, fluid levels, etc.).2. Visually inspects mowing area and removes potential obstacles (debris, stuck irrigation heads, etc.).3. Starts onboard computer system.4. Starts machine and manually drives onto field.5. Turns on user interface, ensures proper connection to system and system initialization.6. Selects pre-computed desired mowing pattern from menu on user interface (fig. 4).7. Vehicle begins operation. Operator monitors progress during operation visually and from the user interface, and remains in view of vehicle.Operator has capability of pausing operation at any time (to empty clippings,for example) or exercising remote emergency stop,if necessary (hopefully never).8. System notifies the operator when the mowing pattern is complete.Operator powers off computer and user interface,or alternatively can select another mowing pattern toExecute.Figure 4. Screenshot of user interfaceThe system is described in more detail in the next section.4. SYSTEM DESCRIPTION4.1 ArchitectureMost of the software is written using a Model Driven Development tool in C++. The system architecture is such that it can easily be adapted to changes in hardware, technology,and application (fig. 5).The same software base has been used successfully on several projects already,with various processors and operating systems,and combinations of sensors and algorithms, vehicles and applications.There are five major components that comprise the system:vehicle control unit (VCU),navigation, perception, intelligent vehicle controller (IVC),and user interface. In figure 5,“Robot (Vehi cle) Controller” refers to IVC.In this application,all five major components reside on separate processors,but in other instances some of the core components reside on the same physical processing unit. In the following,each major component is discussed in more detail.Figure 5. System architecture.4.2 Vehicle and Vehicle Control Unit (VCU)The vehicle used in this project is a modified version of the John Deere 2653A (fig.6).The RF ranging antenna is at the top of the mast in the front of the vehicle.At the base of the mast is a SICKTM laser used by the perception component, as well as two boxes that house the perception and navigation subsystem computers.The third box just below the facing side of the seat houses the computer with the intelligent vehicle controller.The vehicle control unit is underneath and is not visible in figure 6.Figure 6. Modified X-by-Wire John Deere 2653A. Specifically, the vehicle was converted to X-by-Wire control by creating a VCU with a CAN messaging interface to enable control by an external processor.The low-level control algorithms(closed-loop steering and velocity, implement control)were implemented inside the mand and feedback signals between the VCU and the IVC enabled autonomous operation.At the same time,it is possible to use this machine manually,so that groundskeepers could alternatively use the vehicle as they do the off-the-shelf version of the vehicle available today.4.3 NavigationThe use of GPS requires good sky visibility. In this application,due to the stringent navigation accuracy requirements,an RTK-GPS solution is required, which requires theuse of a base station. Because many of the baseball stadiums have high walls and other obstructions around the field,RTK-GPS is inadequate,even with augmentation by (affordable) inertial sensors and/or odometry sensors.This necessitated the use of alternative technology.Other earlier prototype systems featured local positioning systems (LPS) based on ultrasonic ranging, using time-of-flight measurements from a vehicle to a set of beacons at fixed locations in the environment (Hunt et al.,2006; Zeitzew, 2004).This positioning system had insufficient range to support sports-turf areas,which can involve 100 meter ranges,or more. As a result,a new LPS based on radiofrequency signals was recently developed, which exceed the required range and accuracy requirements.The LPS system requires an antenna on the vehicle andinvolves RF ranging to battery-operated beacons,typically 6 in this application,mounted on the walls around the stadium. The LPS is part of a larger sensor fusion component that incorporates these ranges together with vehicle odometry information and measurements from inertial sensors (3-axis gyroscope and accelerometers) into an Extended Kalman Filter.The testing shows that the error due to the navigation system is on the order of 2 cm RMS (root mean squared) at normal operating speeds. Moreover, studies indicate that our LPS system has a range of hundreds of meters and can be mass-produced in a cost-effective manner for future products.Finally,note that the sensor fusion component also admits GPS (or RTK-GPS) instead of or in addition to the LPS;the navigation system was built flexibility to easily allow investigation of different combinations of sensors.4.4 PerceptionPart of the perception research included the investigation of various types of sensors, including ultrasonic, radar and laser,and the usage of differing safeguarding algorithms. Generally,the byproduct of the perception system can be used by other elements for application-specific purposes.In the present case,the only usage of the perception data was to enable vehicle safeguarding.Because the highest priority in this application is to maintain precise mowing patterns,this alleviated the need to deploy what can generally be a quite complicatedobstacle avoidance system.Here,the only acceptable response to obstacles during mowing is to either reduce vehicle speed or stop.Furthermore, since the implementation did not include reverse operation,it allowed deploying a greatly simplified safeguarding system onto the fielded system.Specifically,the algorithm relied only on the range scans from a SICKTM laser mounted on the front of the vehicle (fig.6).The range scans were combined with vehicle feedback data in order to determine if the current trajectory was clear;if not,the vehicle would reduce its speed as a function of the distance to the nearest obstruction, eventually stopping if necessary. While this system proved to be reliable and robust against safeguarding humans, walls and other large obstacles,its high cost and inability to detect people approaching the machine from the sides or rear indicate that more work is necessary to provide a comprehensive and marketable safeguarding system.4.5 Intelligent Vehicle Controller (IVC)The IVC has several responsibilities within the system,including:•Mission Planning: Ability to construct mission plans based on environment maps andtunable parameters, as well as providing planning services during mission execution. This includes area coverage path planning (Gray, 2006).•Mission Execution: Includes application-specific elements that run during the mission.One such example is the path tracker; the responsibility of the path tracker is to compute steering and velocity commands so that the vehicle follows the desired path.The path tracking algorithm utilized in this project was a standard PID with feed-forward term to account for path curvature, using the computed path lateral deviation as the error signal.•User Interface:Gateway to send and receive data from user interface(s).•VCU Interface:Gateway to the vehicle's actuators and sensors.4.6 User InterfaceTwo user interfaces were constructed for this project. The first is best characterized as an engineering user interface,which provided administrative-level access to the functionality of the system.The second user interface was a simplified version thatprovided only the functionality that was deemed to be useful,usable and desirable.The later user interface ran on a small Pocket PC device as shown in figure 7.Figure 7. Screenshot of operator user interface during mowing operation.The mower icon is on left side and shown with a notional hemisphere of coverage by the perception system.Via this user interface,the operator is allowed to:•Select from available maps.•Select from available missions for the selected map.•Start, stop and pause missions.•Monitor progress graphically and other simple feedback signals. •Teleoperate the vehicle if necessary.5. PERFORMANCE5.1 Operating in StadiumsTwo such vehicles were fielded into professional baseball stadiums, one major league and one minor league. Both of these systems were utilized over the course of several weeks during the spring 2005 baseball season.During the latter portion of the season, the systems were used by the regular groundskeepers whereas the engineering role migrated to that of occasional observation.The systems were frequently operated solely by the groundskeepers.The groundskeepers were asked to log their comments, and these were collected and later analyzed,the results of which are discussed below in the section on customer learning.A third system was used for local testing at a large athletic facility over several fields (mostly soccer fields).5.2 Path TrackingTable 1 summarizes typical RMS path tracking performance.Transport correspondsto periods where the implement (spinning reels) are disengaged, like during turns between rows.The numbers were computed by averaging the RMS errors computed over several missions and the two stadiums. It shows that the system was able to meet the required subsystem specifications.Note that the total system error is comprised of both the path tracking (how well vehicle tracks reference) and navigation system (how well reference matches ground truth) errors.The latter is not reflected by these numbers and was validated by other means.Table 1. Average RMS error for mowing and transport autonomous operation. Parameter Initial Specification Current Performance Mowing (1.6 m/s) 3.5 cm 2.1 cm Transport (2.3 m/s) 9.0 cm 3.9 cm6. CUSTOMER LEARNINGThe positive feedback from the customers included appreciation for the straightness of mowing stripes and the time savings that allowed employees to focus on other tasks, particularly during baseball team home stands during which the outfield is mowed every day.Having the autonomous machine in regular operation would allow a reduction in the need for highly skilled drivers and potentially allow completion of the required work with a smaller staff.Other observations made include:•The assumptions that operators will be comfortable being a full-time safety rider or that when off-board will give full attention to the machine during autonomous operation are erroneous.Very quickly they become comfortable with the autonomous machine and will ignore it,spending time raking the warning track,painting a logo or other activity, often with their backs toward the machine.•The need to empty the clippings in some stadiums,and the performance of peripheral tasks such as line painting, present an engineering challenge to further expand the scope stadium automation.•There would be value in having two (or more) autonomous machines operating simultaneously in order to provide even more time and labor savings,considering that checkered mowing patterns are prevalent in the industry.•The area bordering the outfield is often cluttered with workers or other equipment.Further progress is needed to safeguard robustly against these hazards. •The perception system should be upgraded to account for smaller and moving obstacles typically found in the operating environment.•The ability to detect stuck irrigation heads that fail to retract below surface, which can cause damage to the spinning reels, would also be of value.•In some cases, a small part of the field is damaged or particularly sensitive and the groundskeeper wishes to avoid mowing or driving over it. The ability to easily adjust the planned mowing pattern from the handheld user interface would be valued.•The ability to drive in reverse and utilize 3-point turns at the end of rows, rather than always driving forward and turning outside the field, has operational benefit.•It is worth revisiting the user interface design and form factor, perhaps migrating to a smaller and even simpler design.•The system also featured the ability to teleoperate the vehicle, but it turned out to not be sufficiently interesting or useful to anyone other than the engineers who worked on the project.7. CONCLUSIONThis paper has described the deployment of two off-the-shelf John Deere utility mowers that were modified for X-by-Wire control for the purposes of constructing autonomous vehicles usable in sports-turf applications.It has had two main benefits, first in providing a mechanism for increasing the company’s expertise in autonomous vehicle systems generally and in sports-turf applications in particular and secondly in gaining understanding of the value of such systems to customers. An improvement of the robustness of the vehicle, hardware and software, incrementally improving upon it, and also explore other application spaces will be continued. In parallel, a realistic business model for this type of equipment needs to be built.8. ACKNOWLEDGEMENTSThe main sponsor of this project was the Commercial and Consumer Equipment Division of John Deere.The project team included James C. Beck, Alex D. Foessel, Steven A. Hawkinson, David R.Holm, Boyoon Jung, Mark P. Kaplan, Stewart J. Moorehead, Cameron A. Mott, Andrew J.Norby, Geoffrey M. Phillippe, Jose O. Quan, John F. Reid, Mark A. Schmidt, Scott A. Stephens,Erick C. Velasquez, Kurt Vander Wiel and Autonomous Solutions Incorporated.We wish to thank Grant Trenbeath, Scott Strickland, Kyle Waters and their respective crews for both their help and patience in testing and evaluating the system.9. REFERENCES【1】Batavia, P., S.A. Roth, and S. Singh. 2002. Autonomous Coverage Operations in Semi-Structured Outdoor Environments. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’02), October 2002.【2】Chandler, R.C., A.A. Arroyo, M. Nechyba, and E.M. Schwartz. 2000. The Next Generation Autonomous Lawn Mower. In: Florida Conference on Recent Advances in Robotics, May 4-5, 2000, V olume 4, Florida Atlantic University, Baca Raton, Florida. 【3】Gray, S.A., S.L. Hansen, and N.S. Flann. 2006. Path planner and a method for planning a path of a work vehicle. U.S. Patent No. 7010425.Hunt, K. E., M. A. Schmidt, D. R. Holm, and S. A. Stephens. 2006. Method for configuring a local positioning system. U.S. Patent No. 7026992.【4】Roth, S.A., and P. Batavia. 2002. Evaluating Path Tracker Performance for Outdoor Mobile Robots. In Proc. of the 26-27 July 2002 International Conference Chicago, Illinois, USA Automation Technology for Off- Road Equipment 2002. St. Joseph Mich.: ASAE 2002,pp.388-397.【5】Zeitzew, M. A. 2004. System and method for navigation using two-way ultrasonic positioning.U.S. Patent No. 6674687.自治效用割草机M. ZeitzewNavCom技术有限公司,公司,20780迪尔公司Madrona大道、托伦斯,CA 90503,美国。
手推自走式草坪修剪机设计

2011.01-2011.03月 设计手推式草坪修剪机机械结构
及其尺寸,对一些部件进行强度校合;
2011.03-2011.04月 准备毕业设计(论文)中期检查; 2011.03-2011.04月 进行整体的建模和绘制部分零件
图;
2011.04-2011.05月 撰写毕业设计说明,准备答辩。
三、研究内容及方案
(一) 手推式草坪修剪机的基本工作原理
(二) 割草机排草方式
方案一:侧排式 方案二:后排式/集草袋 最后选择:后排式/集草袋
(三)外壳设计
蜗壳状外壳
(四) 手推式草坪修剪机的高度调节机构
方案一: 四轮独立高度调节 方案二: 四连杆高度调节 最后选择:四连杆高度调节
(五) 刀片选择
1、翼片高度对排草量的影响
2、刀片切削刃的长度 3、 耐磨性
(六) 计算校合电机动力输出轴、刀片、外壳受力状 况、强度等
(七)电机选择
功率:1200w 左右 转速:3000rpm
(八)利用三维建模软件Pro/E 进行手推式草坪修剪 机的三维建模设计
四、进度计划
2010.11-2010.12月 查阅文献资料,撰写开题报告和
毕业设计(论文)开题报告
课题名称:手推式草坪修剪机 学 院:机械学院 专 业:机械设计制造及其自动化 班 级: 学 号: 姓 名: 指导教师:
目录
• 一、选题背景及其意义 • 二、文献综述(国内外研究现状与发展趋势) • 三、研究内容及方案 • 四、进度计划 • 五、参考文献
题目:手推式草坪修剪机
我国草坪机械使用现状
草坪机械市场活跃,进口机械扮演“主角”尽管国内草坪
机械市场十分活跃,但是国内产品销售成绩却不容乐观。国外
手推式草坪割草机设计大学论文

毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科毕业设计(论文)题目: 手扶自走式草坪修剪机的设计学院: 机械电子工程学院专业: 机械设计制造及其自动化班级: 1003011学号: 100301118学生姓名:吴天军指导教师: 周凤芳职称:讲师二○一四年五月二十日手扶自走式草坪修剪机的设计摘要草坪是现代社会的重要组成部分,近年随着草坪面积的增加,对草坪的护养也随之增加。
草坪修剪机是一款专门用于对草坪进行修剪作业的草坪养护机械。
它有许多的种类分支,按行动能力,大体上可以分为手推式和手扶自走式。
手推式草坪机的行走由操作者推行,操作较为费力,不适合长时间作业。
手扶自走式草坪机则避免了这个缺陷,它的作业动力与行走动力来源于发动机,通过带轮与齿轮的传动,来完成草坪机的作业与行走,可以极大地减少操作者的工作强度,为草坪的养护工作带来便利。
本文对手扶自走式草坪修剪机的工作原理,传动系统和修剪机构等具体结构做了详细介绍,并结合任务书计算确定了传动系统中齿轮和轴的基本尺寸,设计了一台功能全面,能够满足生活需要的手扶自走式草坪修剪机。
关键词:手扶自走式;草坪修剪机;工作原理,传动系统Design of walking self-propelled lawn mowing machineABSTRACTLawn is an important part of modern society, in recent years, with the increase in the lawn area on the lawn of the nursing increases. Lawn mower is a special job for lawn trim lawn maintenance machinery. It has many types of branches, according to ability to act, can be divided into hand-hand push and self-propelled. Walking hand-push lawn mower implemented by the operator, the operation is more laborious, not suitable for long time operation. Hand self-propelled lawn mower is to avoid this defect, its operating power from the engine with the power to walk through the drive pulley and gear to complete the job and walking mower, can greatly reduce the intensity of the work of the operator bring convenience for lawn maintenance work.In this paper, the principle of self-propelled walk behind lawn trimmers, concrete structures, such as transmission and trim body made a detailed introduction, combined with the mission statement of the basic calculation to determine the size of transmission gears and shafts, designed a full-featured, hand to meet the needs of self-propelled lawn mower.Key words:Hand self-propelled; lawn mower; working principle,;transmission system目录1 前言 (5)1.1 课题来源 (5)1.2 课题研究的目的和意义 (5)1.3本课题研究的主要内容 (6)1.4草坪修剪机的发展概况及存在的问题 (6)1.5草坪修剪机的发展前景 (7)2手扶自走式草坪修剪机概述 (9)2.1手扶自走式草坪修剪机的定义 (9)2.2手扶自走式草坪修剪机的的构造及原理 (10)2.2.1手扶自走式草坪修剪机的基本构造 (10)2.2.2手扶自走式草坪修剪机的工作原理 (12)2.3手扶自走式草坪修剪机的主要部件选择 (13)2.3.1壳体 (13)2.3.2升降机构 (13)2.3.3差速器 (14)3总体设计 (17)3.1发动机的的选择 (17)3.2刀具的设计 (17)3.2.1刀片材料的选择 (17)3.2.2刀具的设计 (18)3.2.3刀具的受力分析 (18)3.2.4旋刀转速的确定 (21)3.3传动部分的设计 (21)3.3.1带传动的设计与校核 (22)3.3.2锥齿轮传动的设计与校核 (23)结论 (26)致谢 (27)参考文献 (28)1 前言1.1 课题来源本课题来源于南京林业大学机械电子工程学院2014届毕业设计选题。
1.2 课题研究的目的和意义草坪是高度培育的特殊草地,随着草坪面积的扩大,品质的提高,草坪业逐渐由单一的人工作业向半自动化﹑机械化﹑自动化过度,草坪作业的机械化已经成为十分重要的课题。
大部分的草坪一直到19世纪中叶还在使用镰刀来割草或放牧牛羊以保持草地的整齐性。
随着高尔夫球﹑网球以及足球等运动的兴起,保持完整的草地做运动场便成为当务之急。
从20世纪起出现以机器代替手工的趋势,于是好的修剪机遂成为草坪管理的必需品。
草坪修剪机分滚切式﹑旋刀式﹑剪切式三类,按动力又可分为手动与机动两类。
机动有乘坐式与手推式,北京园林机修厂JUS—420型旋刀式修剪机系单缸四冲程汽油机驱动,功率2.6Kw,一把旋刀,幅宽420mm,每班可修剪2000m2,整机质量40Kg。
上海园林机械厂JCG540Ⅱ型滚切式草坪修剪机,乘坐手推两用式,有两个前进档,IE50F—2汽油机功率2.3kw,5片滚刀,幅宽540mm,该机高,但用于坡地时机组稳定性较差。
小庭院的草坪可用上海生产的JCG—250Ⅱ型手推草坪修剪机,人推动前进并使6个滚刀旋转切割草坪,幅宽250mm。
德国SOLO522型草坪修剪机为手推式,动力系单缸四冲程汽油机,功率为2.3kW,刀片为剪切式,幅宽800mm。
该产品的特点是刀片耐磨,机具噪声低,振动小,对坡地适应性好。
改换工作部件可作扫雪工具。
旋刀式剪草机适用于草高25-80mm低要求的草坪,剪幅在0.5-20.m之间。
滚切式剪草机适用于草高3-80mm的高要求草坪,剪幅0.5-5.0m之间。
修剪是维持优质草坪的重要作业,它主要是定期除掉草坪草枝条的土表部分。
在特定的草坪上,根据所需要的培育强度,修剪的目的是在特定的范围内保持顶端生长,控制不理想的、不耐剪的营养生长,维持一个观赏和游息草坪,产生一个真实的击球表面或发展草坪作物。
修剪的质量由所使用的剪草机的类型和割时草地的状况决定。
因此,随各种特殊功能的开发,应重视修剪机具的发展。
我国幅原广阔,地区差异很大。
草坪的功能不同,对机具的要求也不同,加之各地区经济发展不平衡,用户的购买能力也有差异,因此草坪机械只有开发系列产品才能满足不同市场的需要。
1.3本课题研究的主要内容本课题要求通过队手扶自走式草坪修剪机构造及工作原理的了解分析,深入理解其整体系统的结构原理,进行系统总体设计。
1.首先根据任务书所给参数确定手扶自走式草坪修剪机的行走及工作结构类型以及相关结构参数。
2.由结构参数选择发动机,并完成带轮传动的设计。
3.完成差速器的设计。
1.4草坪修剪机的发展概况及存在的问题在草坪修剪机问世之前,修剪草坪的主要工具是最原始的镰刀,当然保持草地平整的重要方法是放牧牛羊。
一个叫托马斯·普拉克内特的工程师在1805年获得了第一台割草机的发明专利。
但同时其他发明家看到普拉克内特的机器后,认为他们能够干得更好。
最成功的是埃温·巴丁。
他在1830年制造了一台割草机,而且非常类似于今天使用的那些草坪修剪机。
1830年,英国纺织工程师比尔.布丁取得了滚筒割草机的专利,此后割草机就正式登上了历史的舞台,并且得到了快速的发展。
我国生产割草机起步较晚,生产企业的规模普遍较小,均没有形成规模批量,长期以来,均以进口为主。
据统计,到1999年底我国有各种园林机械10万台,1999年的割草机销售量在3万台左右,其中80%为进口。
我国割草机进口主要来自于日本、美国、意大利、瑞典等国家,进口价格在0.38万元到5.8万元。
国内的生产厂家主要有:中美合资江苏淮阴泛亚园林机械有限公司,南通机床厂为转产生产割草机的厂家两家大型厂家,及其他一些小型厂家。
总的来说,我国草坪修剪机市场的前景很广阔,有很大的发展舞台。
国内割草机械市场发展缓慢,我国草坪机械产品全线接受检验,应用中暴露出―些质量问题。
对此,一些专家普遍认为,以下几个方面是导致当前我国畜牧业类机械产品质量水平低的主要原因:一、目前草地草坪业投入的资金不足,国家对其支持力度有所减缓甚至下降,使得许多割草机械制造企业纷纷转产甚至停产;再加上我国技术、制造手段、工艺等方面的想对比较落后,起步晚,在这种情况下,我国的草坪修剪机完成的工作量仅仅是其他国家同类机型的二分之一。
制造能力和水平进一步拉大了距离。
产品品种不全,成套性差。
我国的用户不能根据各自的经营规模来选择最合适自己的机具,很多是被动的选择,产品种类不齐全导致割草机效益不高。
我们割草机的生产技术水平想对比较低。
这个行业整体科学技术水平的标志就是该行业的技术水平高低。
专家分析认为,造成割草机械产品质量水平低的原因有多方面,但很多厂家缺乏比较好的售后服务系统、缺乏资金投入、人才短缺是造成研发能力和生产制造工艺水平低的关键所在。
1.5草坪修剪机的发展前景根据国外有关专家的研究,城市人均应有25~302m的草坪才能解决人们的二氧化碳和氧气交换的需要。
下面是国外一些城市人均草坪面积与中国及北京的对比表如表2.1-1所示。
表2.1-1 国外一些城市和中国及北京人均草坪面积从上表可以看出,我国人均占有草坪面积与发达国家相比,有着较大的差距。
全国城镇人均草坪面积为12m,按中国目前城镇人口3亿人计算,全国现有各类草坪面积约为3万2hm,若每公顷需5台剪草机,现有市场容量就达15万台。
随着中国经济的快速发展,剪草机的市场容量将成倍增长。