电压互感器二次绕组数量和容量的确定

电压互感器二次绕组数量和容量的确定
电压互感器二次绕组数量和容量的确定

第六章电压互感器设计计算

第六章电压互感器设计计算 第一节计算依据 电压互感器计算依据是: (1)额定一次电压、 (2)额定二次电压 (3)剩余电压绕组(如果有)额定电压 (4)二次绕组准确级及额定电压,极限输出 (5)剩余电压绕组(如果有)准确级及额定电压 (6)额定频率 (7)绝缘水平 第二节铁心和绕组设计计算 一、铁心设计计算 1.铁心额定磁通密度选择 额定磁通密度是一个选择性很强的基本设计参数。不同的电压互感器其额定磁通密 度值差别很大。选择合适的额定磁通密度是产品设计中必须首先解决的问题之一。 额定磁通密度与互感器误差及过励磁特性直接有关,其数值选取分析如下。 (1)单相及三相不接地电压互感器通常用于测量过压、压保护,当系统发生故障时并不改变互感 器相间电压或线端与中心点的电压。因此这两种电压互感器并不承受系统故障所引起的工频电压升高。 它们可能承受的最大工频电压升高幅度一般不超过1.3倍额定电压,是指发电机突然甩负荷而引起的飞 转,长线电容效应等所引起的工频电压升高。此时如果铁心过饱和,二次绕组感应电势中将含

有较大的 三次谐波分量,电压波形失真。这种电压互感器选择磁通密度时需满足以下两点要求。 a.电压互感器在两个极限电压空载误差的差值不应过大。 b.系统出现工频电压升高时,互感器铁心不应过饱和。 这种电压互感器选取额定磁通密度应不大于1.2T。 (2)供中性点有效接地系统使用的单相接地电压互感器,主要用于测量及单相接地保护。 互感器 一次绕组连接在相与地间,它除了承受幅度一般不超过1.3倍额定电压的工频电压升高外,还要承受接 地短路引起的工频过电压,其幅度一般不超过1.5倍额定电压。这两种过电压都是瞬时的,选择这种互 感器额定磁通密度时,需满足以下三点要求。 a.测量用绕组在两个极限电压下空载误差的差值不应过大。 b.系统出现工频电压升高时,互感器铁心不应过饱和。 c.系统发生单相接地短路时,互感器铁心不应过饱和。 三点要求中起决定性作用的是c点。这种电压互感器选取额定磁通密度时应不大于1T。 (3)供中性点非有效接地系统使用的单相电压互感器和三相电压感器,它们所承受的过电压也有 两种。1.3倍额定电压的工频电压升高和单相接地短路引起的工频过电压,其幅度一般不超过1.9倍额定 电压。前一种过电压是瞬时的,而后一种过电压可持续数小时。 另外,中性点非有效接地系统中互感器可能引起并联铁磁谐振,仅以铁磁谐振要求,铁心额定磁通密度愈小愈好。

电压互感器介绍及工作原理 (图文) 民熔

电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 民熔电压互感器产品介绍 JDZ-10高压电压互感器 10kv半封闭式电压互感器0.5级羊角型 JDZX10-10电压互感器 10KV户内高压柜保护用REL10-10互感器

JDZ9-10电压互感器

电压互感器和变压器的基本结构非常相似,它也有两个绕组,一个称为一次绕组,另一个称为二次绕组。两个绕组都安装或缠绕在铁芯上。两个绕组之间以及绕组和铁芯之间有绝缘,因此两个绕组之间以及绕组和铁芯之间存在电隔离。 电压互感器运行时,一次绕组N1与线路回路连接,二次绕组N2与仪表或继电器连接。因此,在测量高压线上的电压时,虽然一次电压很高,但二次电压很低,可以保证操作人员和仪器的安全。 其工作原理与变压器相同,基本结构为铁芯、一次绕组和二次绕组。其特点是容量很小且相对恒定,在正常运行时接近空载状态。 电压互感器本身的阻抗很小。一旦二次侧短路,电流会迅速增加并烧坏线圈。因此,电压互感器的一次侧用熔断器连接,二次侧可靠接地,以避免一次侧和二次侧绝缘损坏时,二次侧对地高电位造成人身和设备事故 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。

电流电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法 电流互感器实际二次负荷(计算负荷)按公式(1)计算: 2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S 电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。 l L R A ρ= (2) 式中: 2I S ——电流互感器实际二次负荷(计算负荷),VA 2nI S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择1.5~3 A ——二次回路导线截面, 2mm ρ——铜导电率,257m /mm )ρ=Ω,(? L ——二次回路导线单根长度,m l R ——二次回路导线电阻,Ω jx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2 jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入 90,其余为1。 2n I ——电流互感器二次额定电流,A ,一般为5A 或1A 。 m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为0.05Ω,三相机械表选择0.15Ω。 m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之 和。 k R ——二次回路接头接触电阻,一般取0.05~0.1

根据上述的设定,以二次额定电流为5A ,分相接法,4 mm 2的电缆长100米,本计量点接入2个三相电子表为例, 222221.5() 21001.55( 120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+???+??+? = =(VA) 取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。 而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为: 222221.5() 11005( 120.050.1)574I n jx l jx m k S I K R K Z R =+∑+???+??+? =1.5 =24(VA) 取30VA 。 附录D 电压互感器额定二次容量选择方法 电压互感器的实际二次负载按公式(3)计算: 22Y n U S U =2 (3) 因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。 2U b S S =∑ (4) b S ——电能表单相电压回路功耗 根据目前国内外电能表技术参数,单相电压回路的平均功耗参考值如下所示:

电压互感器的结构及功能

电压互感器和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 线路上为什么需要变换电压呢?这是因为根据发电、输电和用电的不同情况,线路上的电压大小不一,而且相差悬殊,有的是低压220V和380V,有的是高压几万伏甚至几十万伏。要直接测量这些低压和高压电压,就需要根据线路电压的大小,制作相应的低压和高压的电压表和其他仪表和继电器。这样不仅会给仪表制作带来很大困难,而且更主要的是,要直接制作高压仪表,直接在高压线路上测量电压,那是不可能的,而且也是绝对不允许的。 电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电的隔离。电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 电压互感器实际上是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/301960594.html,。

PT开口三角(三相五柱式电压互感器)的工作原理

PT 开口三角(三相五柱式电压互感器)的工作原理 电压互感器是将电力系统的一次电压按一定变比缩小为要求的二次电压,向测量表计和继电器供电,其工作原理与变压器基本相同。电压互感器通常有单相、三相三柱式、三相五柱式电压互感器等几种,由于使用方法不同,各有优、缺点。三相五柱式电压互感器,是磁系统 具有五个磁柱的三相三绕组电压互感器,广泛采用于大中型企业,具有低电压、过电压保护、低电压启动等各种保护功能;备自投等所有电压继电器电压值均来自电压互感器二次。 信息来自:输配电设备网 1 三相五柱式电压互感器的接地方式 信息请登陆:输配电设备网 电压互感器二次绕组接地方式与保护、测量表计及同步电压回路有关,有b 相接地和中性点接地两种方式,其接线方式见图1、2。信息来源:https://www.360docs.net/doc/301960594.html, 图1 电压互感器二次通过 b 相及JB 接地原理图信息来源:https://www.360docs.net/doc/301960594.html, 图2 电压互感器二次不接地原理图信息来源:https://www.360docs.net/doc/301960594.html,

1.1 电压互感器二次绕组两种接地方式的比较信息:输配电设备网 1.1.1 在同步回路中在 b 相接地系统中,对中性点非直接接地系统,单相接地时,中性 点位移,不能用相电压同步,必须用线电压同步。如同步点两侧均为 b 相接地,其中一相公用,同步开关档数减少(如采用综保,则接线更为简单),同步接线简单。对中性点直接接地 系统,可用辅助二次绕组的相电压同步。信息来自:https://www.360docs.net/doc/301960594.html, 1.1.2 在保护回路中信息来源:https://www.360docs.net/doc/301960594.html, 在b 相接地系统中,①在零线上串接的隔离开关辅助触点G,如不可靠而断开时,会使10kV 以上电压距离保护断线闭锁装置失去作用,这时若再发生一相或两相断线,将导致保 护误动作。②因为辅助信息请登陆:输配电设备网 绕组的一端与 b 相接地点相连,由于基本二次侧绕组上有负荷电流流过,在电缆芯出上产生电压降,使正常开口三角形有电压3U0 ,对零序方向元件不利。若单独从接地点引接零序方向继电器回路,则接线 信息来自:https://www.360docs.net/doc/301960594.html, 较为复杂。 信息来自:https://www.360docs.net/doc/301960594.html, 在中性点接地系统中,由于中性点无任何断开触点,可靠性高。因中性点没有电流通过,无电压降,对保护无影响。信息请登陆:输配电设备网 1.1.3 在测量表计回路中信息来自:https://www.360docs.net/doc/301960594.html,

线路上电压互感器作用

线路PT作用 线路PT只有单相有的(A、B、C都可以),它的作用重合闸需要检无压或检同期时用 1、线路跳闸时,用于检定线路无电压,重合闸才能动作重合 2、当线路送电时,用线路PT采电压量,用于进行线路和母线电压比较,以便进行同期合闸 线路装设单相PT的作用是抽取线路的一个电压量来作为自动重合闸装置检同期或检无压合闸的依据。 比如说自动重合闸装置需要本侧先合闸的话,那么可设定为检无压,这样线路跳闸之后,重合闸装置会通过线路单相PT检测到线路没有电压了,便检无压自动合闸。如果需要对侧先合闸,本侧检同期合闸,如果对侧没有合闸,线路单相PT则检测不到电压,重合闸装置不会先合闸,只有当对侧合闸了,重合闸装置便会将线路单相PT和对应相的母线PT两者采集的电压量做同期比对,如果同期检定成功,则发出检同期合闸指令。可见,无论自动重合闸是检同期还是检无压方式,都要依靠线路单相PT采集的一个电压量才能完成,这也正是线路单相PT的作用,即供重合闸装置检同期或检无压使用。 也许有师傅会疑问,为什么线路装单相PT而不装三相PT呢?因为重合闸在单重方式时是不考虑同期检定的,也就是说三相重合闸才考虑,那么三相重合闸的前提则是三相跳闸,可见,已知三相是同时跳闸的情况下,只要检测一相没有电压,也就等于是三相都没有电压了,从而检无压成立。此外,在同期检定的时候,发电机组同期检定比较严格,所以发电机和系统侧的三相电压都要送到自动准同期装置里进行判别,而线路同期检定就比较简化一些,只要把待并两侧事先约定好的同一相进行同期检定,相位等条件满足就可以了。也就是说,线路同期检定只需要线路PT的单相电压和对应母线PT与线路PT同相的那一相电压进行比对即可,所以,线路PT只有一相也就够用了。而且前面已经提到了,只要是事先约定好的同一相进行检定就可以,所以,线路PT有的装在C相,有的装在A相,这个都是没有问题的。而线路保护所用的电压量,那是取自母线PT的,而且基本都是三相电压量了。 下边摘一段线路重合闸装置的说明书原文: 4.8.3重合闸方式 通过控制字KG2.0可选择重合闸的方式:不检方式、检无压方式、检同期方式。 检无压方式中,线路抽取电压(从线路单相PT抽取的单相电压)小于0.3倍额定电压则判断为无压。 检同期时,当母线电压与线路抽取电压(同上)均大于0.75倍额定电压时,检查线路抽取电压同相应相别的母线电压之间的相位差,若小于整定的同期角,则检同期条件满足。 此外,还有的线路单相PT作为检电器,然后引入五防功能,防止带电合地刀。 最后补充一点,线路装设单相PT是从节省投资和根据需要等多方面进行考虑的,并不是所有的线路PT都是单相的。我们以前的110KV线路PT是单相的,而二期的500KV线路PT就是三相的了,而且我去了很多500KV站,发现有不少站特别是3/2接线方式的,有的母线PT是单相的,而线路PT是三相的,也就是说,需求不同,方式也不是一成不变的。

电压互感器

电压互感器 二次绕组是双绕组的电压互感器,接线时一次是VV接法,二次绕组必须都要接成VV接法吗? 问题补充: 我想知道一组电压互感器(2个)一次是VV接法,二次绕组必须都要接成VV接法吗?如果二次绕组一个绕组接成vv接法(交流220V),另一个绕组(交流100V)不按VV方式接可以使用吗? V/V接线一般是由2个PT分别接与线电压Uab\Ucb上得到的,一、二次侧接线均呈V字形,故称为V/V接线,其二次侧B相也接地,但是一次测不接地,否则造成接地短路。 这种接线方式其实就是由两个单相互感器接线形成不完全星形,其接法是A-X、B、A-X-C,所以怎么量,ABC三相都是导通的,不导通就不对了。 VV接线的目的: 用两只互感器能够完成三只互感器的工作,如计量PT就用V/V 接线完成三相电压的采集。 说的更白些就是将两只互感器分别装在A、C相上,然后将A相互感器的尾与C相互感器的头相连,在这个连接点上接入B相电,省了一个B相互感器。 但请注意:VV接线只能用来测线电压,而无法测量相对地电压,所以无法反映单相接地故障!但可以满足计量要求,比较经济,多用

于小电流接地系统,大部分是中小型工厂的高压配电室采用,而变电站中很少用这种接法。 电压互感器二次绕组的0.2级,3P级到底是什么意思? 其它的还有什么等级么,又分别是什么意义? 1、测量用电压互感器: 主要的标准准确级:0.1, 0.2, 0.5, 1.0, 3.0 在额定频率和80%~120%额定电压之间的任一电压和功率因素0.8(滞后)的二次额定负荷的25%~100%之间的任意值下,误差不超过下述值: 准确级电压误差(%)相位差(’) 0.1 0.1 5 0.2 0.2 10 0.5 0.5 20 1.0 1.0 40 3.0 3.0 不规定 2、保护用电压互感器(P表示保护) 标准准确级:3P, 6P

电压互感器与电流互感器的作用原理两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器; D:在第二位,表示单匝贯穿式,在型号的最后一个字母时表示差动保护用(部分生产厂用B或C标出)

电流、电压互感器额定二次容量计算方法

附录C 电流互感器额定二次容量计算方法 电流互感器实际二次负荷(计算负荷)按公式(1)计算: 2222()I n jx l jx m k S I K R K Z R =+∑+ (1) 2nI S =K ×2I S 电流互感器二次回路导线截面A 与电阻值的关系如式(2)所示。 l L R A ρ= (2) 式中: 2I S ——电流互感器实际二次负荷(计算负荷),VA 2nI S ——设计选择的电流互感器二次额定负荷,VA K ——系数,一般选择~3 A ——二次回路导线截面, 2mm ρ——铜导电率,257m /mm )ρ=Ω,(? L ——二次回路导线单根长度,m l R ——二次回路导线电阻,Ω jx K ——二次回路导线接触系数,分相接法为2,,星形接法为1; 2 jx K ——串联线圈总阻抗接线系数,不完全星形接法时如存在V 相串联线圈(如接入 90,其余为1。 2n I ——电流互感器二次额定电流,A ,一般为5A 或1A 。 m Z ——计算相二次接入单个电能表电流线圈阻抗,单个三相电子式电能表一般选定为Ω,三相机械表选择Ω。 m Z ∑——计算相的电流互感器其二次回路所串接入的N 个电能表电流线圈总阻抗之 和。 k R ——二次回路接头接触电阻,一般取~ 根据上述的设定,以二次额定电流为5A ,分相接法,4 mm 2的电缆长100米,本计量点

接入2个三相电子表为例, 222221.5() 21001.55( 120.050.1)57440I n jx l jx m k S I K R K Z R =+∑+???+??+? = =(VA) 取40VA ,如电流互感器选择40VA 有困难,则应加大导线截面,选用较小容量的设备。 而上述计量装置采用简化接线方式时,本计量点电流互感器的额定容量为: 222221.5() 11005( 120.050.1)574I n jx l jx m k S I K R K Z R =+∑+???+??+? =1.5 =24(VA) 取30VA 。 附录D 电压互感器额定二次容量选择方法 电压互感器的实际二次负载按公式(3)计算: 22Y n U S U =2 (3) 因电压互感器二次容量,一般仅考虑所计表计电压回路的总阻抗,导线电阻及接触电阻相对于表计阻抗常可以忽略,故各相电压互感器额定二次容量,可根据本计量点各相所接电能表电压回路的总功耗,来确定电压互感器所接的实际二次负载。 2U b S S =∑ (4) b S ——电能表单相电压回路功耗

电压互感器的结构及作用

电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电气隔离。电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 电压互感器和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/301960594.html,。

电磁式互感器的工作原理

在供电用电的线路中电流电压大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 较早前,显示仪表大部分是指针式的电流电压表,所以电流互感器的二次电流大多数是安培级的(如5A等)。当今电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 微型电流互感器称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。) 电流互感器原理线路图微型电流互感器与变压器类似也是根据电磁感应原理工作,变压器变换的是电压而微型电流互感器变换的是电流罢了。绕组N1接被测电流,称为一次绕组(或原边绕组、初级绕组);绕组N2接测量仪表,称为二次绕组(或副边绕组、次级绕组)。 微型电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。微型电流互感器在额定工作电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。Kn=I1n/I2n 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关低压配电产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/301960594.html,。

DL866-2004电流互感器和电压互感器选择及计算导则

DL866-2004电流互感器和电压互感器选择及计算导则

目次 前言 1范围 2规范性引用文件 3术语、定义和符号 3.1电流互感器术语和定义 3.2电压互感器术语和定义 3.3符号 4电流互感器应用的一般问题 4.1基本特性及应用 4.2电流互感器的配置 4.3一次参数选择 4.4二次参数选择 5测量用电流互感器 5.1类型及额定参数选择 5.2准确级选择 5.3二次负荷选择及计算 6保护用电流互感器 6.1性能要求 6.2类型选择 6.3额定参数选择 6.4准确级及误差限值 6.5稳态性能验算 6.6二次负荷计算 7TP类保护用电流互感器 7.1电流互感器暂态特性基本计算式 7.2TP类电流互感器参数 7.3TP类电流互感器的误差限值和规范 7.4TP类电流互感器的应用 7.5TP类电流互感器的性能计算 8电压互感器 8.1分类及应用 8.2配置和接线 8.3一次电压选择 8.4二次绕组和电压选择 8.5准确等级和误差限值 8.6二次绕组容量选择及计算 8.7电压互感器的特殊问题 附录A(资料性附录)TP类电流互感器的暂态特性 附录B(资料性附录)测量仪表和保护装置电流回路功耗 附录C(资料性附录)P类或PR类电流互感器应用示例 附录D(资料性附录)TP类电流互感器应用示例 附录E(资料性附录)电子式互感器简介 前言 随着超高压系统的发展和电力体制的改革,继电保护系统和测量计费系统对电流互感器和电压互感器提出了许多新的和更严格的要求,现有的选择和计算方法已不能适应。为了规范电流互感器和电压互感器的选择和计算方法,统一对产品开发的技术要求,解决设计应用存在的问题,特制定此标准。

电压互感器原理及作用

电压互感器和电流互感器都是一种特殊的变压器,它们的应用主要是保护测量仪表和继电器,同时使二次侧设备小型化,那么电压互感器的原理和作用具体是什么呢? 电压互感器的工作原理和特性 电压互感器可分为电磁式和电容分压式两种,电压等级在220kV 及以下时多为电磁式,那么就以电磁式介绍。 1.工作原理 电压互感器利用了电磁感应原理,在闭合的铁芯上,绕有两个不同匝数、相互绝缘的绕组,接入电源侧的是一次绕组N1,输出侧是二次绕组N2。 当一次绕组加有电压时,绕组就会有交流电流通过,铁芯中就会产生与电源频率相同的交变磁通¢1,由于一次绕组和二次绕组在一个铁芯上,根据电磁感应定律,在二次绕组会产生频率相同到数值不同的感应电动势E2。因为匝数的不同导致两个绕组的感应电动势不同,具体数值关系就是:N1/N2=U1/U2根据国标,电压互感器二次侧输出电压值是100V。 2.电压互感器特性 电压互感器一次电压不受二次负荷的影响。 电压互感器二次侧仪表或继电器的电压线圈阻抗很大,通过的电流很小,因此电压互感器正常工作时接近空载状态。

电压互感器二次侧不能短路,因为短路后二次侧会产生很大的短路电流,会烧毁电压互感器,所以一般电压互感器一次、二次侧装设熔断器用于短路保护。 电压互感器接线 电压互感器有单相和三相两种,三相电压互感器一般只有20kV 以下电压等级。 单相电压互感器:两台单相互感器接成Vv接线,三台单相电压互感器接成开口三角形。 三相电压互感器:一台三相三柱式接成Yy0接线,用于测量线电压。 结束语 电压互感器和电流互感器原理一样都是利用了电磁感应原理,通过“电生磁”和“磁生电”将高电压转化成低电压,将大电流转化成小电流,使二次侧设备(测量仪表和继电器)都能小型化,同时也能使工作人员原理高压,保障人身安全。

DL866-2004电流互感器和电压互感器选择及计算导则

目次 前言 1范围 2规范性引用文件 3术语、定义和符号 3.1电流互感器术语和定义 3.2电压互感器术语和定义 3.3符号 4电流互感器应用的一般问题 4.1基本特性及应用 4.2电流互感器的配置 4.3一次参数选择 4.4二次参数选择 5测量用电流互感器 5.1类型及额定参数选择 5.2准确级选择 5.3二次负荷选择及计算 6保护用电流互感器 6.1性能要求 6.2类型选择 6.3额定参数选择 6.4准确级及误差限值 6.5稳态性能验算 6.6二次负荷计算 7TP类保护用电流互感器 7.1电流互感器暂态特性基本计算式 7.2TP类电流互感器参数 7.3TP类电流互感器的误差限值和规范 7.4TP类电流互感器的应用 7.5TP类电流互感器的性能计算 8电压互感器 8.1分类及应用 8.2配置和接线 8.3一次电压选择 8.4二次绕组和电压选择 8.5准确等级和误差限值 8.6二次绕组容量选择及计算 8.7电压互感器的特殊问题 附录A(资料性附录)TP类电流互感器的暂态特性 附录B(资料性附录)测量仪表和保护装置电流回路功耗 附录C(资料性附录)P类或PR类电流互感器应用示例 附录D(资料性附录)TP类电流互感器应用示例 附录E(资料性附录)电子式互感器简介 前言 随着超高压系统的发展和电力体制的改革,继电保护系统和测量计费系统对电流互感器和电压互感器提出了许多新的和更严格的要求,现有的选择和计算方法已不能适应。为了规范电流互感器和电压互感器的选择和计算方法,统一对产品开发的技术要求,解决设计应用存在的问题,特制定此标准。

有关电流互感器和电压互感器的国家标准和行业标准对互感器的技术规范和订货技术条件作了规定,本标准是对电力工程中如何选定这些规范和需要进行的相应计算方法作出规定,并对新产品开发提出要求。 本标准主要适用于工程广泛使用的常规电流互感器和电压互感器。对于新开发的尚未普遍应用的新型电子式互感器,仅在附录中给出简要介绍。 本标准的附录均为资料性附录。 本标准由中国电力企业联合会提出。 本标准由电力行业电力规划设计标准化技术委员会归口。 本标准起草单位:国电华北电力设计院工程有限公司、中国电力建设工程咨询公司。 本标准起草人:袁季修、卓乐友、盛和乐、吴聚业、李京。 本标准由电力行业电力规划设计标准化技术委员会负责解释。

电压互感器的容量的选择教学内容

电压互感器的容量的 选择

浅谈在配电自动化系统设计中电压互感器的容量的选择厦门兴厦控电气有限公司徐跃进 [择要] 本文从装于开关设备的电压互感器容量选定的角度,分析电压互感器的容量对测量精度的影响,分析了可能引起的电压互感器故障的原因,并提出了解决办法。 [关键词] 电压互感器的精度和容量;计量;PT的过载 1.问题的提出 (1)在配电自动化系统设计中用户内部的电能考核目前节能减排的要求下日益显得很重要。用户反馈内部计量考核中分计量之和总小于供电局的计量总表;产生计量不准原因不明。 (2)用户反馈PT柜的电压互感器经常烧毁(特别是保护和事故音响回路均采用交流AC220V操作) 2.分析 2.1 造成计量不准的原因是 a.电流互感器的变比、容量、精度。b. 电压互感器的容量、精度。c.二次回路的电压损失d.计量表计本身的精度等等。 中压开关设备中常用计量柜电流互感器以及电压互感器的精度均为0.2级,计量柜的互感器专用于供电局计量,仅用于计量表计,因此计量精度可以获得最大范围的保证。而常用进出线柜计量采用的电流互感器以及电压互感器的精度为0.5级。供电局计量的精度俨然已经比进出线柜的计量精度高,因此总表计量值肯定会有差异,但应在互感器和表计的累计误差范围内。然而实际的差异值远不止于精度的误差。通过对一些10KV高压配电系统的实际情况分析,

图2 电压测量回路 如北京某热电厂配电系统(计量表计装在高压柜上为例)有进出线柜约17 台,其交流电压信号均取自PT的100V电压。系统中,装长沙威胜电子有限公司

的多功能表 DSSD331 3X100V 1.5(6)A(0.5级有功) 交流电压回路功耗 <=4VA共17只,电能表总的消耗功率17X4VA=68VA ;装ABB的微机REX521(交流电压100V回路)的功耗<=0.5VA共17只,微机交流电压回路的总功耗 17X0.5=8.5VA;对整个系统来说,交流100V电压的总功耗为68+8.6=76.5VA (未考虑二次导线功耗)。所以按76.5VA的容量来选PT,则应该选 0.5/100VA热极限输出 500VA,才能满足系统有0.5级的测量精度,电能测量才准确。若PT错选0.5/30VA,热极限输出 150VA,首先表计负载容量已远远超过30VA,测量精度肯定有较大偏差;其次PT长期过载,就如小马拉大车,很容易烧毁。而每一台柜的电流回路CT如LZZBJ9-12/150B/2S的0.5级的容量是10VA;装在本柜电流回路的精度和容量是能够保证的;若计量表计集中组屏(与高压柜的距离)也要考虑CT的容量的选则。 再比如,厦门嵩屿码头配电系统有进出线柜20台,装有20只上海金陵的机械表 DS862-2 3X100V 3(6)A 功耗<=8VA,电能表总的消耗功率 20X8=160VA;另有20只施耐德的微机Sepam 20,因无交流电压100V输入,所以微机交流100V电压的功耗不再考虑;对整个系统来说交流100V电压的总功耗为160VA(未考虑二次导线功耗)。若3PT接法选用JDZX10-10 0.5/30VA 热极限150VA 的PT,则会因超过极限容量而过热烧坏。因此只能选JDZX9-10 1.0/180VA热极限400VA的电压互感器;这样才能保证一定的测量精度,同时保护了PT不致损坏。 所以在10KV系统的变电站有较多出线的情况可能增加互感器的负载,或因配网自动化需要配套的电力监控装置,或因各种计量表计,或甚至取自PT的交流操作电源等等。当系统中电流回路或电压回路的负荷超过互感器标示的精

电压互感器的作用

电压互感器的作用 电压互感器实质上是一台降压变压器,将高电压转换成一定值的低电压以供测量等使用 2011-6-23 22:06 raymand11|六级 为计量、测量、保护设备提供电压信号 2011-6-24 04:03 越策越神|四级 电压互感器的作用是:把高电压按比例关系变换成100V或更低等级的标准二次电压,供保护、 计量、仪表装置使用。同时,使用电压互感器可以将高电压与电气工作人员隔离。电压互感器虽 然也是按照电磁感应原理工作的设备,但它的电磁结构关系与电流互感器相比正好相反。电压互 感器二次回路是高阻抗回路,二次电流的大小由回路的阻抗决定。当二次负载阻抗减小时,二次 电流增大,使得一次电流自动增大一个分量来满足一、二次侧之间的电磁平衡关系。可以说,电 压互感器是一个被限定结构和使用形式的特殊变压器。简单的说就是“检测元件”。 电压互感器原理 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 2011-9-16 13:29 鑫华福电力|八级 电压互感器的分类 (1)按安装地点可分为户内式和户外式。35kV及以下多制成户内式;35kV以上则制成 户外式。 (2)按相数可分为单相和三相式,35kV及以上不能制成三相式。 (3)按绕组数目可分为双绕组和三绕组电压互感器,三绕组电压互感器除一次侧和基本 二次侧外,还有一组辅助二次侧,供接地保护用。

电压互感器设计计算完整版

电压互感器设计计算 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第六章电压互感器设计计算 第一节计算依据 电压互感器计算依据是: (1)额定一次电压、 (2)额定二次电压 (3)剩余电压绕组(如果有)额定电压 (4)二次绕组准确级及额定电压,极限输出 (5)剩余电压绕组(如果有)准确级及额定电压 (6)额定频率 (7)绝缘水平 第二节铁心和绕组设计计算 一、铁心设计计算 1.铁心额定磁通密度选择 额定磁通密度是一个选择性很强的基本设计参数。不同的电压互感器其额定磁 通密度值差别很大。选择合适的额定磁通密度是产品设计中必须首先解决的问题 之一。 额定磁通密度与互感器误差及过励磁特性直接有关,其数值选取分析如下。 (1)单相及三相不接地电压互感器通常用于测量过压、压保护,当系统发生故障时并不改变互感 器相间电压或线端与中心点的电压。因此这两种电压互感器并不承受系统故障所引起的工频电压升高。 它们可能承受的最大工频电压升高幅度一般不超过倍额定电压,是指发电机突然甩负荷而引起的飞 转,长线电容效应等所引起的工频电压升高。此时如果铁心过饱和,二次绕组感应电势中将含有较大的 三次谐波分量,电压波形失真。这种电压互感器选择磁通密度时需满足以下两点要求。 a.电压互感器在两个极限电压空载误差的差值不应过大。 b.系统出现工频电压升高时,互感器铁心不应过饱和。 这种电压互感器选取额定磁通密度应不大于。 (2)供中性点有效接地系统使用的单相接地电压互感器,主要用于测量及单相接地保护。互感器 一次绕组连接在相与地间,它除了承受幅度一般不超过倍额定电压的工频电压升高 外,还要承受接 地短路引起的工频过电压,其幅度一般不超过倍额定电压。这两种过电压都是瞬时 的,选择这种互 感器额定磁通密度时,需满足以下三点要求。 a.测量用绕组在两个极限电压下空载误差的差值不应过大。 b.系统出现工频电压升高时,互感器铁心不应过饱和。 c.系统发生单相接地短路时,互感器铁心不应过饱和。

电压互感器与电流互感器作用区别

电流互感器与电压互感器的区别 电流互感器的作用: 电流互感器是电力系统中很重要的一个一次设备,其原理是根据电磁感应原理而制造的.它的一次线圈匝数很少,通常采用单匝线圈,即一根铜棒或一根铜排.二次线圈主要接测量仪表或继电器的线圈.电流互感器的二次侧不能开路运行,当二次侧开路时,一次侧的电流主要用于激磁,这样会在二次侧感应出很高的电压,从而危及二次设备和人身的安全,也会造成电流互感器烧毁. 其主要作用是:1、将很大的一次电流转变为标准的5安培;2、为测量装置和继电保护的线圈提供电流;3、对一次设备和二次设备进行隔离。电压互感器和电流互感器在作用原理上的区别主要区别是正常运行时工作状态大不相同,主要表现为: 1)电流互感器二次可以短路,但是不得开路;电压互感器二次可以开路,但是不得短路 2)对于二次侧的负荷来说,电压互感器的一次内阻抗较小甚至可以忽略不计,大可以认为电压互感器是一个电压源;而电流互感器的一次却内阻很大,以至可以认为是一个内阻无穷大的电流源。 3)电压互感器正常工作时的磁通密度接近饱和值,故障时候磁通密度下降;电流互感器正常工作时磁通密度很低,而短路时由于一次侧短路电流变得很大,使磁通密度大大增加,有时甚至远远超过饱和值. 4)电压互感器是用来测量电网高电压的特殊变压器,它能将高电压按规定比例转换为较低的电压后,再连接到仪表上去测量。电压互感器,原边电压无论是多少伏,而副边电压一般均规定为100伏,以供给电压表、功率表及千瓦小时表和继电器的电压线圈所需要的电压。把大电流按规定比例转换为小电流的电气设备,称为电流互感器。电流互感器副边的电流一般规定为5安或1安,以供给电流表、功率表、千瓦小时表和继电器的电流线圈电流。

(完整word版)电压互感器工作原理.docx

电压互感器 本词条由“科普中国”百科科学词条编写与应用工作项目审核。 电压互感器 [1] (Potential transformer简称PT,Voltage transformer也简称VT)和变压器类似,是用来变换线路上的电压的仪器。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单 位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能, 或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、 几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、 以及铁磁谐振等。 基本结构 电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电气隔离。电压 互感器在运行时,一次绕组N1 并联接在线路上,二次绕组N2 并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 工作原理 其工作原理与变压器相同 [2] ,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成 V-V 形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保 护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引 出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。 线圈出现零序电压则相应的铁心中就会出现零序磁通。为此,这种三相电压互感器采用旁轭式铁心(10KV 及以下时)或采用三台单相电压互感器。对于这种互感器,第三线圈的准确度要求不高,但要求有一定的过励磁特性(即当原 边电压增加时,铁心中的磁通密度也增加相应倍数而不会损坏)。[3] 电压互感器是发电厂、变电所等输电和供电系统不可缺少的一种电器。精密电压互感器是电测试验室中用来扩大量限,测量电压、功率和电能的一种仪器。电压互感器和变压器很相像,都是用来变换线路上的电压。 线路上为什么需要变换电压呢?这是因为根据发电、输电和用电的不同情况,线路上的电压大小不一,而且相差悬殊,有的是低压220V 和 380V ,有的是高压几万伏甚至几十万伏。要直接测量这些低压和高压电压,就需要根据线 路电压的大小,制作相应的低压和高压的电压表和其他仪表和继电器。这样不仅会给仪表制作带来很大困难,而且更主要的是,要直接制作高压仪表,直接在高压线路上测量电压,那是不可能的,而且也是绝对不允许的。

相关文档
最新文档