二倍角公式说课稿

合集下载

二倍角公式公开课教案

二倍角公式公开课教案

二倍角的正弦、余弦、正切公式一、教学目标:1.学会利用S (α+β) C (α+β) T (α+β)推导出sin2α,cos2α,tan2α. 知道各公式 间的内在联系,认识整个公式体系的生成过程,从而培养逻辑推理能力。

2.记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用 公式,掌握基本方法,提高分析问题、解决问题的能力。

二、教学重难点:二倍角的公式的推导及灵活应用,倍角的相对性三、教学过程1、复习引入前面我们学习了和(差)角公式,现在请同学们回忆一下和角公式的内容: sin (α+β)=cos (α+β)=tan (α+β)=2、新科探究探究一、在上面的和角公式中,若令β=α,会得到怎样的结果呢?sin2α=sin (α+α)= sin αcos α+cos αsin α= 2sin αcos αcos2α=cos (α+α)= cos αcos α-sin αsin α= cos 2α-sin 2αtan2α= tan (α+α)=tan α+ tan α1-tan αtan α =2tan α1-tan 2α 整理得:sin2α=2sin αcos αcos2α= cos 2α-sin 2αtan2α=2tan α1-tan 2α 注意:要使tan2α= 2tan α1-tan 2α 有意义,α须满足α∈﹛α∣α≠ k π+ π2,且α≠ k 2π+ π4﹜ 学以致用提问:对于cos2α的求解还有没有其它的办法探究二、cos2α的变形式利用公式sin 2α + cos 2α=1变形可得:cos2α = cos 2α-sin 2α=cos 2α-(1-cos 2α)=2cos 2α-1cos2α = cos 2α-sin 2α=(1-sin 2α )-sin 2α =1-2sin 2α因此:cos2α = cos 2α-sin 2α1例.2tan ,2cos ,2sin ),20(,54cos 的值求若αααπαα<<=1cos 2,0290.9ααα︒︒=<<已知,求cos =2cos 2α-1=1-2sin 2α3、公式深化1、这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去。

二倍角公式说课稿(2)

二倍角公式说课稿(2)

二倍角公式说课稿(2)《二倍角的正弦、余弦、正切》说课稿各位领导、同仁:您们好!今天我说课的课题是高一必修四第三章第2节第一课时的二倍角的正弦、余弦、正切公式,现我就教材、教法、学法、教学程序、板书五个方面进行说明。

恳请在座的各位领导、同仁批评指正。

一.说教材1.本节课主要内容是二倍角公式的推导及应用,主要是运用这节知识进行二角的求值、化简,同时能理解由特殊到一般的化归数学思想方法。

2.地位作用:这是三角恒等变换这一章中的第2节第一课时的内容,它是在学生学过三角函数的诱导公式和两角和与差的正弦、余弦、正切公式之后的又一重要公式,它为今后研究三角函数图象及性质等问题提供了又一必备的要素。

因此它起着承上启下的作用。

同时,也是培养了学生逻辑思维能力和化归的重要数学思想方法。

3.教学目标(1)知识目标:使学生能记住二倍角公式,会运用二倍角公式进行求值、化简,同时使学生懂得这一公式在运用当中所起到的用途。

(2)能力目标:培养学生观察分析问题的能力,寻找数学规律的能力,同时注意渗透由一般到特殊的化归的数学思想及问题转化的数学思想。

(3)德育目标:培养学生认真参与、积极交流的主体意识,锻炼学生善于发现问题的规律和及时解决问题的态度。

4.重点与难点重点:二倍角公式推导及其公式变形,运用二倍角公式进行求值、化简。

难点:在运用当中如何正确恰当运用二倍角公式的正用,逆用和变用。

二.说教学方法教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。

根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:(1)引导发现法。

这能充分调动学生的主动性和积极性。

(2)“从一般到特殊”的化归方法。

这有利于学生对知识进行主动建构;也有利于发挥学生的创造性和发现数学规律。

(3)练习巩固法。

这样更能突出重点、解决难点,使学生的分析问题和解决问题的能力得到进一步的提高。

《二倍角公式》 说课稿

《二倍角公式》 说课稿

《二倍角公式》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《二倍角公式》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析本节课选自人教版高中数学必修四第三章《三角恒等变换》。

二倍角公式是三角恒等变换中的重要公式之一,它在三角函数的求值、化简、证明以及解决实际问题中都有着广泛的应用。

通过对二倍角公式的学习,学生不仅能够进一步巩固和深化三角函数的知识,还能提高他们的运算能力和逻辑推理能力。

二、学情分析在学习本节课之前,学生已经掌握了两角和与差的正弦、余弦和正切公式,具备了一定的三角函数知识和运算能力。

但是,对于二倍角公式的推导和应用,学生可能会感到有一定的难度。

因此,在教学过程中,要注重引导学生通过已有知识进行推导,逐步理解和掌握二倍角公式。

三、教学目标1、知识与技能目标(1)学生能够理解并掌握二倍角的正弦、余弦和正切公式。

(2)能够熟练运用二倍角公式进行三角函数的求值、化简和证明。

2、过程与方法目标(1)通过对二倍角公式的推导,培养学生的逻辑推理能力和数学思维能力。

(2)通过例题和练习,提高学生的运算能力和分析问题、解决问题的能力。

3、情感态度与价值观目标(1)让学生在学习过程中体验数学的严谨性和逻辑性,感受数学的魅力。

(2)培养学生勇于探索、敢于创新的精神。

四、教学重难点1、教学重点二倍角的正弦、余弦和正切公式的推导和应用。

2、教学难点二倍角公式的灵活运用以及公式的变形应用。

五、教法与学法1、教法为了实现教学目标,突出重点,突破难点,我将采用启发式教学法、讲授法和练习法相结合的教学方法。

通过启发引导,让学生自主思考,推导二倍角公式;通过讲授,让学生系统地掌握二倍角公式的知识;通过练习,让学生巩固所学知识,提高应用能力。

2、学法在教学过程中,注重引导学生自主学习、合作学习和探究学习。

让学生通过自主推导公式,培养他们的自主学习能力;通过小组合作讨论,培养他们的合作交流能力;通过探究问题,培养他们的创新思维能力。

二倍角公式课程教案

二倍角公式课程教案

重点难点 参考资料 教学方法 教学过程 教学手段 方法设计
二倍角的公式的推导及灵活应用,倍角的相对性 数学教材和配套练习 讨论式教学+练习 教学手段 多媒体教学 一、复习引入
前面我们学习了和(差)角公式, 现在请一位同学们回答一下和 公式的内容: sin(α +β )= cos(α +β )= 计算三角函数值时,有些情况中,只用加或 减不能满足要求,比如,角α ,我们要求它的二 倍,三倍,即 2α ,3α ,等等,该如何求呢?今 天我们就先来学习二倍角的相关公式。
注意: 1、这里的“倍角”专指“二倍角” ,遇到 “三倍角”等名词时, “三”字等不可省去。 2、倍角的相对性:二倍角公式不仅限于 2α 是 α 的二倍的形式,比如 4α 是 2α 的二倍,α 是 的二倍,这里蕴含着换元思想。 三、课堂练习: 根据公式回答下列各题 (1)2sin15°cos15° (2)cos2 -sin2
四、例题讲解 例 1 已知求 sinα = α ,cos2α ,的值. ,α ∈( ,π ) ,求 sin2
练习: 1. 根据公式回答下列各 Sin6α =2sin( Sinα =2sin( )cos( )cos( ) )
例2. (1).
sin22 30 ' cos2230 '
例3. (1) sin 2
二、公式推导 在上面的和角公式中,若令β =α ,会得到怎 样的结果呢? (1)提问: sin2α =sin(α +α ) = sinα cosα +cosα sinα = 2sinα cosα cos2α =cos(α +α ) = cosα cosα -sinα sinα = cos2α -sin2α 整理得: sin2α =2sinα cosα cos2α = cos2α -sin2α (2)提问:对于 cos2α = cos2α - sin2α ,还有 没有其他的形式? 利用公式 sin2α + cos2α =1 变形可得: cos2α = cos2α -sin2α =cos2α -(1-cos2α ) =2cos2α -1 cos2α = cos2α -sin2α =(1-sin2α )-sin2α =1-2sin2α 因此:cos2α = cos2α -sin2α =2cos2α -1 =1-2sin2α

二倍角公式教案

二倍角公式教案

二倍角的正弦、余弦、正切公式一、教学目标:1.学会利用S(α+β)C(α+β) T(α+β)推导出sin2α,cos2α,tan2α. 知道各公式间的内在联系,认识整个公式体系的生成过程,从而培养逻辑推理能力。

2、记住并能正确运用二倍角公式进行求值、化简、证明;通过综合运用公式,掌握基本方法,提高分析问题、解决问题的能力。

二、教学重难点:二倍角的公式的推导及灵活应用,倍角的相对性三、教学方法:讨论式教学+练习五、教学过程1 复习引入前面我们学习了与(差)角公式,现在请一位同学们回答一下与角公式的内容:sin(α+β)=cos(α+β)=tan(α+β)=计算三角函数值时,有些情况中,只用加或减不能满足要求,比如,角α,我们要求它的二倍,三倍,即2α,3α,等等,该如何求呢?今天我们就先来学习二倍角的相关公式。

2 公式推导在上面的与角公式中,若令β=α,会得到怎样的结果呢?请同学们阅读课本132页——133页,并填写课本中的空白框。

(让学生做5分钟)(1)提问:sin2α=sin(α+α)= sinαcosα+cosαsinα= 2sinαcosαcos2α=cos(α+α)= cosαcosα-sinαsinα= cos2α-sin2αtan2α= tan(α+α)=tanα+ tanα1-tanαtanα=2tanα1-tan2α整理得:sin2α=2sinαcosαcos2α= cos2α-sin2αtan2α= 2tanα1-tan2α(2)提问:对于cos2α= cos2α-sin2α,还有没有其他的形式?利用公式sin2α+ cos2α=1变形可得:cos2α = cos2α-sin2α=cos2α-(1-cos2α)=2cos2α-1cos2α = cos2α-sin2α=(1-sin2α)-sin2α =1-2sin2α因此:cos2α= cos2α-sin2α=2cos2α-1=1-2sin2α注意:1、要使tan2α= 2tanα1-tan2α有意义,α须满足α∈﹛α∣α≠ kπ+ π2,且α≠k2π+ π4﹜2、这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去。

最新二倍角公式公开课教案

最新二倍角公式公开课教案
2运用上述公式进行简单得三角函数式求值、化简。
情意目标:培养学生“数学有用”以及“用数学”的意识。
能力目标:让学生体会“化归思想”的作用。
教学重点
难点,关键
教学重点:二倍角公式的推导、 的两种变形公式及应用。
教学难点:理解“二倍”的实质并会简单应用。
教学关键:让学生理解二倍角公式与两角和、差三角函数公式的内在联系。
教学
方法
启发引导、讲练结合。
教学
媒体
小黑板。
教学过程设计
师生活动设计
备注
一、复习旧知、引入新课
提问:若令 呢?
( )
( )
( )
二、讲授新课
1.二倍角公式
说明:(1)公式中 有限制条件吗?
(2)公式中是 与 的关系,也可以是 与 , 与 等,只要角是2:1的比例均可以用。
(3)公式的顺用和逆用。
三、尝试、探索、例题讲解
教师演示上节公式之间的推导过程,让学生理解公式的源头 ,并体会它们之间的联系。
学生运算,目的是巩固前面公式并推导新公式,理解二倍角公式是两角和与差公式的特例。
学生记忆公式
学生思考,老师板书详细过程
学生练习并抽一个学生到黑板板演
师生共同分析
学生练习
例1:已知 , ,求 的值
解: , ,
练习1:已知 , 在第三象限,求 的值。
例2:利用二倍角公式化简、求值。
(1) (2)
(3) (4)
(5)
练习2:化简、求值
(1) (2)
(3) (4)
四、小结:
本节课要理解并掌握二倍角公式及其推导,明白一般到特殊的思想,并能正确熟练的运用二倍角公式进行解题。
作业:课本49页现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责

二倍角公式ppt(说课)

二倍角公式ppt(说课)
2


6 (3) 1 tan2 2 1 tan 2 2
2 tan

练习: 5 3 ) 1、已知 cos , ( , 13 2 求 sin 2 , cos 2 , tan 2 的值。 2、求下列各式的值:
(1) 2 sin 22 .5 cos 22 .5


,2

2
k


4
k k Z
余弦公式的另外两种形式
cos 2 cos sin 2 2cos 1 2 1 2sin
2 2
(只含 (只含
cos )
sin )
3 例1:已知 s in , ( , ) 5 2
tan tan tan( ) 1 tan tan
二、 二倍角公式 的推导
sin( ) sin cos cos sin sin 2 2sin cos cos( ) cos cos sin sin 2 2 cos2 cos sin tan tan tan( ) 1 tan tan 2 tan tan2 2 1 tan

sin 2 , cos 2 , tan 2
的值
2
sin cos 1
2
例2:求下列各式的值
(1) sin 15 cos15
2
( 2Байду номын сангаас 2 sin 22 .5 1 tan 22 .5 (3) 2 1 tan 22 .5
公式的逆用
例3:化简下列各式
(1)4 sin cos (2)2 cos ( ) 1 4 2

二倍角正弦、余弦、正切公式教案

二倍角正弦、余弦、正切公式教案

二倍角正弦、余弦、正切公式教案一、教学目标:1. 让学生掌握二倍角正弦、余弦、正切公式的推导过程。

2. 使学生能够灵活运用二倍角正弦、余弦、正切公式解决相关问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容:1. 二倍角正弦公式:sin2α= 2sinαcosα2. 二倍角余弦公式:cos2α= cos^2αsin^2α= 2cos^2α1 = 1 2sin^2α3. 二倍角正切公式:tan2α= (tanα+ tan(α+π))/(1 tanαtan(α+π)) = (tanα+ tanα)/(1 tan^2α) = 2tanα/(1 tan^2α)三、教学重点与难点:1. 教学重点:二倍角正弦、余弦、正切公式的推导过程及应用。

2. 教学难点:二倍角正切公式的推导过程及应用。

四、教学方法:1. 采用讲解法,引导学生理解二倍角正弦、余弦、正切公式的推导过程。

2. 运用例题,让学生在实践中掌握二倍角正弦、余弦、正切公式的应用。

3. 组织小组讨论,培养学生合作学习的能力。

五、教学步骤:1. 导入新课,回顾一倍角正弦、余弦、正切公式。

2. 引导学生利用已知公式,推导二倍角正弦、余弦、正切公式。

3. 通过例题,演示二倍角正弦、余弦、正切公式的应用。

4. 组织学生进行练习,巩固所学知识。

六、课后作业:(1)已知sinα= 1/2,求sin2α的值。

(2)已知cosα= √2/2,求cos2α的值。

(3)已知tanα= 1,求tan2α的值。

七、教学反思:在教学过程中,要注意引导学生掌握二倍角正弦、余弦、正切公式的推导过程,培养学生逻辑思维能力和运算能力。

针对不同学生的学习情况,给予适当的辅导,提高教学质量。

注重培养学生的合作学习意识,提高课堂参与度。

六、教学拓展:1. 引导学生探讨二倍角公式的推广,例如三倍角、四倍角公式。

2. 分析二倍角公式在实际问题中的应用,如测量、导航等领域。

七、课堂小结:2. 强调二倍角公式在解决实际问题中的重要性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《二倍角的正弦、余弦、正切》说课稿 张彩霞 各位老师, 大家上午好!今天我说课的题目是全日制普通高级中学 教科书(必修)数学第一册(下)第四章三角函数第七节《二倍角的正 弦、余弦、正切 》的第一课时。

我将从以下几个方面来说明。

一、教材分析 1、教材的地位和作用:二倍角的正弦、余弦、正切是学生在已经学习 了两角和、差的正、余弦和正切的公式的基础上的进一步延伸,是三角 函数的重要公式 ,应用这组公式也是本章的重点内容。

2、教学目标: (1)知识目标:理解并掌握二倍角的正弦、余弦、正切公式。

能够熟 练地正用,逆用以及变形。

(2)能力目标:通过对二倍角的正弦、余弦、正切公式的引入、理解, 以及研究二倍角的正切公式的存在条件和师生之间的互相活动来提高 学生化归、分析、概括、猜想等数学能力。

(3)情感目标:在平等的教学氛围中,通过学生之间、师生之间的交 流、合作和评价,实现共同探究、教学相长的教学情境。

培养学生勇于 探索、勇于创新的精神。




3.教学重点:二倍角的正弦、余弦、正切公式的推导 以及二倍角的余 弦公式的两种变形及应用。

4.教学难点:是倍角公式与以前学过的同角三角函数的基本关系式、 诱导公式、和(差)角公式的综合运用。

二、说教学方法 根据本节课的教学内容 ,教学任务以及所面临的教学对象 .我所采用的 教学方法如下; 1.从一般到特殊的化归思想方法. 2.练习巩固法 3.分析法 三、说学法 1.由一般到特殊,再由特殊到一般的化归方法 2.观察分析法 3.练习巩固法 四、说教学设计: 一堂课成败的关键,主要是看教学设计的条理性与清晰性和逻辑性,我 将从以下几个环节来进行设计。




创设情境,激发兴趣。

俗语说:兴趣是最好的老师,在复习上节课的和 角公式后,通过具体的求二倍角的三角函数值,引导学生二倍角公式的 推导,同时也说明了学习二倍角公式的必要性。

2.引出课题:这就是本节课要学的二倍角的正弦、余弦、正切公式 3.给出二倍角公式及两个推论。

再回到之前的问题,说明何时用那种 形式的二倍角公式。

4.记忆,默写 5.二倍角的理解。

如α角可以看成半角α的二倍, 4α角可以看成 2α角 的二倍。

6.规范书写 先说学生存在的问题,再教师板演。

7.学生独立完成自主检测 8.教师引导学生完成能力检测 9.课堂小结 10.布置课外作业:P138:第 14--19 题 五.说板书设计


板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点 知识的理解和掌握,同时便于记忆,有利于提高教学效果。


标题 例1 问题 二倍角公式
学生板演













相关文档
最新文档