新人教版高中数学二倍角公式公开课PPT课件
合集下载
二倍角公式PPT

2
5 12 120 sin2α 2sinαcosα 2 13 13 169
119 12 5 cos2α cos α sin α 13 13 169
2 2 2 2
例题分析
$
5 π 例1. 已知sinα ,α ,π.求sin2α、cos2α、tan2α的 值. 13 2
2
例题分析
$
5 π 例1. 已知sinα ,α ,π.求sin2α、cos2α、tan2α的 值. 13 2 120 120 169 119 120 120 sin2α 答案:sin2α tan2α tan2α , cos2α , 169 169 119 169 119 119 cos2α
3 2:已知sin(α π) ,求cos2α的值。 5
π 3:已知sin2α sinα,α( ,π),求tanα的值。 2
1 4:已知tan2α ,求tanα的值。 3
$
二倍角公式
$
根据公式口答下列各题 :
sin2α 2sinαcosα cos2α cos 2α sin2α 2tanα tan2α 1 tan2α
(1)2sin15 cos15 2π 2π (2)cos sin 6 6 2tan30 (3) 2 1 tan 30
1 2 1 2
3
例题分析
$
5 π 例1. 已知sinα ,α ,π.求sin2α、cos2α、tan2α的 值. 13 2
5 5 144 2 2 解: 由sinα cos α 1 sin α 1 13 13 169 π α ,π 2 12 cosα 13
5 12 120 sin2α 2sinαcosα 2 13 13 169
119 12 5 cos2α cos α sin α 13 13 169
2 2 2 2
例题分析
$
5 π 例1. 已知sinα ,α ,π.求sin2α、cos2α、tan2α的 值. 13 2
2
例题分析
$
5 π 例1. 已知sinα ,α ,π.求sin2α、cos2α、tan2α的 值. 13 2 120 120 169 119 120 120 sin2α 答案:sin2α tan2α tan2α , cos2α , 169 169 119 169 119 119 cos2α
3 2:已知sin(α π) ,求cos2α的值。 5
π 3:已知sin2α sinα,α( ,π),求tanα的值。 2
1 4:已知tan2α ,求tanα的值。 3
$
二倍角公式
$
根据公式口答下列各题 :
sin2α 2sinαcosα cos2α cos 2α sin2α 2tanα tan2α 1 tan2α
(1)2sin15 cos15 2π 2π (2)cos sin 6 6 2tan30 (3) 2 1 tan 30
1 2 1 2
3
例题分析
$
5 π 例1. 已知sinα ,α ,π.求sin2α、cos2α、tan2α的 值. 13 2
5 5 144 2 2 解: 由sinα cos α 1 sin α 1 13 13 169 π α ,π 2 12 cosα 13
人教版高中数学必修4-3.1《二倍角的正弦、余弦、正切公式》参考课件

结论
(1) 2
2
(2) 4 2 2
例6 化简:
(1) sin400 (tan 100 3) (2)
解: (1) 原式
sin400
(
sin100 cos 100
例4
sin2 sin2
1 cos 2 1 cos 2
(
)
A tan B cot C sin
1 2sin2
D sin2
解:
原式
s in 2 s in 2
1 (1 2sin2 ) 1 (2cos 2 1)
s in 2 s in 2
(sin5 cos5)2 | sin5 cos5 | (sin5 cos5)
sin2 2sin cos
cos 2 cos2 sin2
2cos 2 1 1 2sin2
tan
2
1
2 tan tan2
例5 用二倍角公式化简: (0 )
13
13
A 第一象限角
B 第二象限角
C 第三象限角
D 第四象限角
解
:
sin
12 13
, cos
5 13
,
sin2 2sin cos 2 12 ( 5 ) 120 0
13 13 169
cos 2 cos2 sin2 ( 5 )2 (12)2
(1 sin2 ) sin2 1 sin2 sin2 1 2sin2 cos 2 1 2sin2
sin2 2sin cos cos 2 cos2 sin2 2cos2 1
§4(PPT)5-3.07 二倍角(1)

1、二倍角的正、余弦公式
cos 2 cos2 sin2
2cos2 1 1 2sin2
sin 2 2sin cos
2、二倍角的正切公式
tan
2
2 tan 1 tan2
C2
S2 T2
类而意思相对的词或词素的前面,表示“既不…也不…”。ɑ)表示适中,恰到好处:~多~少|~大~小|~肥~瘦。)表示尴尬的中间状态:~方~ 圆|~明~暗|~上~下|~死~活。③用在同类而意思相对的词或词素的前面,表示“如果不…就不…”:~见~散|~破~立|~塞~流|~止~行。 【不才】〈书〉①动没有才能(多用; 油猴;来表示自谦):弟子~|~之士。②名“我”的谦称:其中道理,~愿洗耳聆教。 【不测】①形属性词。不可测度的;不可预料的:天有~风云。②名指意外的不幸事件:险遭~|提高警惕,以防~。 【不曾】副没有?(“曾经”的否 定):我还~去过|除此之外,~发现其他疑点。 【不差累黍】形容丝毫不差(累黍:指微小的数量)。 【不成】①动不行?。②形不行?。③助用在句末, 表示推测或反问的语气,前面常常有“难道、莫非”等词相呼应:难道就这样算了~?|这么晚他还不来,莫非家里出了什么事~? 【不成比例】指数量或 大小等方面差得很远,不能相比。 【不成话】不像话。 【不成体统】说话、做事不合体制,没有规矩。 【不成文】形属性词。没有用文字固定下来的:~ 的规矩|多年的老传统~地沿袭了下来。 【不成文法】名不经立法程序而由国家承认其有效的法律,如判例、习惯法等(跟“成文法”相对)。 【不逞】动 不能实现意愿;不得志:~之徒(因失意而胡作非为的人)。 【不齿】〈书〉动不与同列(表示鄙视):人所~。 【不耻下问】不以向地位比自己低、知识 比自己少的人请教为可耻。 【不啻】〈书〉动①不止;不只:工程所需,~万金。②如同:相去~天渊。 【不揣】动谦辞,不自量,用于向人提出自己的见 解或有所请求时:~浅陋|~冒昧(不考虑自己的莽撞,言语、行动是否相宜)。 【不辞】动①不告别:~而别。②不推脱;不拒绝:~辛劳|万死~。 【不错】形①对;正确:~,情况正是如此|~,当初他就是这么说的。②不坏;好:人家待你可真~|虽说年纪大了,身体却还~。 【不打自招】还没有 拷问就招供了。比喻无意中泄露真实情况和想法。 【不大离儿】〈方〉形①差不多;相近:两个孩子的身量~。②还算不错:这块地的麦子长得~。 【不带 音】ī发音时声带不振动。参看页〖带音〗。 【不待】副用不着;不必:自~言|~细说,他就明白了。 【不单】①副不仅?:超额完成生产任务的,~是这 几个厂。②连不但:她~教孩子学习,还照顾他们的生活。 【不但】连用在表示递进的复句的上半句里,下半句里通常有连词“而且、并且”或副词“也、 还”
cos 2 cos2 sin2
2cos2 1 1 2sin2
sin 2 2sin cos
2、二倍角的正切公式
tan
2
2 tan 1 tan2
C2
S2 T2
类而意思相对的词或词素的前面,表示“既不…也不…”。ɑ)表示适中,恰到好处:~多~少|~大~小|~肥~瘦。)表示尴尬的中间状态:~方~ 圆|~明~暗|~上~下|~死~活。③用在同类而意思相对的词或词素的前面,表示“如果不…就不…”:~见~散|~破~立|~塞~流|~止~行。 【不才】〈书〉①动没有才能(多用; 油猴;来表示自谦):弟子~|~之士。②名“我”的谦称:其中道理,~愿洗耳聆教。 【不测】①形属性词。不可测度的;不可预料的:天有~风云。②名指意外的不幸事件:险遭~|提高警惕,以防~。 【不曾】副没有?(“曾经”的否 定):我还~去过|除此之外,~发现其他疑点。 【不差累黍】形容丝毫不差(累黍:指微小的数量)。 【不成】①动不行?。②形不行?。③助用在句末, 表示推测或反问的语气,前面常常有“难道、莫非”等词相呼应:难道就这样算了~?|这么晚他还不来,莫非家里出了什么事~? 【不成比例】指数量或 大小等方面差得很远,不能相比。 【不成话】不像话。 【不成体统】说话、做事不合体制,没有规矩。 【不成文】形属性词。没有用文字固定下来的:~ 的规矩|多年的老传统~地沿袭了下来。 【不成文法】名不经立法程序而由国家承认其有效的法律,如判例、习惯法等(跟“成文法”相对)。 【不逞】动 不能实现意愿;不得志:~之徒(因失意而胡作非为的人)。 【不齿】〈书〉动不与同列(表示鄙视):人所~。 【不耻下问】不以向地位比自己低、知识 比自己少的人请教为可耻。 【不啻】〈书〉动①不止;不只:工程所需,~万金。②如同:相去~天渊。 【不揣】动谦辞,不自量,用于向人提出自己的见 解或有所请求时:~浅陋|~冒昧(不考虑自己的莽撞,言语、行动是否相宜)。 【不辞】动①不告别:~而别。②不推脱;不拒绝:~辛劳|万死~。 【不错】形①对;正确:~,情况正是如此|~,当初他就是这么说的。②不坏;好:人家待你可真~|虽说年纪大了,身体却还~。 【不打自招】还没有 拷问就招供了。比喻无意中泄露真实情况和想法。 【不大离儿】〈方〉形①差不多;相近:两个孩子的身量~。②还算不错:这块地的麦子长得~。 【不带 音】ī发音时声带不振动。参看页〖带音〗。 【不待】副用不着;不必:自~言|~细说,他就明白了。 【不单】①副不仅?:超额完成生产任务的,~是这 几个厂。②连不但:她~教孩子学习,还照顾他们的生活。 【不但】连用在表示递进的复句的上半句里,下半句里通常有连词“而且、并且”或副词“也、 还”
数学人教A版(2019)必修第一册5.5.1二倍角的正弦、余弦、正切公式(共19张ppt)

( − ) = +
( + ) = +
两角和差的正弦公式
两角和差的正切公式
( − ) = −
+
( + ) =
1 −
−
(2)配方变换.
1±sin 2α=sin2α+cos2α±2sin αcos α=(sin α±cos α)2.
(3)升幂缩角变换.
1+cos 2α=2cos2α , 1-cos 2α=2sin2α .
(4)降幂扩角变换.
1
1
1
cos α=2(1+cos 2α),sin α=2(1-cos 2α),sin αcos α=2sin 2α.
5.5.1 第三课时
二倍角的正弦、余弦、正切公式
Hale Waihona Puke 学习目标1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、
正切公式.(逻辑推理)
2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变
形运用.(数学运算)
复习回顾
两角和差的余弦公式
两角和与差的正弦、余弦、正切公式
( + ) = −
( + ) = 2 = + = 2
+
2
( + ) = 2 =
=
1 − 1 − 2
新知梳理
二倍角公式
2sin αcos α
2cos2α-1
cos2α-sin2α
2
-1=1-2sin -x;
-x
4
4
2
例题讲解
题型三:化简与证明
例3
(1)化简:cos2(θ+15°)+sin 2(θ-15°)+sin(θ+90°)cos(90°-θ);
( + ) = +
两角和差的正弦公式
两角和差的正切公式
( − ) = −
+
( + ) =
1 −
−
(2)配方变换.
1±sin 2α=sin2α+cos2α±2sin αcos α=(sin α±cos α)2.
(3)升幂缩角变换.
1+cos 2α=2cos2α , 1-cos 2α=2sin2α .
(4)降幂扩角变换.
1
1
1
cos α=2(1+cos 2α),sin α=2(1-cos 2α),sin αcos α=2sin 2α.
5.5.1 第三课时
二倍角的正弦、余弦、正切公式
Hale Waihona Puke 学习目标1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、
正切公式.(逻辑推理)
2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变
形运用.(数学运算)
复习回顾
两角和差的余弦公式
两角和与差的正弦、余弦、正切公式
( + ) = −
( + ) = 2 = + = 2
+
2
( + ) = 2 =
=
1 − 1 − 2
新知梳理
二倍角公式
2sin αcos α
2cos2α-1
cos2α-sin2α
2
-1=1-2sin -x;
-x
4
4
2
例题讲解
题型三:化简与证明
例3
(1)化简:cos2(θ+15°)+sin 2(θ-15°)+sin(θ+90°)cos(90°-θ);
二倍角PPT课件

课前热身
1、过点A(3,0),且平行于直线 2x 3y 0
的直线方程是__2_x___3__y_ 6 0
2、两直线 x 3y 2 0 与 3x 3y 4 0
的夹角是____6_0_0_____
3、两平行直线 y 2x 和 y 2x 5
间的距离是 ______5____
1、与直线Ax+By+C=0平行的直线方程为 Ax+By+m=0 2、与直线Ax+By+C=0垂直的直线方程为 Bx-Ay+m=0
〖解三〗设直线l与l1、l2分别相交于 B A(x1,y1)、B(x2,y2),则
O
x
x1+y1+1=0,x2+y2+6=0。 两式相减,得(x1-x2)+(y1-y2)=5 ①
θ A1
又 (x1-x2)2+(y1-y2)2=25 ②
B1
联立 ① ②,可得 x1-x2=5 或 y1-y2=0
x1-x2=0 y1-y2=5
【布置作业】
优化设计P105、P106
2sin cos
sin 2 2sin cos
2020/4/14
3
cos( ) cos cos sin sin
cos( ) cos cos sin sin
cos 2 cos2 sin2
sin2 cos2 1
2 cos2 1
1 2sin2
2020/4/14
4
tan( ) tan tan 1 tan tan
①l1与l2相交于点P(m,-1); ②l1∥l2; ③l1⊥l2,且l1在y轴上的截距为-1.
【解题回顾】若直线l1、l2的方程分别为A1x+B1y+C1=0和 A2x+B2y+C2=0 , 则 l1∥l2 的 必 要 条 件 是 A1B2-A2B1=0 , 而 l1⊥l2的充要条件是A1A2+B1B2=0.解题中为避免讨论,常依 据上面结论去操作.
二倍角公式公开课课件

为 $cos A = 2cos^2frac{A}{2} - 1$。
二倍角公式的推广到多倍角公式
推广一
将二倍角公式中的角度值替换为多倍角度值 ,如将 $2A$ 替换为 $nA$,得到多倍角公 式 $sin nA = nsinfrac{A}{n}cos^{n1}frac{A}{n}$。
推广二
利用二倍角公式推导出的多倍角公式,如 $cos nA = cos^n A - S_nsin^n A$,其中 $S_n$ 是二项式系数。
应用举例
已知cos(x) = 1/3,求cos(2x)的值。利用二倍角公式cos(2x) = 2cos^2(x) - 1, 可以快速得出结果为-7/9。
在解三角函数方程中的应用
总结词
通过二倍角公式将三角函数方程转化为更易于求解的形式。
应用举例
求解sin(x) = 1/2的解。利用二倍角公式,将方程转化为2sin(x/2)cos(x/2) = 1/2,进 一步得到sin(x/2) = 1/2或cos(x/2) = 1/2,从而求得x的解。
利用诱导公式化简。
04
进阶习题2答案与解析:cos(π/3 - 2α) = 4√5/5。解 析:利用二倍角公式,将cos(π/6 + α)转化为sin,再 利用诱导公式化简。
感谢观看
THANKS
详细描述
二倍角公式的几何意义在于,它描述了一个角经过旋转其度数两倍后,新位置与原位置之间的正弦或余弦关系。 具体来说,当一个角绕着原点旋转到其两倍角度数的新位置时,该角所对应的正弦或余弦值可以通过二倍角公式 计算得到。
二倍角公式的应用场景
总结词
二倍角公式在解决三角函数问题中具有广泛的应用,例如在解三角形、求三角函数值、证明三角恒等 式等方面。
二倍角公式的推广到多倍角公式
推广一
将二倍角公式中的角度值替换为多倍角度值 ,如将 $2A$ 替换为 $nA$,得到多倍角公 式 $sin nA = nsinfrac{A}{n}cos^{n1}frac{A}{n}$。
推广二
利用二倍角公式推导出的多倍角公式,如 $cos nA = cos^n A - S_nsin^n A$,其中 $S_n$ 是二项式系数。
应用举例
已知cos(x) = 1/3,求cos(2x)的值。利用二倍角公式cos(2x) = 2cos^2(x) - 1, 可以快速得出结果为-7/9。
在解三角函数方程中的应用
总结词
通过二倍角公式将三角函数方程转化为更易于求解的形式。
应用举例
求解sin(x) = 1/2的解。利用二倍角公式,将方程转化为2sin(x/2)cos(x/2) = 1/2,进 一步得到sin(x/2) = 1/2或cos(x/2) = 1/2,从而求得x的解。
利用诱导公式化简。
04
进阶习题2答案与解析:cos(π/3 - 2α) = 4√5/5。解 析:利用二倍角公式,将cos(π/6 + α)转化为sin,再 利用诱导公式化简。
感谢观看
THANKS
详细描述
二倍角公式的几何意义在于,它描述了一个角经过旋转其度数两倍后,新位置与原位置之间的正弦或余弦关系。 具体来说,当一个角绕着原点旋转到其两倍角度数的新位置时,该角所对应的正弦或余弦值可以通过二倍角公式 计算得到。
二倍角公式的应用场景
总结词
二倍角公式在解决三角函数问题中具有广泛的应用,例如在解三角形、求三角函数值、证明三角恒等 式等方面。
人教版高中数学必修1《二倍角的正弦、余弦、正切公式》PPT课件

• 第三课时 二倍角的正弦、余弦、正切公式
明确目标
发展素养
1.能利用两角和的正弦、余弦、正切公式推导 1.通过公式的推导,培
出二倍角的正弦、余弦、正切公式.
养逻辑推理素养.
2.能利用二倍角公式进行化简、求值、证明. 2.借助运算求值,提升
3.熟悉二倍角公式的常见变形,并能灵活应用. 数学运算素养.
• (一)教材梳理填空 • 1.二倍角的正弦、余弦、正切公式:
x.
(2)证明:因为左边=33- +44ccooss
2A+2cos22A-1 2A+2cos22A-1
=11- +ccooss 22AA2=22csions22AA2=(tan2A)2=tan4A=右边,
所以33- +44ccooss
2A+cos 2A+cos
44AA=tan4A.
• [方法技巧]
解:原式= 2- 2+ 4cos2α2= 2- 2+2cosα2= 2- = 2-2cosα4= 4sin2α8. 因为 3π<α<4π,所以38π<α8<π2,所以 sinα8>0,故原式=2sinα8.
4cos2α4
•试分析该解题过程是否正确.若不正确,错在何处?并写 出正确的解题过程. •提示:错误,原因是运用倍角公式从里到外去掉根号时, 没有顾及角的范围而选择正、负号,导致错误.
正解如下:
因为 3π<α<4π,所以32π<α2<2π,34π<α4<π,38π<α8<π2,则 cosα2>0,cosα4<0,cosα8>0.
所以原式= 2- 2+ 4cos2α2= 2- 2+2cosα2= 2- 4cos2α4
= 2+2cosα4= 4cos2α8=2cosα8.
明确目标
发展素养
1.能利用两角和的正弦、余弦、正切公式推导 1.通过公式的推导,培
出二倍角的正弦、余弦、正切公式.
养逻辑推理素养.
2.能利用二倍角公式进行化简、求值、证明. 2.借助运算求值,提升
3.熟悉二倍角公式的常见变形,并能灵活应用. 数学运算素养.
• (一)教材梳理填空 • 1.二倍角的正弦、余弦、正切公式:
x.
(2)证明:因为左边=33- +44ccooss
2A+2cos22A-1 2A+2cos22A-1
=11- +ccooss 22AA2=22csions22AA2=(tan2A)2=tan4A=右边,
所以33- +44ccooss
2A+cos 2A+cos
44AA=tan4A.
• [方法技巧]
解:原式= 2- 2+ 4cos2α2= 2- 2+2cosα2= 2- = 2-2cosα4= 4sin2α8. 因为 3π<α<4π,所以38π<α8<π2,所以 sinα8>0,故原式=2sinα8.
4cos2α4
•试分析该解题过程是否正确.若不正确,错在何处?并写 出正确的解题过程. •提示:错误,原因是运用倍角公式从里到外去掉根号时, 没有顾及角的范围而选择正、负号,导致错误.
正解如下:
因为 3π<α<4π,所以32π<α2<2π,34π<α4<π,38π<α8<π2,则 cosα2>0,cosα4<0,cosα8>0.
所以原式= 2- 2+ 4cos2α2= 2- 2+2cosα2= 2- 4cos2α4
= 2+2cosα4= 4cos2α8=2cosα8.
二倍角公式课件-高一上学期数学人教A版(2019)必修第一册

°
°
=(
×
.
)
=
=
− . °
二倍角的正弦、余弦、正切公式
sin2α = 2sinα cosα
S(2α)
cos2α = cos2α - sin2α
= 2cos2α - 1
= 1-2sin2α
C(2α)
2tanα
tan2α = ————
1 - tan2α
T(2α)
正弦:SCCS
符号同
(∓) : ( ∓ = ±
余弦:CCSS
符号异
(∓) :
∓
( ∓ ) =
1 ±
正切:
子同母异
探究1:你能利用S(α+β), C(α+β),T(α+β)推导出sin2α,cos2α,
2
1 tan 2 A B
11 117
1
2
.
课堂检测
教材P223练习1
4
1.已知cos =− ,8
8
5
解: ∵ 8 < <
< < 12,求sin ,cos ,tan 的值.
4
4
4
3
3
12 ,∴ < < ∴sin
,8 =− 5
S(2α)
cos2α = cos2α - sin2α
= 1-2 sin2α=2cos2α-1
C(2α)
2tanα
tan2α = ————
1 - tan2α
T(2α)
作业:教材P223 :练习:3、4题
°
=(
×
.
)
=
=
− . °
二倍角的正弦、余弦、正切公式
sin2α = 2sinα cosα
S(2α)
cos2α = cos2α - sin2α
= 2cos2α - 1
= 1-2sin2α
C(2α)
2tanα
tan2α = ————
1 - tan2α
T(2α)
正弦:SCCS
符号同
(∓) : ( ∓ = ±
余弦:CCSS
符号异
(∓) :
∓
( ∓ ) =
1 ±
正切:
子同母异
探究1:你能利用S(α+β), C(α+β),T(α+β)推导出sin2α,cos2α,
2
1 tan 2 A B
11 117
1
2
.
课堂检测
教材P223练习1
4
1.已知cos =− ,8
8
5
解: ∵ 8 < <
< < 12,求sin ,cos ,tan 的值.
4
4
4
3
3
12 ,∴ < < ∴sin
,8 =− 5
S(2α)
cos2α = cos2α - sin2α
= 1-2 sin2α=2cos2α-1
C(2α)
2tanα
tan2α = ————
1 - tan2α
T(2α)
作业:教材P223 :练习:3、4题