利用导数求最值
专题训练--利用导数求单调区间、极值、最值

利用导数求函数的单调性、极值 、最值一.求单调区间的步骤①求定义域;①求导函数f ′(x );①解方程f ′(x )=0;④分区间;⑤列表定导数正负得单调区间. 二.求极值的步骤(同上) 极值的定义:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ①如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. 三.求函数最值的步骤①求极值;①求[a ,b ]端点的函数值f (a )、f (b );①比较极值与端点函数值的大小,得最值.考向一 求单调区间【例题】求下列函数的单调区间:(1)3()23f x x x =-; (2)2()ln f x x x =-. (3))f (x )=2x -x 2. 【练习】1.函数 f (x )=(x -3)e x 的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)2.函数f (x )=x -ln x 的单调递减区间为( )A.(0,1)B.(0,+∞)C.(1,+∞)D.(-∞,0)①(1,+∞) 3.函数f (x )=x +eln x 的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R4.函数y =4x 2+1x 的单调增区间为________.【答案】()12,+∞ 5.函数f (x )=x ·e x -e x+1的单调增区间是________.【答案】 (e -1,+∞)6.已知函数f (x )=x ln x ,则f (x )的单调减区间是________.【答案】()0,1e7.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调增区间是_______.()-π,-π2和()0,π28. 函数f (x )=(x-3)e x 的单调递增区间是 。
高三数学利用导数求最值和极值试题答案及解析

高三数学利用导数求最值和极值试题答案及解析1.已知函数 (R).(1)当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求的取值范围.【答案】(1)当时, 取得极大值为;当时, 取得极小值为.(2)a的取值范围是.【解析】(1)遵循“求导数,求驻点,讨论驻点两侧导数值符号,确定极值”.(2)根据= ,得到△= = .据此讨论:①若a≥1,则△≤0,此时≥0在R上恒成立,f(x)在R上单调递增 .计算f(0),,得到结论.②若a<1,则△>0,= 0有两个不相等的实数根,不妨设为.有.给出当变化时,的取值情况表.根据f(x1)·f(x2)>0, 解得a>.作出结论.试题解析:(1)当时,,∴.令="0," 得. 2分当时,, 则在上单调递增;当时,, 则在上单调递减;当时,, 在上单调递增. 4分∴当时, 取得极大值为;当时, 取得极小值为. 6分(2)∵= ,∴△= = .①若a≥1,则△≤0, 7分∴≥0在R上恒成立,∴ f(x)在R上单调递增 .∵f(0),,∴当a≥1时,函数f(x)的图象与x轴有且只有一个交点. 9分②若a<1,则△>0,∴= 0有两个不相等的实数根,不妨设为.∴.当变化时,的取值情况如下表:x x(x,x)x++11分∵,∴.∴=.同理. ∴.令f(x1)·f(x2)>0, 解得a>.而当时,, 13分故当时, 函数f(x)的图象与x轴有且只有一个交点.综上所述,a的取值范围是. 14分【考点】应用导数研究函数的极值、单调性及函数的图象,分类讨论思想.2.函数的极小值是 .【答案】.【解析】,令,解得,列表如下:极大值极小值故函数在处取得极小值,即.【考点】函数的极值3.已知a≤+lnx对任意的x∈[,2]恒成立,则a的最大值为________.【解析】令f(x)=+lnx,f′(x)=,当x∈[,1)时,f′(x)<0,当x∈(1,2]时,f′(x)>0,∴f(x)min=f(1)=0,∴a≤0,故a最大值为0.4.已知函数,是函数的导函数,且有两个零点和(),则的最小值为()A.B.C.D.以上都不对【答案】B【解析】,由题意,当或时,,当时,,因此的最小值是,选B.【考点】函数的极值与最值.5.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则 ().A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【答案】C【解析】当k=1时,f′(x)=e x·x-1,f′(1)≠0,∴x=1不是函数f(x)的极值点.当k=2时,f′(x)=(x-1)(xe x+e x-2),显然f′(1)=0,且x在1的左边附近f′(x)<0,x在1的右边附近f′(x)>0,∴f(x)在x=1处取到极小值.6.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是______.【答案】(,2)【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2.7.设函数f(x)=x e x,则().A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点【答案】D【解析】∵f(x)=x e x,∴f′(x)=e x+x e x=e x(1+x).∴当f′(x)>0时,则x>-1,函数y=f(x)是增函数,同理可求,x<-1时函数f(x)为减函数.∴x=-1时,函数f(x)取得极小值.8.已知函数f(x)=x3+ax2+x+2(a>0)的极大值点和极小值点都在区间(-1,1)内,则实数a的取值范围是().A.(0,2]B.(0,2)C.[,2)D.(,2)【答案】D【解析】由题意可知f′(x)=0的两个不同解都在区间(-1,1)内.因为f′(x)=3x2+2ax+1,所以根据导函数图象可得又a>0,解得<a<2,故选D.9.若函数在区间内有极值,则实数的取值范围是 .【答案】【解析】因为函数在区间内有极值,所以导数在区间内必有零点,于是.【考点】1.导数的公式与法则;2.函数的零点.10.某人进行了如下的“三段论”推理:如果,则是函数的极值点,因为函数在处的导数值,所以是函数的极值点.你认为以上推理的 ( ) A.大前提错误B.小前提错误C.推理形式错误D.结论正确【答案】A【解析】本题中,如果,则是函数的极值点是错误的.若是函数的极值点,则函数在的左右两侧异号,而否则尽管有,都不能说明是函数的极值点.如,其导数,函数在上是增函数.所以不是函数的极值点.因此本题是大前提错误.【考点】推理与证明、导数、函数的极值11.在处有极小值,则实数为 .【答案】1【解析】由得,又在处有极小值,故,解得或,当时,有,函数在单调递增,在单调递减,故在处有极小值;当时,有,函数在单调递增,在单调递减,故在处有极大值.综上可知.【考点】利用导数处理函数的极值12.已知函数.(1)当时,求函数的极值;(2)求函数的单调区间.【答案】(1),无极大值;(2)见解析.【解析】(1)先找到函数的定义域,在定义域内进行作答,在条件下求出函数的导函数,根据函数的单调性与导数的关系,判断函数的极值;(2)先求出函数的导函数,其导函数中含有参数,所以要进行分类讨论,对分三种情况,,进行讨论,分别求出每种情况下的函数的单调增区间和单调减区间.试题解析:(1)函数的定义域是, 1分当时,,所以在上递减,在上递增,所以函数的极小值为,无极大值; 4分(2)定义域, 5分①当,即时,由,得的增区间为;由,得的减区间为; 7分②当,即时,由,得的增区间为和;由,得的减区间为; 9分③当,即时,由,得的增区间为和;由,得的减区间为; 11分综上,时,的增区间为,减区间为;时,的增区间为和,减区间为;时,的增区间为和,减区间为. 13分【考点】1、对数函数的定义域;2、含参数的分类讨论思想;3、函数的单调性与导数的关系;4、解不等式;5、求函数的极值.13.已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号;(2)若函数在区间上有最大值为,求的值.【答案】(1),;(2).【解析】(1)先求导数,因为切线与轴平行,所以导数为0,列出等式,判断出的符号;(2)求导数,令导数为0,解出方程的根,利用导数的正负判断出函数的单调性,通过分类讨论的方法找到最大值,让最大值等于,解出的值.试题解析:(1) 1分由图象在处的切线与轴平行,知,∴. 2分又,故,. 3分(2) 令,得或. 4分∵,令,得或令,得.于是在区间内为增函数,在内为减函数,在内为增函数.∴是的极大值点,是极小值点. 5分令,得或. 6分分类:①当时,,∴ .由解得, 8分②当时,, 9分∴.由得 . 10分记,∵, 11分∴在上是增函数,又,∴, 12分∴在上无实数根. 13分综上,的值为. 14分【考点】1.用导数求切线的斜率;2.用导数求函数最值.14.已知函数,当时取得极小值,则等于()A.B.C.D.【答案】D【解析】由,解得,当;当;当,故在处取得最小值,即,则,所以,故选D.【考点】导数的极值点求法,导数的极值求解.15.对于三次函数,给出定义:设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的“拐点”。
高中数学讲义:利用导数解函数的最值

函数的最值一、基础知识:1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D $Î,使得对x D "Î,均满足()()0f x f x £,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D $Î,使得对x D "Î,均满足()()0f x f x ³,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。
例如:()[)ln ,1,4f x x x =Î,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln 4,但就是达不到。
()f x 没有最大值。
(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z pp =+Î,有无穷多个。
2.“最值”与“极值”的区别和联系右图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x (1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:(1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点(2)极小值点不会是最大值点,极大值点也不会是最小值点8、最值点的作用(1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =-+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ³=,即不等式ln 1x x £-二、典型例题:例1:求函数()x f x xe -=的最值思路:首先判定定义域为R ,对函数进行求导,根据单调区间求出函数的最值解:()()'1x fx x e -=-,令()'0f x >,解得:1x <()f x \的单调区间为:x (),1-¥()1,+¥'()f x +-()f x Z ]()()max 11f x f e\==,无最小值小炼有话说:函数()xf x xe-=先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。
第22讲 利用导数研究函数的极值和最值(解析版)

第22讲利用导数研究函数的极值和最值【基础知识回顾】1、函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x =a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x =b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.2、函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.3、常用结论1.若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.2.若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.3.若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.1、已知函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为()A.1B.2C.3D.4【答案】B【解析】由函数极值的定义和导函数的图象可知,f′(x)在(a,b)上与x轴的交点个数为4,但是在原点附近的导数值恒大于零,故x=0不是函数f(x)的极值点.其余的3个交点都是极值点,其中有2个点满足其附近的导数值左正右负,故极大值点有2个.2、已知a为函数f(x)=x3-12x的极小值点,则a等于()A.-4B.-2C.4D.2【答案】D【解析】由题意得f′(x)=3x2-12,由f′(x)=0得x=±2,当x∈(-∞,-2)时,f′(x)>0,函数f(x)单调递增,当x ∈(-2,2)时,f ′(x )<0,函数f (x )单调递减,当x ∈(2,+∞)时,f ′(x )>0,函数f (x )单调递增,所以a =2.3、.函数f (x )=e xx 2-3在[2,+∞)上的最小值为( )A.e 36B.e2C.e 34D.2e【答案】 A【解析】 依题意f ′(x )=e x(x 2-3)2(x 2-2x -3) =e x(x 2-3)2(x -3)(x +1),故函数在区间(2,3)上单调递减,在区间(3,+∞)上单调递增,故函数在x =3处取得极小值也即是最小值,且最小值为f (3)=e 332-3=e 36.4、函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点 【答案】C【解析】 设f ′(x )的图象与x 轴的4个交点的横坐标从左至右依次为x 1,x 2,x 3,x 4. 当x <x 1时,f ′(x )>0,f (x )为增函数,当x 1<x <x 2时,f ′(x )<0,f (x )为减函数, 则x =x 1为极大值点,同理,x =x 3为极大值点,x =x 2,x =x 4为极小值点,故选C. 5、设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 【答案】D【解析】 因为f (x )=2x +ln x ,所以f ′(x )=-2x 2+1x =x -2x2,x >0.当x >2时,f ′(x )>0,f (x )为增函数;当0<x <2时,f ′(x )<0,f (x )为减函数,所以x =2为f (x )的极小值点,故选D.考向一 利用导数研究函数的极值例1、已知函数()32331(R,0)f x ax x a a a=-+-∈≠,求函数()f x 的极大值与极小值.【解析】:由题设知a ≠0,f ′(x )=3ax 2-6x =3ax 2x a ⎛⎫- ⎪⎝⎭. 令f ′(x )=0得x =0或2a.当a >0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:↗↗↗↗f (x )极大值=f (0)=1-3a,f (x )极小值=2f a ⎛⎫⎪⎝⎭=-4a 2-3a +1.当a <0时,随着x 的变化,f ′(x )与f (x )的变化情况如下:↗↗↗↗f (x )极大值=f (0)=1-3a,f (x )极小值=f a ⎛⎫⎪⎝⎭=-4a 2-3a +1. 综上,f (x )极大值=f (0)=1-3a,f (x )极小值=2f a ⎛⎫⎪⎝⎭=-4a 2-3a +1. 变式1、已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值.【解析】(1)因为f (x )=x -1+ae x ,所以f ′(x )=1-aex ,又因为曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=0, 即1-ae1=0,所以a =e.(2)由(1)知f ′(x )=1-ae x ,当a ≤0时,f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增, 因此f (x )无极大值与极小值; 当a >0时,令f ′(x )>0,则x >ln a , 所以f (x )在(ln a ,+∞)上单调递增, 令f ′(x )<0,则x <ln a ,所以f (x )在(-∞,ln a )上单调递减, 故f (x )在x =ln a 处取得极小值, 且f (ln a )=ln a ,但是无极大值,综上,当a ≤0时,f (x )无极大值与极小值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,但是无极大值.变式2、 (1)若函数f (x )=(x 2-ax -1)e x 的极小值点是x =1,则f (x )的极大值为( ) A .-e B .-2e 2 C .5e -2 D .-2【答案】 C【解析】 由题意,函数f (x )=(x 2-ax -1)e x , 可得f ′(x )=e x [x 2+(2-a )x -1-a ], 所以f ′(1)=(2-2a )e =0, 解得a =1,故f (x )=(x 2-x -1)e x , 可得f ′(x )=e x (x +2)(x -1),则f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增, 所以f (x )的极大值为f (-2)=5e -2.(2)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( ) A.⎝⎛⎭⎫52,103 B.⎣⎡⎭⎫52,103 C.⎝⎛⎦⎤52,103 D.⎣⎡⎦⎤2,103 【答案】 B【解析】 ∵f (x )=ln x +12x 2-ax (x >0),∴f ′(x )=1x+x -a ,∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x +x .设g (x )=1x+x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增, ∴g (x )min =g (1)=2, 又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.方法总结:(1)求函数()f x 极值的步骤: ①确定函数的定义域; ②求导数()f x ';③解方程()0f x '=,求出函数定义域内的所有根;④列表检验在()0f x '=的根0x 左右两侧值的符号,如果左正右负,那么()f x 在0x 处取极大值,如果左负右正,那么()f x 在0x 处取极小值.(2)若函数()y f x =在区间内有极值,那么()y f x =在(),a b 内绝不是单调函数,即在某区间上单调函数没有极值.考向二 利用导数研究函数的最值例2、(2020届山东省潍坊市高三上期中)已知函数. (1)当时,求曲线在点处的切线方程;(2)若函数处有极小值,求函数在区间上的最大值.【答案】(1);(2). 【解析】(1)当时,,, 所以,又,所以曲线在点处切线方程为,即.(2)因为,因为函数处有极小值,所以,()32112f x x x ax =-++2a =()y f x =()()0,0f ()1f x x =在()f x 32,2⎡⎤-⎢⎥⎣⎦210x y -+=49272a =321()212f x x x x =-++2()32f x x x '=-+(0)2f '=(0)1f =()y f x =()()0,0f 12y x -=210x y -+=2()3f x x x a '=-+()1f x x =在(1)202f a a '=+=⇒=-所以 由,得或, 当或时,, 当时,, 所以在,上是增函数,在上是减函数, 因为,, 所以的最大值为. 变式1、已知函数f (x )=3-2xx 2+a.(1)若a =0,求y =f (x )在(1,f (1))处的切线方程;(2)若函数f (x )在x =-1处取得极值,求f (x )的单调区间,以及最大值和最小值. 【解析】(1)当a =0时,f (x )=3-2xx 2,则f ′(x )=x 2·(-2)-(3-2x )·2xx 4=2x -6x 3. 当x =1时,f (1)=1,f ′(1)=-4, 故y =f (x )在(1,f (1))处的切线方程为 y -1=-4(x -1), 整理得4x +y -5=0. (2)已知函数f (x )=3-2xx 2+a,则f ′(x )=(x 2+a )·(-2)-(3-2x )·2x(x 2+a )2=2(x 2-3x -a )(x 2+a )2.若函数f (x )在x =-1处取得极值, 则f ′(-1)=0,即2(4-a )(a +1)2=0,解得a =4.经检验,当a =4时,x =-1为函数f (x )的极大值,符合题意.2()32f x x x '=--()0f x '=23x =-1x =23x <-1x >()0f x '>213x -<<()0f x '<()f x 22,3⎛⎫--⎪⎝⎭31,2⎛⎫ ⎪⎝⎭2,13⎛⎫- ⎪⎝⎭249327f ⎛⎫-= ⎪⎝⎭3124f ⎛⎫= ⎪⎝⎭()f x 249327f ⎛⎫-=⎪⎝⎭此时f (x )=3-2x x 2+4,其定义域为R ,f ′(x )=2(x -4)(x +1)(x 2+4)2,令f ′(x )=0,解得x 1=-1,x 2=4. f (x ),f ′(x )随x 的变化趋势如下表:故函数f (x )极大值为f (-1)=1,极小值为f (4)=-14.又因为x <32时,f (x )>0;x >32时,f (x )<0,所以函数f (x )的最大值为f (-1)=1, 最小值为f (4)=-14.变式2、 已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 【解析】 (1)易知f (x )的定义域为(0,+∞), 当a =-1时,f (x )=-x +ln x , f ′(x )=-1+1x =1-xx ,令f ′(x )=0,得x =1. 当0<x <1时,f ′(x )>0; 当x >1时,f ′(x )<0.∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x∈⎣⎡⎭⎫1e ,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上单调递增,∴f (x )max =f (e)=a e +1≥0,不符合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a<x ≤e.从而f (x )在⎝⎛⎭⎫0,-1a 上单调递增, 在⎝⎛⎦⎤-1a ,e 上单调递减, ∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a . 令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2, 即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.方法总结:1.利用导数求函数f(x)在[a ,b]上的最值的一般步骤: (1)求函数在(a ,b)内的极值.(2)求函数在区间端点处的函数值f(a),f(b).(3)将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值. 2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.考向三 极值(最值)的综合性问题例3、已知函数()323(,)f x ax bx x a b R =+-∈在1x =-处取得极大值为2. (1) 求函数()f x 的解析式;(2) 若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值. 【解析】 :(1)f′(x)=3ax 2+2bx -3.由题意得()12(1)0f f ⎧-=⎪⎨'-=⎪⎩,即⎩⎪⎨⎪⎧-a +b +3=23a -2b -3=0), 解得⎩⎪⎨⎪⎧a =1b =0),经检验成立,所以f(x)=x 3-3x.(2) 令f′(x)=0,即3x 2-3=0.得x =±1. 列表如下:因为max min 间[-2,2]上任意两个自变量的值x 1,x 2,都有|f(x 1)-f(x 2)|≤|f(x)max -f(x)min |=4,所以c≥4.所以c 的最小值为4.变式1、设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1 B.m +1m -1 C.1-m m +1 D.m +11-m【答案】 B 【解析】由f ′(x )=cos x -x sin x =0, 得tan x =1x ,所以tan m =1m,故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 变式2、已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( ) A .1≤b <a B .b <a ≤1 C .a <1≤b D .a <b ≤1【答案】 B 【解析】令f (x )=(x -a )2(x -b )(e x -1-1)=0, 得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析. 对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意.方法总结: 1. 当面对不等式恒成立(有解)问题时,往往是转化成函数利用导数求最值;2. 当面对多次求导时,一定要清楚每次求导的目的是什么.1、若2x =-是函数21()(1)ex f x x ax -=+-的极值点,则()f x 的极小值为A .1-B .32e -- C .35e - D .1【答案】A【解析】由题可得12121()(2)e (1)e [(2)1]e x x x f x x a x ax x a x a ---'=+++-=+++-,因为(2)0f '-=,所以1a =-,21()(1)e x f x x x -=--,故21()(2)ex f x x x -'=+-,令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞上单调递增,在(2,1)-上单调递减, 所以()f x 的极小值为11()(111)e 11f -=--=-.故选A .2、已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________. 【答案】−3√32【解析】f′(x)=2cosx +2cos2x =4cos 2x +2cosx −2=4(cosx +1)(cosx −12),所以当cosx <12时函数单调递减,当cosx >12时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z , 函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数f (x )取得最小值, 此时sinx =−√32,sin2x =−√32, 所以f (x )min =2×(−√32)−√32=−3√32, 故答案是−3√32. 3、(2021·广东高三月考)已知函数()322f x x ax b =-+,若()f x 区间[]0,1的最小值为1-且最大值为1,则a 的值可以是( )A .0B .4C .D .【答案】AB【解析】()26263a f x x ax x x ⎛⎫'=-=- ⎪⎝⎭,令()603a f x x x '⎛⎫=-= ⎪⎝⎭,解得0x =或3a .①当0a ≤时,可知()f x 在[]0,1上单调递增,所以()f x 在区间[]0,1的最小值为()0f b =,最大值为()12f a b =-+. 此时a ,b 满足题设条件当且仅当1x =-,21a b -+=, 即0a =,1b =-.故A 正确.②当3a ≥时,可知()f x 在[]0,1上单调递减,所以()f x 在区间[]0,1的最大值为()0f b =,最小值为()12f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,1b =,即4a =,1b =.故B 正确.③当0<<3a 时,可知()f x 在[]0,1的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭, 最大值为b 或2a b -+或3127a b -+=-,1b =,则a =,与0<<3a 矛盾. 若3127a b -+=-,21a b -+=,则a =a =-0a =,与0<<3a 矛盾.故C 、D 错误.故选:AB4、(2021·广东宝安·高三月考)(多选题)已知函数()e e x x f x -=-,()e e x x g x -=+,则以下结论错误的是( )A .任意的1x ,2x ∈R 且12x x ≠,都有()()12120f x f x x x -<- B .任意的1x ,2x ∈R 且12x x ≠,都有()()12120g x g x x x -<- C .()f x 有最小值,无最大值D .()g x 有最小值,无最大值【答案】ABC【解析】对A, ()e e x x f x -=-中e x y =为增函数,e x y -=为减函数.故()e e x x f x -=-为增函数.故任意的1x ,2x ∈R 且12x x ≠,都有()()12120f x f x x x ->-.故A 错误.对B,易得反例11(1)e e g -=+,11(1)(1)e e g g --=+=.故()()12120g x g x x x -<-不成立.故B 错误. 对C, 当因为()e e x x f x -=-为增函数,且当x →-∞时()f x →-∞,当x →+∞时()f x →+∞.故()f x 无最小值,无最大值.故C 错误.对D, ()e e 2x x g x -=+≥=,当且仅当e e =x x -即0x =时等号成立. 当x →+∞时()g x →+∞.故()g x 有最小值,无最大值.故选:ABC5、(2020全国Ⅰ理21)已知函数()2e xf x ax x =+-. (1)当1a =时,讨论()f x 的单调性;(2)当0x ≥时,()3112f x x ≥+,求a 的取值范围.【解析】(1)当1a =时,()2x x x e f x =+-,()'21x f x e x =+-,由于()''20x f x e =+>,故()'f x 单调递增,注意到()'00f =,故:当(),0x ∈-∞时,()()'0,f x f x <单调递减;当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)由()3112f x x ≥+得,23112x e ax x x +-+,其中0x ≥, ①.当x=0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,32112x e x x a x ----, 记()32112xe x x g x x ---=-,()()231212'x x e x x g x x ⎛⎫---- ⎪⎝⎭=-, 令()()21102x e x x h x x ---≥=,则()'1x h x e x =--,()''10x h x e =-≥, 故()'h x 单调递增,()()''00h x h ≥=,故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21102x e x x ---恒成立,故当()0,2x ∈时,()'0g x >,()g x 单调递增; 当()2,x ∈+∞时,()'0g x <,()g x 单调递减;因此,()()2max 724e g x g -⎡⎤==⎣⎦.综上可得,实数a 的取值范围是27,4e ⎡⎫-+∞⎪⎢⎣⎭. 6、(2020全国Ⅱ文21)已知函数()2ln 1f x x =+.(1)若()2f x x c ≤+,求c 的取值范围;(2)设0a >,讨论函数()()()f x f ag x x a -=-的单调性.【解析】(1)函数()f x 的定义域为:(0,)+∞,()2()202ln 120()f x x c f x x c x x c ≤+⇒--≤⇒+--≤*,设()2ln 12(0)h x x x c x =+-->,则有22(1)()2x h x x x -'=-=, 当1x >时,()0,()h x h x '<单调递减;当01x <<时,()0,()h x h x '>单调递增,∴当1x =时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ==+-⨯-=--,要想不等式()*在(0,)+∞上恒成立,只需max ()0101h x c c ≤⇒--≤⇒≥-.(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a+---==>--且)x a ≠,因此22(ln ln )()()x a x x x a g x x x a --+'=-,设()2(ln ln )m x x a x x x a =--+,则有()2(ln ln )m x a x '=-,当x a >时,ln ln x a >,∴()0m x '<,()m x 单调递减,因此有()()0m x m a <=,即 ()0g x '<,∴()g x 单调递减;当0x a <<时,ln ln x a <,∴()0m x '>,()m x 单调递增,因此有()()0m x m a <=,即()0g x '<,∴()g x 单调递减,∴函数()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间.。
高二数学利用导数求最值和极值试题

高二数学利用导数求最值和极值试题1.函数在(0,1)内有最小值,则的取值范围为()A.B.C.D.【答案】B.【解析】首先对函数进行求导,即,然后根据函数在(0,1)内有最小值,讨论参数与0的大小关系,进而找到符合条件的的取值范围,即(1)若,此时,这表明在(0,1)上单调递增的,所以在处取得最小值,显然不可能;(2)若,令,解得,当时,为增函数,为减函数,所以在处取得最小值,也是最小值,故极小值点在(0,1)内,符合条件要求.综上所述,的取值范围为(0,1).故答案应选B.【考点】利用导数求闭区间上函数的最值.2.已知函数.(1)若函数在区间上存在极值点,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围;【答案】(1)(2)【解析】(1)对函数求导,求出极值点,范围在内,得到不等式关系,解不等式即可;(2)要对恒成立问题转化,转化为求最值问题,令,求出在的最小值.试题解析:(1)当x>0时,,有;所以在(0,1)上单调递增,在上单调递减,函数在处取得唯一的极值.由题意,且,解得所求实数的取值范围为.(2)当时,令,由题意,在上恒成立令,则,当且仅当时取等号.所以在上单调递增,.因此,在上单调递增,.所以.【考点】导数运算,化归思想.3.设函数,则的极小值点为()A.B.C.D.【答案】D【解析】因为,令得解得,又因为函数的定义域为,当时,,所以时为减函数;当时,,所以时为增函数;所以当时函数取得极小值;【考点】导数在求函数极值中的应用;4.已知函数.(1)求曲线在点(1,0)处的切线方程;(2)设函数,其中,求函数在上的最小值.(其中为自然对数的底数)【答案】(1)(2)当时,的最小值为0;当时,的最小值为;当时,的最小值为.【解析】利用导数的几何意义求曲线在点处的切线方程,注意这个点的切点.(2)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)分类讨论是学生在学习过程中的难点,要找好临界条件进行讨论.试题解析:(1)由,得切线的斜率为.又切线过点,所以直线的方程为 4分(2),则令,得;令,得,所以在上单调递减,在上单调递增①当,即时,在上单调递增,所以在上的最小值为②当,即时,在上单调递减,在上单调递增.在上的最小值为③当,即时,在上单调递减,所以在上的最小值为.综上:当时,的最小值为0;当时,的最小值为;当时,的最小值为. 12分【考点】(1)利用导数求切线方程;(2)利用导数求函数的最值.5.已知函数在与处都取得极值.(1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值.【答案】(1);(2).【解析】(1)由已知函数在与处都取得极值,得到,求出得到:关于a,b的两个方程,联立解方程组可得到a,b的值,从而可写出函数的解析式;(2)由(1)已求出的解析式,要求函数在区间[-2,2]的最大值与最小值,只需先求出函数在区间[-2,2]的极大值与极小值,再求出两个端点的函数值,然后比较这四个数值的大小,得其中的最大者就是该函数的最大值,最小者就是该函数的最小值.试题解析:(1)f(x)=x3+ax2+bx,f¢(x)=3x2+2ax+b 1分由f¢()=,f¢(1)=3+2a+b=0 3分得a=,b=-2 5分经检验,a=,b=-2符合题意所以,所求的函数解析式为: 6分(2)由(1)得f¢(x)=3x2-x-2=(3x+2)(x-1), 7分列表如下:(-2,-)-(-,1)9分11分所以当时, 12分【考点】1.函数导数;2.函数极值;3.函数最值.6.函数在[0,3]上的最大值和最小值分别是( ).A.5,-15B.5,-14C.5,-16D.5,15【答案】A【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.7.函数在[0,3]上的最大值和最小值分别是A.5,15B.5,-14C.5,-15D.5,-16【答案】C【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.8.函数.(1)求函数的极值;(2)设函数,对,都有,求实数m的取值范围.【答案】(1);(2).【解析】解题思路:(1)求导,令得,列表即可极值;(2)因为,都有,所以只需即可,即求的最值.规律总结:(1)利用导数求函数的极值的步骤:①求导;②解,得分界点;③列表求极值点及极值;(2)恒成立问题要转化为求函数的最值问题.注意点:因为,都有,所以只需即可.试题解析:(1)因为,所以,令,解得,或,则+-+故当时,有极大值,极大值为;当时,有极小值,极小值为.(2)因为,都有,所以只需即可.由(1)知:函数在区间上的最小值,又,则函数在区间上的最大值,由,即,解得,故实数m的取值范围是.【考点】1.函数的极值;2.不等式恒成立问题.9.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】求导得=,当-1<<0时,,当时,<0,所以该函数在(-1,0)上是增函数,在(0,1)是减函数,故当=0时,=,所以=3,所以当=-1时,y=,当=1时,=,所以该函数在[-1,1]上的最小值为.【考点】利用导数求函数在某个闭区间上的最值10.设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知当时,在上是“凸函数”.则在上 ( )A.既有极大值,也有极小值B.既有极大值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值【答案】C【解析】由题设可知:在(-1,2)上恒成立,由于从而,所以有在(-1,2)上恒成立,故知,又因为,所以;从而,得;且当时,当时,所以在上在处取得极大值,没有极小值.【考点】新定义,函数的极值.11.若函数在(0,1)内有极小值,则 ( )A.<1B.0<<1C.b>0D.b<【答案】B【解析】由得:,若函数在(0,1)内有极小值,则必在区间内有解,即关于的方程区间内有解,所以有,故选B.【考点】导数与函数的极值.12.若函数在[-1,1]上有最大值3,则该函数在[-1,1]上的最小值是__________【答案】【解析】由函数得,令0得x=0或x=1,<0得,>0得x>1或x<0,所以函数在(0,1)上是减函数,在上是增函数,故最大值为f(0)=a=3,f(1)=,f(-1)=,故最小值为,【考点】导数与函数的极值.13.已知函数既有极大值又有极小值,则实数的取值范围是。
利用导数求解函数的单调性与最值问题

利用导数求解函数的单调性与最值问题在微积分学中,导数是一个重要的概念,它被应用于许多实际问题的解决中。
本文将重点讨论如何利用导数来求解函数的单调性及最值问题。
1. 导数的定义导数描述了函数f(x)在某一点x处的变化率。
它的定义为:f'(x) = lim Δx→0 [f(x+Δx) - f(x)]/Δx其中Δx表示x的增量,f(x+Δx)-f(x)表示y的增量,f'(x)表示函数f(x)在点x处的导数。
2. 求解单调性问题当函数f(x)单调递增时,其导数f'(x)>0;当函数f(x)单调递减时,其导数f'(x)<0。
因此,我们可以利用导数的正负性来判断函数的单调性。
例如,对于函数f(x)=x^2,在x>0时它单调递增,而在x<0时它单调递减。
我们可以通过求导得到它的导数:f'(x) = 2x当x>0时,f'(x)>0;当x<0时,f'(x)<0。
因此,函数f(x)=x^2在x>0时单调递增,在x<0时单调递减。
3. 求解最值问题函数f(x)在x处取得最大值或最小值,等价于在点x处的导数为0,或者在点x处的导数不存在。
因此,求解函数f(x)的最值问题,我们需要先求出它的导数f'(x),然后令f'(x)=0求出x的值,即可得到函数f(x)的极值点。
最后,再对这些极值点进行比较,就可以确定函数f(x)的最大值和最小值。
例如,对于函数f(x)=x^3-3x+5,我们可以先求出它的导数:f'(x) = 3x^2-3令f'(x)=0,解得x=±1。
这两个点即为函数f(x)的极值点。
我们还需要判断它们是否是函数的最值点。
当x=1时,f''(x)=6>0,说明f(x)在x=1处取得极小值;当x=-1时,f''(x)=-6<0,说明f(x)在x=-1处取得极大值。
高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析1.函数在(0,1)内有最小值,则的取值范围为()A.B.C.D.【答案】B.【解析】首先对函数进行求导,即,然后根据函数在(0,1)内有最小值,讨论参数与0的大小关系,进而找到符合条件的的取值范围,即(1)若,此时,这表明在(0,1)上单调递增的,所以在处取得最小值,显然不可能;(2)若,令,解得,当时,为增函数,为减函数,所以在处取得最小值,也是最小值,故极小值点在(0,1)内,符合条件要求.综上所述,的取值范围为(0,1).故答案应选B.【考点】利用导数求闭区间上函数的最值.2.已知函数.(1)若函数在区间上存在极值点,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围;【答案】(1)(2)【解析】(1)对函数求导,求出极值点,范围在内,得到不等式关系,解不等式即可;(2)要对恒成立问题转化,转化为求最值问题,令,求出在的最小值.试题解析:(1)当x>0时,,有;所以在(0,1)上单调递增,在上单调递减,函数在处取得唯一的极值.由题意,且,解得所求实数的取值范围为.(2)当时,令,由题意,在上恒成立令,则,当且仅当时取等号.所以在上单调递增,.因此,在上单调递增,.所以.【考点】导数运算,化归思想.3.设函数,则的极小值点为()A.B.C.D.【答案】D【解析】因为,令得解得,又因为函数的定义域为,当时,,所以时为减函数;当时,,所以时为增函数;所以当时函数取得极小值;【考点】导数在求函数极值中的应用;4.已知函数.(1)求曲线在点(1,0)处的切线方程;(2)设函数,其中,求函数在上的最小值.(其中为自然对数的底数)【答案】(1)(2)当时,的最小值为0;当时,的最小值为;当时,的最小值为.【解析】利用导数的几何意义求曲线在点处的切线方程,注意这个点的切点.(2)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)分类讨论是学生在学习过程中的难点,要找好临界条件进行讨论.试题解析:(1)由,得切线的斜率为.又切线过点,所以直线的方程为 4分(2),则令,得;令,得,所以在上单调递减,在上单调递增①当,即时,在上单调递增,所以在上的最小值为②当,即时,在上单调递减,在上单调递增.在上的最小值为③当,即时,在上单调递减,所以在上的最小值为.综上:当时,的最小值为0;当时,的最小值为;当时,的最小值为. 12分【考点】(1)利用导数求切线方程;(2)利用导数求函数的最值.5.已知是实数,函数.(1)若,求的值及曲线在点处的切线方程.(2)求在上的最大值.【答案】(1),;(2).【解析】解题思路:(1)先求导,进而求得值,利用导数的几何意义求切线方程;(2)求导,讨论的根与区间的关系,进而求得极值.规律总结:导数的几何意义求切线方程:;利用导数研究函数的单调性、极值、最值及与函数有关的综合题,都体现了导数的重要性;此类问题往往从求导入手,思路清晰;但综合性较强,需学生有较高的逻辑思维和运算能力.试题解析:(1),因为又当时所以曲线在处的切线方程为(2)令,解得,当即时,在上单调递增,从而.当即时,在上单调递减,从而当即时,在上单调递减,在单调递增,从而综上所述.【考点】1.导数的几何意义;2.利用导数研究函数的最值.6.设函数f(x)=+ln x,则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点【答案】D【解析】因为,所以当时,,当x>2时,,故知x=2为f(x)的极小值点.故选D.【考点】函数的极值.7.已知函数在与处都取得极值.(1)求函数的解析式;(2)求函数在区间[-2,2]的最大值与最小值.【答案】(1);(2).【解析】(1)由已知函数在与处都取得极值,得到,求出得到:关于a,b的两个方程,联立解方程组可得到a,b的值,从而可写出函数的解析式;(2)由(1)已求出的解析式,要求函数在区间[-2,2]的最大值与最小值,只需先求出函数在区间[-2,2]的极大值与极小值,再求出两个端点的函数值,然后比较这四个数值的大小,得其中的最大者就是该函数的最大值,最小者就是该函数的最小值.试题解析:(1)f(x)=x3+ax2+bx,f¢(x)=3x2+2ax+b 1分由f¢()=,f¢(1)=3+2a+b=0 3分得a=,b=-2 5分经检验,a=,b=-2符合题意所以,所求的函数解析式为: 6分(2)由(1)得f¢(x)=3x2-x-2=(3x+2)(x-1), 7分列表如下:(-2,-)-(-,1)9分11分所以当时, 12分【考点】1.函数导数;2.函数极值;3.函数最值.8.已知函数在处取得极值为(1)求的值;(2)若有极大值28,求在上的最小值.【答案】(1)(2)在上的最小值为【解析】(1)由,又知在处取得极值,,即可解得的值.(2)由(1)可得,即可求得函数在处有极大值,再由,可得,,再利用单调性易判断在上的最小值为.试题解析:(1)∵,∴又∵在处取得极值,∴且,即且,解得:.(2)由(1)得:,,令,解得:,极大值极小值∴函数在处有极大值,且,∴,此时,,在上的最小值为.【考点】利用函数极值求参数;利用导数求函数最值.9.定义在R上的函数,若对任意,都有,则称f(x)为“H函数”,给出下列函数:①;②;③;④其中是“H函数”的个数为( ).A.4B.3C.2D.1【答案】C【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.10.函数在[0,3]上的最大值和最小值分别是A.5,15B.5,-14C.5,-15D.5,-16【答案】C【解析】,;令得;令得;函数在递减,在递增;又,.【考点】利用导数求闭区间上的最值.11.函数.(1)求函数的极值;(2)设函数,对,都有,求实数m的取值范围.【答案】(1);(2).【解析】解题思路:(1)求导,令得,列表即可极值;(2)因为,都有,所以只需即可,即求的最值.规律总结:(1)利用导数求函数的极值的步骤:①求导;②解,得分界点;③列表求极值点及极值;(2)恒成立问题要转化为求函数的最值问题.注意点:因为,都有,所以只需即可.试题解析:(1)因为,所以,令,解得,或,则x-22+-+故当时,有极大值,极大值为;当时,有极小值,极小值为.(2)因为,都有,所以只需即可.由(1)知:函数在区间上的最小值,又,则函数在区间上的最大值,由,即,解得,故实数m的取值范围是.【考点】1.函数的极值;2.不等式恒成立问题.12.已知既有极大值又有极小值,则的取值范围为()A.B.C.D.【答案】D【解析】由已知得:在R上有两个不相等的实根,所以解得:,故选D.【考点】函数的极值.13.已知函数,存在,,则的最大值为。
利用导数求函数的极值(最值)的几个特例

Bf (。不存在 . )
垒 二
一
二o : 一 ) 2 …( 一0 ) ( 1( 一 ) 5 ) △
一
、
一
,、
厶
,
、‘ J 一 一 u
. ,・
c 。 0 。 . ( ) 或厂( ) 在 f = 不存
答 案 : C
D 。 .( ) f 存在但可能不为0
< 即0 0, < 4
一
≤2j " ≤一— g 一  ̄ 2 1
—
< 0
+一 一
1
+ ——
1
十 — —
l
观 察 函数 在 各段 上 导数 的符 号 .从 而 准确 判 断 各 段 上 函数 的 单
调 性 . 定 函数 的极 值 和 最值 . 确
当 0 ,= , 2 , , = 时 y O 即一 ≤) ≤2 函数有最大值2 最小值 一 . , 2
特例2 设 函数 厂 = 一 ) 1下列结论正确的是( ( ( 1z , ) + Ax l 函数 的极小值点 ,= 是极大值点 . 是 = x0
B = 及 0 是 函数 的 极 大 值 点 . 1 =均 Cx l = 均 是 函数 的 极 小 值 点 .= 及x 0 D 1 函数 的极 小 值 点 , . 是 = 函数 无 极 大 值 点
答案 : D
) .
数 的公 式 求 解 即 可.
特 例4 函 数y =
(
) .
A 有最大值2 无最小值 . ,
B无最大值 , . 有最小值一 2
c最大值2 最小值一 . , 2
答 案 : C
D无最值 .
解析: )6x 1X 0解得 = , =. 令厂( =(3 ) = , - 2 . x1 0 2 列出表格如下
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数求最值导数是研究数学和其他自然科学的基础,是研究客观事物变化率和优化问题的有利工具,研究导数,有利于对数学的本质和价值的认识。
导数的工具性已渗透到数学的很多分支,在函数的研究中得到充分的体现,主要涉及到研究曲线的切线问题、函数的单调性、函数的极值、最值等。
下面就利用导数求最值作一阐述,供参考。
一、函数的最大值与最小值在闭区间[b a ,]上连续,在(b a ,)内可导,)(x f 在[b a ,]上求最大值与最小值的步骤:先求 )(x f 在(b a ,)内的极值;再将)(x f 的各极值与)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值。
求可导函数极值的步骤:首先:求导数)('x f ;再求导数)('x f =0的根;最后:检查)('x f 在方程根左右的值的符号,如果左正右负,那么)(x f 在这个根处取极大值;如果左负右正,那么)(x f 在这个根处取极小值。
二、利用导数求最值例1、设0>x ,求32)1(32)1(211ln -+--+x x x x 的最小值。
解:设32)1(32)1(211ln )(-+--+=x x x x x f ,则2222)1(2)1()1(1)1(2)1(11)(-+---=-+---='x x x xx x x x x f⎪⎭⎫⎝⎛+--=⎥⎦⎤⎢⎣⎡-+--=⎥⎦⎤⎢⎣⎡-+--=2222212)1()1(21)1()1(211)1(x x x x x x x x x x.12)1(23xx x +-= 令0)(='x f ,由0>x ,解得1=x 。
列表:由表可知,当1=x 时,)(x f 有最小值1。
评注:利用导数求最值,先确定函数的极值是关键,同时,最值通常应在极值及端点处取得。
当函数f (x )为连续函数且在[]b a ,上单调时,其最大值、最小值在端点处取得;当连续函数f (x )在(a ,b )内只有一个可疑点时,若在这一点处f (x )有极大(小)值,则可以判定f (x )在该点处取得最大(小)值,这里(a ,b )也可以是无穷区间。
练习1:已知a ≥ 0,函数f (x )=(x 2-2ax )e x ,当x 为何值时,f (x )取得最小值?并证明你的结论; 三、利用导数求最值的运用 (一)求函数的值域例2 、求函数x x x x f --++=4325)(的值域.解:由⎩⎨⎧≥-≥+0403x x 得)(x f 的定义域为43≤≤-x 。
因为0421315)4()32()5()(>++++='--'++'='='x x x x x x f y ,所以)(x f 在[]4,3-上单调递增,故当3-=x 时,4,715=--=x y 最小时,7220+=最大y 。
所以值域为[]7220,715+--。
评注:求函数的值域转化为求)(x f 在闭区间[]4,3-上的最大值和最小值的问题,考虑其单调性易求值域,必须注意函数的定义域。
练习2:已知x ,y 为正实数,且满足关系式04222=+-y x x ,求xy 的最大值。
(二)利用最值求参数的值(或范围) 例3、设132<<a ,函数)11(23)(23≤≤-+-=x b ax x x f 的最大值为1,最小值为26-,求a ,b 的值。
解:)(333)('2a x x ax x x f -=-=,当x 变化时,)(),('x f x f 变化情况列表如下: x-1 (-1,0) 0(0,a ) a (a ,1) 1 )('x f+0 - 0+)(x fb a +--231bb a +-23b a +-231当x=0时,f (x )取极大值b ,而)()0(a f f >,)1()1(f f <-,故需比较f (0)与f (1)的大小。
∵0123)1()0(>-=-a f f ,∴f (x )最大值为f (0)=b=1。
又0)2()1(21)23(21)()1(23<-+=--=--a a a a a f f 。
∴)1()(min -=f x f ,∴2623123-=-=+--a b a ,∴1,36==b a 。
评注:这是一道求函数的最值的逆向思维问题。
本题的关键是比较极值和端点处的函数值的大小,列表解题一目了然,从而确定出a ,b 的值。
(三)利用最值研究恒成立问题 例4、设函数,5x 2x 21x )x (f 23+--=若对于任意]2,1[x -∈都有m )x (f <成立,求实数m 的取值范围。
解: ,2x x 3)x (f 2--='令,0)x (f ='得32x -=或1x =。
∵当32x -<或1x >时,,0)x (f >'∴)x (f y =在)32,(--∞ 和),1(∞+ 上为增函数, 在)1,32( -上为减函数,∴)x (f 在32x -=处有极大值,在1x =处有极小值。
极大值为27225)32(f =-, 而7)2(f =, ∴)x (f 在]2,1[ -上的最大值为7。
若对于任意x ]2,1[ -∈都有m )x (f <成立, 得m 的范围 7m >。
评注:利用最值可以研究一类恒成立问题,一般地,f(x)≥a 对x ∈R 恒成立⇔ f(x)的最小值≥a 成立;f(x)≤a 对x ∈R 恒成立⇔f(x)的最大值≤a 成立。
练习2:已知函数32()f x x ax bx c =+++在23x =-与x =1时都取得极值。
⑴求a 、b 的值;⑵若对2[1,2],()x f x c ∈-恒成立,求c 的取值范围。
四、利用最值证明不等式例5、已知)0()(3≠++=a d cx ax x f 是R 上的奇函数,当x=1时,f(x)取得极值-2。
(1)求 f(x)的单调区间和极大值;(2)对任意)1,1(,21-∈x x ,求证:不等式4)()(21<-x f x f 恒成立。
解:(1)∵f(x)是奇函数,R x ∈, ∴f(0)=0, ∴d=0因此c ax x f cx ax x f +=+=2'33)(,)( 由条件f(1)=-2为f(x)的极值,∴f ,(1)=0,∴⎩⎨⎧=+-=+032c a c a ,解之得:a=1,c=-3则33)(,3)(2'3-=-=x x f x x x f , 令0)('=x f ,得1±=x∴f(x)的单调减区间是[-1,1],f(x)的单调增区间是(][)∞+-∞-,和11,当x=-1时,f(x)有极大值2。
(2)证明:由(1)知f(x)在[-1,1]上是减函数,且f(x)在[-1,1]上有最大值f(-1)=2,有最小值f(1)=-2∴对任意)1,1(,21-∈x x , 恒有4)1()1()()(21=--<-f f x f x f评注:本题(2)借助于最值证明不等式,最值的研究利用了导数法,同时对于可导函数,某点为极值点的必要条件是这点的导数为0;某一点是极值点的充分条件是在这点两侧的导数异号。
此外,函数的极值点也可能是不可导点。
附练习答案:1、解:(1)对函数f (x )求导数,得f′(x )=(x 2-2ax )e x +(2x -2a )e x =[x 2+2(1-a )x-2a ]e x 。
令f′(x )=0,得[x 2+2(1-a )x-2a ]e x =0,从而x 2+2(1-a )x -2a =0。
解得2111a a x +--=2211a a x ++-=,其中x 1<x 2。
当x 变化时,f′(x ),f (x )的变化如下表: x (-∞ ,x 1 )x 1 ( x 1 , x 2)x 2 (x 2 ,+∞)f ′(x ) +0 — 0 + f (x )极大值极小值当f (x )在x =x 1处取到极大值,在x =x 2处取到极小值.当a≥0时,x 1<-1,x 2 ≥0,f (x )在(x 1,x 2)为减函数,在(x 2,+∞)为增函数. 而当x <0时,f (x )=x (x -2a )e x >0;当x =0时,f (x )=0. 所以当211a a x ++-=时,f (x )取得最小值。
2、解:由题意,)20(2212≤<-=x x x x xy ,设f (x ))20(2212≤<-=x x x x 。
当20<<x 时,222)23()('x x x x x f --=,令0)('=x f ,得23=x 或x=0(舍去)。
当x 在(]2,0内变化时,y /,y 有如下变化情况: x⎪⎭⎫ ⎝⎛23,0 23 2,23⎪⎭⎫ ⎝⎛ 2y / + 0- y极大值833由上表可知,当x=23时,f (x )最大值为833,亦即xy 的最大值为833。
3、解:⑴1,22a b =-=-; ⑵令32321()22g x x ax bx x x x =++=--,故对任意2[1,2],()x g x c c ∈--恒成立。
∵2()32(1)(2)g x x x x x '=--=-+,列表知对任意[1,2]x ∈-,y =()g x 的最大值为g(2)=2,∴2<c 2-c ,得c <-1或c >2。