利用导数求函数值域
求函数值域的十种常用方法

•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月下午 3时12 分20.12. 1215:1 2December 12, 2020
•
8、业余生活要有意义,不要越轨。20 20年12 月12日 星期六 3时12 分31秒1 5:12:31 12 December 2020
•
9、一个人即使已登上顶峰,也仍要自 强不息 。下午 3时12 分31秒 下午3时 12分15 :12:312 0.12.12
logo
求函数值域的十 种常用方法
一:定义域法
二:函数单调性法
三:反函数法
四:换元法
五:分离常数法
六:判别式法
七:三角换元法
九:数形结合法
十导数法:
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, Dec者明。胜人者有力 ,自胜 者强。 20.12.1 220.12. 1215:1 2:3115: 12:31D ecembe r 12, 2020
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月12 日星期 六下午 3时12 分31秒1 5:12:31 20.12.1 2
•
2、阅读一切好书如同和过去最杰出的 人谈话 。15:1 2:3115: 12:3115 :1212/ 12/2020 3:12:31 PM
•
3、越是没有本领的就越加自命不凡。 20.12.1 215:12: 3115:1 2Dec-20 12-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 15:12:3 115:12: 3115:1 2Saturday, December 12, 2020
导数法求值域

导数法求值域
求值域(range)是函数在定义域内所有可能的输出值的集合。
导数法是一种用于确定函数的最大值和最小值的方法。
下面是使用导数法求函数的值域的步骤:
1. 首先,找到函数的定义域(domain)。
定义域是函数所有可能的输入值的集合。
2. 接下来,计算函数的导数。
导数描述了函数在不同点上的变化率。
3. 然后,找到导数的零点(即导数为0的点)和导数的不连续点。
这些点可能对应着函数的最大值、最小值或者函数的不连续性。
4. 最后,根据导数的零点和不连续点,结合函数的定义域,确定函数的值域。
需要注意的是,导数法只能提供函数可能的最大值和最小值,并不能确定函数的完整值域。
要确定函数的完整值域,可能需要使用其他方法,如图像分析或者解析方法。
高中数学讲义:利用导数解函数的最值

函数的最值一、基础知识:1、函数的最大值与最小值:(1)设函数()f x 的定义域为D ,若0x D $Î,使得对x D "Î,均满足()()0f x f x £,那么称0x x =为函数()f x 的一个最大值点,()0f x 称为函数()f x 的最大值(2)设函数()f x 的定义域为D ,若0x D $Î,使得对x D "Î,均满足()()0f x f x ³,那么称0x x =为函数()f x 的一个最小值点,()0f x 称为函数()f x 的最小值(3)最大值与最小值在图像中体现为函数的最高点和最低点(4)最值为函数值域的元素,即必须是某个自变量的函数值。
例如:()[)ln ,1,4f x x x =Î,由单调性可得()f x 有最小值()10f =,但由于x 取不到4,所以尽管函数值无限接近于ln 4,但就是达不到。
()f x 没有最大值。
(5)一个函数其最大值(或最小值)至多有一个,而最大值点(或最小值点)的个数可以不唯一,例如()sin f x x =,其最大值点为()22x k k Z pp =+Î,有无穷多个。
2.“最值”与“极值”的区别和联系右图为一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值,2()f x 是极大值.函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x (1)“最值”是整体概念,是比较整个定义域内的函数值得出的,具有绝对性;而“极值”是个局部概念,是比较极值点附近函数值得出的,具有相对性.(2)从个数上看,一个函数在其定义域上的最值是唯一的;而极值不唯一;(3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个(4)极值只能在定义域内部取得,而最值可以在区间的端点处取得,有极值的未必有最值,有最值的未必有极值;极值有可能成为最值,最值只要不在端点必定是极值.3、结论:一般地,在闭区间[]b a ,上函数()y f x =的图像是一条连续不断的曲线,那么函数()y f x =在[]b a ,上必有最大值与最小值.4、最值点只可能在极值点或者边界点处产生,其余的点位于单调区间中,意味着在这些点的周围既有比它大的,也有比它小的,故不会成为最值点5、利用导数求函数的最值步骤:一般地,求函数)(x f 在[]b a ,上的最大值与最小值的步骤如下:(1)求)(x f 在(,)a b 内的极值;(2)将)(x f 的各极值与端点处的函数值)(a f 、)(b f 比较,其中最大的一个是最大值,最小的一个是最小值,得出函数)(x f 在[]b a ,上的最值6、求函数最值的过程中往往要利用函数的单调性,所以说,函数的单调区间是求最值与极值的基础7、在比较的过程中也可简化步骤:(1)利用函数单调性可判断边界点是否能成为最大值点或最小值点(2)极小值点不会是最大值点,极大值点也不会是最小值点8、最值点的作用(1)关系到函数的值域(2)由最值可构造恒成立的不等式:例如:()ln 1f x x x =-+,可通过导数求出()()min 10f x f ==,由此可得到对于任意的0x >,均有()()min 0f x f x ³=,即不等式ln 1x x £-二、典型例题:例1:求函数()x f x xe -=的最值思路:首先判定定义域为R ,对函数进行求导,根据单调区间求出函数的最值解:()()'1x fx x e -=-,令()'0f x >,解得:1x <()f x \的单调区间为:x (),1-¥()1,+¥'()f x +-()f x Z ]()()max 11f x f e\==,无最小值小炼有话说:函数()xf x xe-=先增再减,其最大值即为它的极大值点,我们可以将这种先增再减,或者先减再增的函数成为“单峰函数”,在单峰函数中,极值点即为函数的某个最值点。
高考数学复习函数值域的13种求法

函数值域十三种求法1. 直接观察法利用已有的基本函数的值域观察直接得出所求函数的值域,对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等,其值域可通过观察直接得到。
例1. 求函数x 1y =的值域解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域 解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]评注:配方法往往需结合函数图象求值域.3. 判别式法(只有定义域为整个实数集R 时才可直接用) 对于形如21112222a xb xc y a x b x c ++=++(1a ,2a 不同时为0)的函数常采用此法,就是把函数转化成关于x 的一元二次方程(二次项系数不为0时),通过方程有实数根,从而根的判别式大于等于零,求得原函数的值域.对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简如:.112..22222222b a y 型:直接用不等式性质k+xbx b. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+x x+xx m x n c y 型 通常用判别式x mx nx mx n d. y 型 x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1 例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
函数值域的常见求法8大题型(解析版)

函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
满分技巧一、求函数值域的常见方法1.直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2.逐层法:求f 1(f 2⋯f n (x ))型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3.配方法:配方法是二次型函数值域的基本方法,即形如“y =ax x +bx +c (a ≠0)”或“y =a [f (x )]2+bf (x )+c (a ≠0)”的函数均可用配方法求值域;4.换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y =ax +b cx +d或y =cx +dax +b 的结构,可用“cx +d =t ”换元;(2)y =ax +b ±cx +d (a ,b ,c ,d 均为常数,a ≠0,c ≠0),可用“cx +d =t ”换元;(3)y =bx ±a 2-x 2型的函数,可用“x =a cos θ(θ∈[0,π])”或“x =a sin θθ∈-π2,π2”换元;5.分离常数法:形如y =ax +b cx +d (ac ≠0)的函数,应用分离常数法求值域,即y =ax +b cx +d=ac +bc -adc 2x +d c ,然后求值域;6.基本不等式法:形如y =ax +bx(ab >0)的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a +b ≥2ab 求函数的值域(或最值)时,应满足三个条件:①a >0,b >0;②a +b (或ab )为定值;③取等号的条件为a =b ,三个条件缺一不可;7.函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如y =ax +b -cx +d (ac <0)的函数可用函数单调性求值域;(2)形如y =ax +bx的函数,当ab >0时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解;公众号:高中数学最新试题当ab <0时,y =ax +bx在(-∞,0)和(0,+∞)上为单调函数,可直接利用单调性求解。
函数值域求法大全

函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
函数值域12种求法

函数值域的12种求法在函数的三要素中,定义域和对应法则起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
一、函数值域的12种求法1. 观察法对于一些比较简单的函数,其值域可通过直接观察即可得到。
例1. 求函数 x 1y =的值域。
解:∵0x ≠ ∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数 x 3y -=的值域。
解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 函数单调性法:根据函数单调性及定义域求函数值域例9. 求函数 )10x 2(1x log 2y 35x ≤≤-+=-的值域。
解:令1x l o g y ,2y 325x 1-==-则21y ,y 在[2,10]上都是增函数所以21y y y +=在[2,10]上是增函数当x=2时,8112l o g 2y 33m i n =-+=-当x=10时,339log 2y 35max =+=故所求函数的值域为:⎥⎦⎤⎢⎣⎡33,81例10. 求函数 1x 1x y --+=的值域。
解:原函数可化为:1x 1x 2y -++= 令1x y ,1x y 21-=+=,显然 21y ,y 在 ],1[+∞上为无上界的增函数所以1y y =,2y 在 ],1[+∞上也为无上界的增函数所以当x=1时,21y y y +=有最小值 2,原函数有最大值 222=显然 0y >,故原函数的值域为 ]2,0(3. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数 ]2,1[x ,5x 2x y 2-∈+-=的值域。
几种常用的求值域方法

几种常用的求值域方法
求值域是指函数在定义域上所能取得的所有可能的值的集合。
在数学中,我们经常需要求出一个函数的值域。
下面是几种常用的求值域方法:
1.图像法:对于一些简单的函数,我们可以通过绘制函数的图像来直观地确定函数的值域。
通过观察函数的图像,我们可以判断出函数在定义域上所能取得的最大值和最小值,从而确定函数的值域。
2.分析法:对于一些复杂的函数,我们可以通过分析函数的特点来求出它的值域。
例如,对于一个多项式函数,我们可以通过求导数和求极值来确定函数的值域。
对于一个有理函数,我们可以通过求解不等式来确定函数的值域。
3.奇偶性:对于一些具有特定奇偶性质的函数,我们可以通过观察函数的奇偶性来确定函数的值域。
例如,对于一个奇函数,它的值域将关于原点对称;对于一个偶函数,它的值域将关于y轴对称。
4.上下界:如果一个函数的定义域有上下界,那么函数的值域也会有上下界。
我们可以通过求解极限来确定函数的上下界,并进而确定函数的值域。
5.距离法:对于一个与其他对象之间存在一定距离关系的函数,我们可以通过计算函数值与目标值之间的距离来确定函数的值域。
例如,对于一个平面上的点到原点的距离函数,它的值域将为非负实数集。
这些求值域的方法在不同的情况下都可以起到一定的作用。
在实际问题中,我们可以根据具体的函数形式和给定的条件选择合适的方法来求解函数的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数求函数最值
高二苏庭
导数是对函数的图像与性质的总结与拓展,导数是研究函数单调性极佳、最佳的重要工具,在掌握求函数的极值和最值的基础上学习用导数解决生产生活中的有关最大最小最有效等类似的应用问题广泛运用在讨论函数图像的变化趋势及证明不等式等方面。
导数是初等数学与高等数学的重要衔接点,是高考的热点,高考对导数的考查定位于作为解决初等数学问题的工具出现,高考对这部分内容的考查将仍会以导数的应用题为主,如利用导数处理函数的极值、最值和单调性问题和曲线的问题等,考题不难,侧重知识之意。
导数应用主要有以下三个方面:
①运用导数的有关知识研究函数的单调性和最值问题,
②利用导数的几何意义,研究曲线的切线斜率。
函数y=f(x)在x=x0处的导数,表示曲线在点P(x0 , y0)处的切线斜率。
由导数来求最值问题的方法可知,解这类实际问题需先建立函数关系,再求极值点,确定最值点及最值.在设变量时可采用直接法也可采用间接法.
求函数极值时,导数值为0的点是该点为极值点的必要条件,但不是充分条件。
运用导数确定函数单调区间的一般步骤为:
(1)求出函数y=f(x)的导函数;
(2)在函数定义域内解不等式得函数y=f(x)的单调增区间;解不等式得函数y=f(x)的单调减区间。
例题剖析
例1、求函数的值域.
分析:
求函数的值域以前学过一些方法,也可利用求导的方法,根据函数的单调性求解.
解答:
函数的定义域由求得,即x≥-2.
当x>-2时,y′>0,即函数,在(-2,+∞)上是增函数,又f(-2)=-1,∴所求函数的值域为[-1,+∞).
点评:
(1)从本题的解答过程可以看到,当单调区间与函数的值域相同时,才可使用此法,否则会产生错误.
(2)求值域时,当x=-2,函数不可导,但函数
在[-2,+∞)上是连续的,函数图象是连续变化的,因此在x=-2时,取得最小值.
例2、把长度为16cm的线段分成两段,各围成一个正方形,它们的面积之和的最小值为多少?
分析:建立面积和与一正方形的周长的函数关系,再求最小值.
解答:设一段长为xcm,则另一段长(16-x)cm.
∴面积和
∴S′=-2,令S′=0有x=8.
列表:
∴当x=8时,S有最小值8cm2.
点评:这是解实际应用题的一般方法.先构造函数关系,再求满足条件的解,极值或最值.
例3、如图所示,在二次函数f(x)=4x-x2的图象与x轴所围成图形中有个内接矩形ABCD,求这个矩形面积的最大值。
解析:设点B的坐标为(x,0)且0<x<2,
∵f(x)=4x-x2图象的对称轴为x=2, ∴点C的坐标为(4-x,0), ∴ |BC|=4-2x, |BA|=f(x)=4x-x2。
∴矩形面积为y=(4-2x)(4x-x2)=16x-12x2+2x3
y'=16-24x+6x2=2(3x2-12x+8)
令y'=0,解得,∵ 0<x<2, ∴取。
∵极值点只有一个,当时,矩形面积的最大值。