利用导数研究函数的单调性
第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。
利用导数讨论函数的单调性

课题:导数在函数中的应用——利用导数讨论函数的单调性一.复习回顾1.导数与函数的单调性:一般地,在某个区间(ab)内:(1)如果f′(x)>0,函数f (x)在这个区间内单调递增;(2)如果f′(x)<0,函数f (x)在这个区间内单调递减;(3)如果f′(x)=0,函数f (x)在这个区间内是常数函数.------利用导数的正负研究函数的增减2.利用导数讨论函数单调性的方法(1)直接解不等式:f′(x)>0和f′(x)<0;(2)利用f′(x)的图像(示意图);(3)列表法;注:考虑f′(x)=0的根;二.新课讲解(一)讨论函数的单调性【例1】(2018年全国I卷)已知函数 f(x)=aex-ln x-1 (1)设x=2是f(x)的极值点.求a,并求f(x)的单调区间;(二)讨论含参数函数的单调性【解法技巧】考虑f′(x)=0的根1. 若f′(x)=0在区间D上无解,则f′(x)恒正或恒负,f(x)在D上单调;2. 根有没有,要不要,比大小。
【例2】求f(x)=ex-ax的单调区间;【例3】已知函数f(x)=12x2-(a+1)x+a ln x(1)当a<1时,讨论f(x)的单调性;【变式】已知函数f(x)=12x2-(a+1)x+a ln x,讨论f(x)的单调性;三.归纳总结----导数讨论含参数函数单调性的思路:1. 若f′(x)=0在区间D上无解,则f′(x)恒正或恒负,f(x)在D上单调;2. f′(x)=0根有没有,要不要,比大小;①若f′(x)=0在R上无解或在R上有解但明显解不在定义域D内则f(x)在D上单调;②若f′(x)=0在R上有解但解是否在定义域D内需讨论,ⅰ若解都不在定义域D内,则f(x)在D上单调;ⅱ若有解在定义域D内,则利用f′(x)的图像或列表分析;四.课后作业:1.(2018-2019潮州高三期末)已知函数f(x)=2( x-1) ln x+a (x2-x-1+1x).(1)当 a=0讨论f(x)的单调性2. (2017·全国卷Ⅲ) 已知函数f(x)=ln x+ax2+(2a+1)x. (1)讨论f(x)的单调性;3. (2016·全国卷Ⅰ) 已知函数f(x)=(x-2)ex-a (x-1)2 (1)讨论f(x)的单调性;。
利用导数研究函数(单调性

§3.5 利用导数研究函数(单调性、极值和凸性)一、与函数的单调性有关的一些结论定理 3.11(单调的充分必要条件) 若函数f 在有限闭区间[,]a b 上连续,在(,)a b 上可导,则f 在[,]a b 上递增(或递减)当且仅当在(,)a b 上成立0f '≥(或0f '≤).证: “仅当”.假定f 在[,]a b 上递增.(,)x a b ∀∈,当0h b x <<-时,有()()0f x h f x h +-≥,故0()()()lim 0h f x h f x f x h→++-'=≥,即在(,)a b 上成立0f '≥.“当”.假定在(,)a b 上成立0f '≥.12,[,]x x a b ∀∈,12x x <,12(,)x x ξ∃∈,使得2121()()f x f x x x --()f ξ'=0≥.这说明21()()f x f x ≥,即f 在[,]a b 上递增.□定理 3.12(严格单调的充分条件) 若函数f 在有限闭区间[,]a b 上连续,在(,)a b 上成立0f '>(或0f '<),则f 在[,]a b 上严格递增(或严格递减).反之,结论可能不正确.证: 12,[,]x x a b ∀∈,12x x <,12(,)x x ξ∃∈,使得2121()()f x f x x x --()f ξ'= 0>.这说明21()()f x f x >,即f 在[,]a b 上严格递增.□定理 3.13(严格单调的充分条件) 若函数f 在有限闭区间[,]a b 上连续,在(,)a b 上除去有限个点后成立0f '>(或0f '<),则f 在[,]a b 上严格递增(或严格递减).反之,结论可能不正确.证:设12,,,n x x x ∃ ,12n a x x x b <<<<< ,在112(,),(,),,(,)n a x x x x b上成立0f '>,故f 在112[,],[,],,[,]n a x x x x b 上严格递增,从而f 在[,]a b 上严格递增.□定理 3.14(严格单调的充分必要条件) 若函数f 在有限闭区间[,]a b 上连续,在(,)a b 上可导,则f 在[,]a b 上严格递增(或严格递减)当且仅当同时成立(1) 在(,)a b 上有0f '≥(或0f '≤);(2) ∀开区间(,)I a b ⊂,|0I f '≠.证: “仅当”.假定f 在[,]a b 上严格递增.定理3.11确保了(1)成立;∀开区间(,)I a b ⊂,因为f 在I 上不是常数,故|0I f '≠,即(2)成立. “当”.假定(1)、(2)同时成立.定理3.11确保了f 在[,]a b 上递增,即12,[,]x x a b ∀∈,12x x <,有12()()f x f x ≤.若12()()f x f x =,则12[,]|x x f 是常数,从而12(,)|0x x f '=,与(2)相矛盾,故12()()f x f x <.□ 命题 (有实用价值) 设函数,f g 都在有限闭区间[,]a b 上连续,在(,)a b 上可导,并且在(,)a b 上成立f g ''≥(或f g ''>),那么(1) 若()()f a g a =,则(,](,]||a b a b f g ≥(或(,](,]||a b a b f g >);(2) 若()()f b g b =,则[,)[,)||a b a b f g ≤(或[,)[,)||a b a b f g <).证: 函数f g -在[,]a b 上递增(或严格递增).(1) (,]x a b ∀∈,有()()()()0f x g x f a g a -≥-=(或()()f x g x -()f a > ()0g a -=),故(,](,]||a b a b f g ≥(或(,](,]||a b a b f g >).(2) [,)x a b ∀∈,有()()()()0f x g x f b g b -≤-=(或()()f x g x -()f b < ()0g b -=),故[,)[,)||a b a b f g ≤(或[,)[,)||a b a b f g <).□例1(必须记住) (0,)2x π∀∈,总成立不等式2sin 1x xπ<<.证: 函数1,0;()sin ,02x f x x x xπ=⎧⎪=⎨<≤⎪⎩ 在[0,]2π上连续,在(0,)2π上可导,并且(0,)2x π∀∈,总有2cos sin ()0x x x f x x-'=<.于是, 222(),()(),[0,)22f f f x x πππππ''<=⇒>∀∈.□ 二、与函数的极值有关的一些结论定理 3.15(极值的充分条件)设f 是开区间...(,)a b 上的连续函数,0(,)x a b ∈.那么(1) 若在0(,)a x 上成立0f '≥(或0f '>),在0(,)x b 上成立0f '≤(或0f '<),则0()f x 是f 在(,)a b 上的最大值(或严格最大值);(2) 若在0(,)a x 上成立0f '≤(或0f '<),在0(,)x b 上成立0f '≥(或0f '>),则0()f x 是f 在(,)a b 上的最小值(或严格最小值). 证: 显然.□定理 3.16(简单情形下极值的充分条件) 设0x 是函数f 的驻点,并且0()f x ''存在,那么(1) 若0()0f x ''<,则0()f x 是f 的严格极大值;(2) 若0()0f x ''>,则0()f x 是f 的严格极小值;(3) 若0()0f x ''=,则各种情形都可能出现.证: (1) 000000()()()0()lim lim x x x x f x f x f x f x x x x x →→'''-''>==--,故0δ∃>,使得当00x x δ<-<时成立0()0f x x x '<-.于是,在00(,)x x δ-上成立0f '>;在00(,)x x δ+上成立0f '<.这说明0()f x 是f 在00(,)x x δδ-+上的严格最大值,即是f 的严格极大值.(2) 与(1)的证明类似.(3) 344,,x x x -说明各种情形都可能出现.□求有限闭区间上连续函数的最大值和最小值的方法 设函数f 在有限闭区间[,]a b 上连续,在(,)a b 上可导.若f 在(,)a b 上只有有限个驻点12,,,n x x x ,则12max ()max{(),(),(),,(),()}n a x bf x f a f x f x f x f b ≤≤= ; 12min ()min{(),(),(),,(),()}n a x b f x f a f x f x f x f b ≤≤= .练习题3.5(172P ) 2(3,4),3,4,5,6,7,8,9(3),11,13,15.问题3.5(175P ) 4,8,10.三、与函数的凸性有关的一些结论定义 3.6 设f 是区间I 上的函数.若12,x x I ∀∈,12x x <,(0,1)λ∈,总成立不等式1212[(1)](1)()()f x x f x f x λλλλ-+≤-+()1212[(1)](1)()()f x x f x f x λλλλ-+<-+或,则称f 是区间I 上的凸函数(或严格凸函数).注意 f 是区间I 上的凸函数(或严格凸函数),区间J I ⊂⇒|J f 是区间J 上的凸函数(或严格凸函数).凸函数的几何意义 f 是区间I 上的凸函数(或严格凸函数)⇔ 12,x x I ∀∈,12x x <,以11(,())x f x 和22(,())x f x 为端点的开线段总是位于(或严格位于)12(,)|x x f 的图像的上方.证: 12(0,1),(,)x x x λ∀∈∃∈使得121x x x x λ-=-;反之亦然.于是 1212[(1)](1)()()f x x f x f x λλλλ-+≤-+⇔2121121221212121()()x x x x x x x x f x x f x f x x x x x x x x x ⎡⎤----+≤+⇔⎢⎥----⎣⎦ 211121()()()()()f x f x f x x x f x x x -≤-+-.□ 注记 3.6' 函数f 是开区间(,)a b 上的凸函数(或严格凸函数)当且仅当同时成立(1) f 在(,)a b 上连续;(2) 12,(,)x x a b ∀∈,12x x <,总成立不等式121211()()222x x f f x f x +⎫⎛≤+ ⎪⎝⎭ 121211()()222x x f f x f x +⎫⎛⎫⎛<+ ⎪⎪ ⎝⎭⎝⎭或. 证: “仅当”.假定f 是开区间(,)a b 上的凸函数.由问题3.5的第1(3)题便知(1)成立;由凸函数的定义便知(2)成立.“当”.假定(1),(2)成立.由(2)的几何意义和f 的连续性,以11(,())x f x 和22(,())x f x 为端点的开线段总是位于12(,)|x x f 的图像的上方.这表明f 是(,)a b 上的凸函数.□注记3.6'' 设I 是以,a b 为左、右端点的区间,那么函数f 是I 上的凸函数(或严格凸函数)当且仅当同时成立(1) f 是(,)a b 上的凸函数(或严格凸函数);(2) 当a I ∈时,lim ()()x a f x f a →+≤;当b I ∈时,lim ()()x b f x f b →-≤. 证: “仅当”.假定f 是I 上的凸函数.由凸函数的定义便知(1)成立.由定理 3.19的推论知,lim ()x a f x →+和lim ()x b f x →-都存在.固定0(,)x a b ∈. 0(,)x a x ∀∈,有00()()()()()f x f a f x x a f a x a-≤-+-⇒lim ()()x a f x f a →+≤;0(,)x x b ∀∈,有0000()()()()()f b f x f x x x f x b x -≤-+-⇒lim ()()x b f x f b →-≤. “当”.假定(1),(2)成立.由凸函数的几何意义,12,x x I ∀∈,12x x <,以11(,())x f x 和22(,())x f x 为端点的开线段总是位于12(,)|x x f 的图像的上方.这表明f 是I 上的凸函数.□定理3.17(J ensen 不等式)若f 是区间I 上的凸函数,则1,,n x x ∀ I ∈, 1,,0n λλ> ,11n λλ++= ,总成立不等式1111()()()n n n n f x x f x f x λλλλ++≤++ .当f 是区间I 上的严格凸函数时,上式等号成立当且仅当12n x x x === .证: 不妨设 12n x x x ≤≤≤ ,显然1111n x x x λλ=++ 11x λ≤+n n x λ+ 1n n n n x x x λλ≤++= .这说明不等式的左边有意义.对n *∈ 应用数学归纳法.(1) 当1n =时,11λ=,故1111()()f x f x λλ=.(2) 假定当n k ≤时结论成立,要证当1n k =+时结论也成立.令1μ= 111,,011k k k k λλμλλ++=>-- ,则11k μμ++= ,故由归纳法假定便得到 1111()k k k k f x x x λλλ+++++11111[(1)()]k k k k k f x x x λμμλ+++=-+++11111(1)()()k k k k k f x x f x λμμλ+++≤-+++11111(1)[()()]()k k k k k f x f x f x λμμλ+++≤-+++1111()()()k k k k f x f x f x λλλ++=+++ .当f 是区间I 上的严格凸函数时,上式等号成立当且仅当12k x x x === ,111k k k x x x μμ+++= ,即121k x x x +=== .□定理3.18 (J ensen 不等式的另一形式) 若f 是区间I 上的凸函数,则1,,n x x ∀ I ∈,1,,0n ββ> ,总成立不等式 1111111()[()()]n n n n n nx x f f x f x ββββββββ++≤++++++ . 当f 是区间I 上的严格凸函数时,上式等号成立当且仅当12n x x x === . 定理3.19 f 是区间I 上的凸函数(或严格凸函数)⇔∀固定的0x I ∈,函数00()()()f x f x x x x ϕ-=-在0\{}I x 上递增(或严格递增). 证: ⇒.假定f 是I 上的凸函数.12,x x ∀0\{}I x ∈,12x x <,下述三个不等式120x x x <<,102x x x <<和01x x <2x <恰有一个成立.由凸函数的几何意义即知12()()x x ϕϕ≤.⇐.假定∀固定的x I ∈,函数()()()f y f x y y xϕ-=-在\{}I x 上递增.12,x x I ∀∈,12x x <,当12(,)x x x ∈时,总成立121212()()()()()()f x f x f x f x x x x x x xϕϕ--=≤=--. 这说明以11(,())x f x 和22(,())x f x 为端点的开线段总是位于12(,)|x x f 的图像的上方.故f 是区间I 上的凸函数.□推论 设f 是开区间(,)a b 上的凸函数,那么(1) 若a ≠-∞,则lim (){}x a f x →+∈+∞ ;若a =-∞,则lim ()x f x ∞→-∞∈ . (2) 若b ≠+∞,则lim (){}x b f x →-∈+∞ ;若b =+∞,则lim ()x f x ∞→+∞∈ . 证: 仅证(1).当a ≠-∞时,对固定的0(,)x a b ∈,00()()()f x f x x x x ϕ-=-在0(,)\{}a b x 递增,00()()()()f x x x x f x ϕ=-+,故0lim ()()lim ()x a x a f x a x x ϕ→+→+=-0(){}f x +∈+∞ .当a =-∞时,只需考虑f 不在(,)b -∞上递增的情形.取12,(,)x x b ∈-∞, 12x x <,使得12()()f x f x >.因为22()()()f x f x x x x ϕ-=-在1(,]x -∞上递增,故1lim ()()0x x x ϕϕ→-∞≤<,从而 2lim ()lim ()()x x f x x x x ϕ→-∞→-∞=-2()f x +=+∞.□ 定理 3.20 设I 是以,a b 为左、右端点的区间.若函数f 在I 上连续,在(,)a b 上可导,则f 是I 上的凸函数(或严格凸函数)当且仅当f '在(,)a b 上递增(或严格递增).证: 仅证严格的情形.“仅当”.假定f 是I 上的严格凸函数.12,x x ∀(,)a b ∈,12x x <和12,(,)x y x x ∈,分别对111()()()f x f x x x x ϕ-=-和222()()()f x f x x x x ϕ-=-应用定理3.19便有 12121212()()()()()()f x f x f x f x f x f y x x x x x y---<<---. 令12,x x y x →+→-,得到211221()()()()f x f x f x f x x x -''<<-.这说明f '在(,)a b 上严格递增.“当”.假定f '在(,)a b 上严格递增.0x I ∀∈,记00()()()f x f x x x x ϕ-=-.则当0(,),x a b x x ∈>时,0(,)x x ξ∃∈使得00()()f x f x x x --()f ξ'=,故 0000()()()()()()0f x f x f x x x f x f x x x x x ξϕ-'-''--'==>--. 当0(,),x a b x x ∈<时,0(,)x x η∃∈使得00()()f x f x x x--()f η'=,故 0000()()()()()()0f x f x f x x x f f x x x x x xηϕ-'-''--'==>--.这说明ϕ在0\{}I x 上严格递增,从而f 是I 上的严格凸函数. 定理 3.21 设I 是以,a b 为左、右端点的区间.若函数f 在I 上连续,在(,)a b 上2阶可导,则f 是I 上的凸函数(或严格凸函数)当且仅当在(,)a b 上成立0f ''≥(或在(,)a b 上成立0f ''≥,并且(,)(,)c d a b ∀⊂都有(,)|0c d f ''≠).证: 由定理3.20和定理3.14.□例2(几何平均不大于算术平均) 12,,,0n x x x ∀> ,有不等式11212()n nn x x x x x x n+++≤ . 等号成立当且仅当12,n x x x === . 证: 在(0,)+∞上成立211(ln )()0x x x'''-=-=>,故ln x -是(0,)+∞上的严格凸函数,从而1212ln ln ln ln n n x x x x x x n n +++----⎫⎛-≤ ⎪⎝⎭, 11212ln()ln n n n x x x x x x n +++⎫⎛≤ ⎪⎝⎭.□ 例3(算术平均不大于均方根) 12,,,0n x x x ∀> ,有不等式12n x x x n +++≤ . 等号成立当且仅当12,n x x x === .证: 在(0,)+∞上成立11322211024x x x --'''⎫⎫⎛⎛-=-=>⎪⎪ ⎝⎝⎭⎭,故12x -是(0,)+∞上的严格凸函数,从而122221212n n x x x x x x n n ⎫⎛++++++-≤-⎪ ⎝⎭ .□ 练习题3.5(172P ) 17,19(2,3,4),20,21,22,23.问题3.5(175P ) 1,2,3,9.§3.6 L ’Hospital 法则L ’Hospital 法则可以认为是连续型的Stolz 定理;Stolz 定理也可以认为是离散型的L ’Hospital 法则.定理3.22和3.23(00型)设,f g 在0x ∈ 的去心邻域上可导,并且,g g '在0x 的去心邻域上处处不取零值.若00lim ()lim ()0,x x x x f x g x →→==0()lim ()x x f x g x →'' {}l ∞=∈∞ ,则 0()lim ()x x f x g x →l =. 将“0x x →”换成“0x x →+,0x x →-,x →+∞,x →-∞,x →∞”后,结论仍然成立.证: 设0δ>是足够小的常数.当00(,)x x x δ∈+时,在0[,]x x 上应用Cauchy 中值定理知,0(,)x x ξ∃∈使得 ()()f x g x 00()()()()()()f x f x fg x g x g ξξ'-+=='-+.故0()lim ()x x f x g x →+l =;同理,0()lim ()x x f x g x →-l =. 对于“x →∞”的情形, 有 2002111()lim lim lim 111()x t t f f f x t t t g x g g t t t →∞→→⎫⎫⎫⎛⎛⎛'- ⎪ ⎪⎪⎝⎝⎝⎭⎭⎭==⎫⎫⎫⎛⎛⎛'- ⎪ ⎪⎪⎝⎝⎝⎭⎭⎭ 01()lim lim 1()t x f f x t l g x g t →→∞⎫⎛' ⎪'⎝⎭==='⎫⎛' ⎪⎝⎭.□ 推论1(00型) 设,f g 在0x ∈ 的去心邻域上n 阶可导,并且,,,g g ' ()n g 在0x 的去心邻域上处处不取零值.若 00lim ()lim ()x x x x f x f x →→'=== 0(1)lim ()n x x f x -→0lim ()x x g x →==00(1)lim ()lim ()0n x x x x g x g x -→→'=== ,0()()()lim ()n n x x f x g x →{}l ∞=∈∞ ,则 0()lim ()x x f x g x →l =. 将“0x x →”换成“0x x →+,0x x →-,x →+∞,x →-∞,x →∞”后,结论仍然成立.定理3.24 (?∞型) 设,f g 在0x ∈ 的去心邻域上可导,并且,g g '在0x 的去心邻域上处处不取零值.若0lim ()x x g x →=∞,0()lim ()x x f x g x →''{}l ∞=∈∞ ,则 0()lim ()x x f x g x →l =. 将“0x x →”换成“0x x →+,0x x →-,x →+∞,x →-∞,x →∞”后,结论仍然成立.证: 仅证l ∈ 和l =∞,并且是0x x →的情形.(1)l ∈ . 0,0εδ∀>∃>,使得当002x x δ<-<时成立()()f x l g x ε'-<'.故当 00(,)x x x δ∈+时, 在0[,]x x δ+应用Cauchy 中值定理知,ξ∃∈0(,)x x δ+使得 00()()()()()()f x f x f l lg x g x g δξεδξ'+--=-<'+-,从而 0000()()()limsuplimsup ()()()x x x x f x f x f x l l g x g x g x δεδ→+→++--=-≤+-. 故 0()limsup0()x x f x l g x →+-=,即0()lim ()x x f x l g x →+=;同理,0()lim ()x x f x l g x →-=. (2)l =∞. 0,0A δ∀>∃>,使得当002x x δ<-<时成立()()f x Ag x '>'.故当 00(,)x x x δ∈+时, 在0[,]x x δ+应用Cauchy 中值定理知, ξ∃∈0(,)x x δ+使得00()()()()()()f x f x f Ag x g x g δξδξ'+-=>'+-,从而 0000()()()liminf liminf ()()()x x x x f x f x f x A g x g x g x δδ→+→++-=≥+-. 故 0()liminf ()x x f x g x →+=+∞,即0()lim ()x x f x g x →+=∞;同理,0()lim ()x x f x g x →-=∞.□ 推论2(?∞型) 设,f g 在0x ∈ 的去心邻域上n 阶可导,并且,,,g g ' ()n g 在0x 的去心邻域上处处不取零值.若 0lim ()x x g x →=0lim ()x x g x →'==0(1)lim ()n x x g x -→=∞,0()()()lim ()n n x x f x g x →{}l ∞=∈∞ ,则 0()lim ()x x f x g x →l =. 将“0x x →”换成“0x x →+,0x x →-,x →+∞,x →-∞,x →∞”后,结论仍然成立.注记 易将“0⋅∞型,∞-∞型,00型,0∞型,1∞型”的极限化成“00型”或“?∞型”的极限,再利用L ’Hospital 法则求出来.例1(必须记住) 对于常数0μ>,有0lim ln 0x x x μ→+=;0lim 1x x x →+=. 解: ()10000ln ln 11lim lim lim lim 0()()x x x x x x x x x x x μμμμμμ----→+→+→+→+'===-='-. 00lim ln lim ln 0x x x x x x →+→+==,故0lim 1x x x →+=.□ 例2(一个错误的循环证明) 利用L ’Hospital 法则来证明0sin lim 1x x x→=是错误的.因为在000sin (sin )cos lim lim lim 1()1x x x x x x x x →→→'==='中,(sin )cos x x '=这一步用到了0sin lim 1x x x →=.□ 例3(问题1.12的第4题,52P ) 证: 10sin (0,)2x x π=∈,故数列{}n x 严格递减收敛于0.由Stolz 定理,2221222111111lim lim lim lim (1)sin n n n n n n n n nn x x x nx n n n x x +→∞→∞→∞→∞-⎫⎛===-⎪ +-⎝⎭ 22011lim sin x x x →+⎫⎛=-= ⎪⎝⎭222222400sin (sin )lim lim sin ()x x x x x x x x x →+→+'--=' 30(2sin 2)lim 4()x x x x →+'-='200(22cos2)4sin 21lim lim 12()243x x x x x x →+→+'-==='.□ 练习题3.6(182P ) 1(6,8,10,12,13),2,3,4.。
高中数学利用导数研究函数单调性基础知识梳理+常考例题汇总

∴(-2)+(-1)=a,即 a=-3. 3.[变条件]本例(2)变为:若 g(x)在(-2,-1)内不单调,其他条件不变,求实数 a 的取值范围. 【解析】由 1 知 g(x)在(-2,-1)内为减函数时,实数 a 的取值范围是(-∞,- 3]. 若 g(x)在(-2,-1)内为增函数,则 a≥x+ 2 在(-2,-1)内恒成立,
2.已知函数 f(x)= x a -ln x- 3 ,其中 a∈R,且曲线 y=f(x)在点(1,f(1))处
4x
2
的切线垂直于直线 y= 1 x.
2
(1)求 a 的值;
(2)求函数 f(x)的单调区间.
【解析】(1)对 f(x)求导得 f′(x)= 1 - a - 1 ,
4 x2 x
由 f(x)在点(1,f(1))处的切线垂直于直线 y= 1 x,
【解析】f′(x)= 1 ·x+ln x-k-1=ln x-k,
x
①当 k≤0 时,因为 x>1,所以 f′(x)=ln x-k>0,
所以函数 f(x)的单调递增区间是(1,+∞),无单调递减区间.
②当 k>0 时,令 ln x-k=0,解得 x=ek,
当 1<x<ek 时,f′(x)<0;当 x>ek 时,f′(x)>0.
x
又∵y=x+ 2 在(-2,- 2 )内单调递增,在(- 2 ,-1)内单调递减,
x
∴y=x+ 2 的值域为(-3,-2 2 ),
x
∴实数 a 的取值范围是[-2 2 ,+∞), ∴函数 g(x)在(-2,-1)内单调时,a 的取值范围是(-∞,-3]∪[-2 2 ,+∞), 故 g(x)在(-2,-1)上不单调时,实数 a 的取值范围是(-3,-2 2 ). [解题技法]由函数的单调性求参数的取值范围的方法 (1)由可导函数 f(x)在 D 上单调递增(或递减)求参数范围问题,可转化为 f′(x)≥ 0(或 f′(x)≤0)对 x∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”
利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。
导数研究函数的单调性

导数研究函数的单调性用导数证明、划分函数的单调性是导数最基本的应用,其他性质如极值,最值都必须用到单调性,它比用单调性的定义证明简单。
一、利用导数求函数的单调区间例1、研究函数ax x y +=3的单调性解:因为ax x y +=3,所以a x y +=23',a>0时,0'>>a y ,函数在),(+∞-∞上是增函数;a=0时,3x y =在),(+∞-∞上增函数;a<0时,设)3')(3'(3'3','2a x a x a x y a a -+=-=-=, 当3'a x -<或3'a x >时,函数是增函数;当3'3'a x a <<-时,函数是减函数, 所以ax x y +=3,这时有三个区间。
二、利用导数比较大小例2、已知a ,b 为实数,且b>a>e ,其中e 为自然数对数的底,求证:a b b a >.分析:通过考察函数的单调性来证明不等式也是常用的一种方法。
根据题目自身的特点,适当的构造函数关系,在建立函数关系时,应尽可能选择求导好判断导数都比较容易的函数,一般地,证明),(),()(b a x x g x f ∈>,可以等价转化为证明0)()()(>-=x g x f x F ,如果0)('>x F ,则函数F (x )在(a ,b )上是增函数,如果0)(≥a F ,由增函数的定义可知,当),(b a x ∈时,有0)(>x F ,即).()(x g x f >三、根据单调性求参数例3、已知1)(--=ax e x f x。
(1)求f (x )的单调区间;(2)若f (x )在定义域R 内单调递增,求a 的取值范围;(3)是否存在a ,使f (x )在]0,(-∞上单调递减,在),0[+∞上单调递增?若存在,求出a 的值;若不存在,说明理由。
利用导数探究函数的单调性(共10种题型)

利用导数探究函数的单调性一.求单调区间例1:已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间 解:()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.则令()()g x f x '=因为当0,1a a >≠ 所以2()2ln 0x g x a a '=+> 所以()f x '在R 上是增函数, 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞,变式:已知()x f x e ax =-,求()f x 的单调区间解:'()x f x e a =- 当0a ≤时,'()0f x >,()f x 单调递增当0a >时,由'()0x f x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增由'()0x f x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增 综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞,二.函数单调性的判定与逆用例2.已知函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数,求正整数a 的取值集合 解:2()322f x x ax '=+-因为函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数 所以2()322=0f x x ax '=+-在1132(,)上有解 所以''11()()032f f <又*a N ∈ 解得:5542a << 所以正整数a 的取值集合{2}三.利用单调性求字母取值范围 例3. 已知函数()ln xf x ax x=-,若函数()y f x =在1+?(,)上是减函数,求实数a 的最小值. 解:因为()ln xf x ax x=-在1+?(,)上是减函数 所以'2ln 1()0(ln )x f x a x -=-?在1+?(,)上恒成立 即2ln 1(ln )x a x -³在1+?(,)上恒成立令ln ,(1)t x x =>,则0t >21()(0)t h t t t -=> 则max ()a h t ³因为222111111()=()()24t h t t t t t -=-+=--+ 所以max 1()=(2)4h t h =所以14a ³变式:若函数3211()(1)132f x x ax a x =-+-+在区间1,4()上为减函数,在区间(6,)+?上为增函数,试求实数a 的取值范围. 解:2'()=1f x x ax a -+-因为函数()y f x =在区间1,4()上为减函数,在区间(6,)+?上为增函数 所以''()0(1,4)()0,(6,)f x x f x x ìï??ïíï???ïî,恒成立即2210(1,4)10,(6,)x ax a x x ax a x ì-+-??ïïíï-+-???ïî, 所以2211,(1,4)111,(6,)1x a x x x x a x x x ì-ïï?+"?ïï-íï-ï?+"??ïï-ïî所以4161a a ì?ïïíï?ïî所以57a #四.比较大小例4. 设a 为实数,当ln 210a x >->且时,比较x e 与221x ax -+的大小关系. 解:令2()21(0)x f x e x ax x =-+-> 则'()=22x f x e x a -+ 令'()()g x f x = 则'()e 2x g x =- 令'()0g x =得:ln 2x =当ln 2x >时,'()0g x >;当ln 2x <时,'()0g x <所以ln2min ()()=(ln2)2ln2222ln22g x g x g e a a ==-+=-+极小值 因为ln 21a >- 所以'()()0g x f x =>所以()f x 在0+?(,)上单调递增所以()(0)0f x f >= 即2210x e x ax -+-> 所以221x e x ax >-+变式:对于R 上的可导函数()y f x =,若满足'(3)()0x f x ->,比较(1)(11)f f +与2(3)f 的大小关系.解:因为'(3)()0x f x ->所以当3x >时,'()0f x >,()f x 单调递增,故(11)(3)f f >当3x <时,'()0f x <,()f x 单调递减,故(1)(3)f f > 所以(1)(11)2(3)f f f +> 五.证明不等式例5.已知函数|ln |)(x x f =,()(1)g x k x =- (R)k ∈.证明:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 证明:令()|ln |(1)=ln (1),(1,)G x x k x x k x x =----∈+∞ 则有'11(),(1,)kx G x k x x x-=-=∈+∞ 当01k k ≤≥或时,'()0G x >,故 ()G x 在1+∞(,)上单调递增,()G(1)0G x >=.故任意实数 (1,)x ∈+∞ 均满足题意.当 01k << 时,令'()=0G x ,得11x k=>. 当1(1,)x k ∈时,'()0G x >,故 ()G x 在1(1,)k上单调递增当1()x k∈+∞,时,'()0G x <,故 ()G x 在1()k +∞,上单调递减 取01x k=,对任意0(1,)x x ∈,有'()0G x >,故()G x 在0(1,)x 上单调递增所以()G(1)0G x >= 即()()f x g x >综上所述:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >.变式:已知关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、.求证:120x x <+ 证明:因为2(1)x x e ax a --=所以2(1)1xx e a x -=+令2(1)()1xx e f x x -=+则222222(23)[(1)2]()11x xx x x e x x e f x x x --+--+'==++()()当0x >时()0f x '<,()f x 单调递减 当0x <时()0f x '>,()f x 单调递增因为关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、所以不妨设12(,0),(0,)x x ∈-∞∈+∞ 要证:120x x <+ 只需证:21x x <-因为210x x -∈+∞(,),且函数()f x 在0+∞(,)上单调递减 所以只需证:21()()f x f x >-,又因为21()=()f x f x 所以只需证:11()()f x f x >-即证:11112211(1)(1)11x x x e x e x x --+>++ 即证:(1)(1)0x x x e x e ---+>对0x ∈-∞(,)恒成立 令g()(1)(1)x x x x e x e -=--+,0x ∈-∞(,)则g ()()x x x x e e -'=-因为0x ∈-∞(,)所以0x x e e -->所以g ()()0x x x x e e -'=-<恒成立所以g()(1)(1)x x x x e x e -=--+在0-∞(,)上单调递减所以g()(0)0x g >= 综上所述:120x x <+ 六.求极值例6.已知函数2()()x f x x ax a e =++,是否存在实数a ,使得函数()f x 的极大值为3?若存在,求出a 的值,若不存在,请说明理由.解:'22()(2)()[(2)2]=()(2)x x x x f x x a e x ax a e x a x a e x a x e =++++=+++++ 令'()=0f x 得:2x a x =-=-或当2a =时,'()0f x ≥恒成立,无极值,舍去当2a <时,2a ->-由表可知:2()=(2)(42)3f x f a a e --=-+=极大值 解得:2432a e =-< 当2a >时,2a -<-由表可知:22()=()()3a f x f a a a a e --=-+=极大值,即3a ae -= 所以:=3a a e 令()3(2)a g a e a a =-> 则'2()31310a g a e e =->->所以()y g a =在2+∞(,)上单调递增又2(2)320g e =->所以函数()y g a =在2+∞(,)上无零点即方程=3a a e 无解综上所述:存在实数a ,使得函数()f x 的极大值为3,此时243a e =- 七.求最值例7. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,若存在]1,1[,21-∈x x ,使得12()()e 1f x f x -≥-(其中e 是自然对数的底数),求实数a 的取值范围. 解:因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()m i n 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++,令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a+-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ 我变式:已知函数()ln()(0)x a f x e x a a -=-+>在区间0+∞(,)上的最小值为1,求实数a 的值.解:1()=x a f x e x a-'-+ 令()()g x f x '=则21()=0(x a g x e x a -'+>+)所以()y g x =在区间0+∞(,)单调递增所以存在唯一的00x ∈+∞(,),使得0001()0x a g x e x a-=-=+ 即001=x a e x a-+ 所以当0(0,)x x ∈时,()()0g x f x '=<,()y f x =单调递减当0()x x ∈+∞,时,()()0g x f x '=>,()y f x =单调递增 所以0min 00()()ln()x a f x f x e x a -==-+ 由001=x a e x a-+得:00=ln()x a x a --+ 所以0min 00001()()ln()=x a f x f x e x a x a x a-==-++-+001=()2222x a a x aa a++-+≥=- 当且仅当001=x a x a++即0=1x a +,min 0()()22f x f x a ==- 由22=1a -得12a =,此时01=2x ,满足条件 所以12a =八.解不等式例8. 函数2)0())((=∈f R x x f ,,对任意1)()('>+∈x f x f R x ,,解不等式:1)(+>x x e x f e 解:令()()x x g x e f x e =-则()()()(()()1)x x x x g x e f x e f x e e f x f x '''=+-=+-因为对任意1)()('>+∈x f x f R x , 所以()0g x '>,所以()y g x =为R 上的单调递增函数 又(0)(0)11g f =-=所以当1)(+>x x e x f e 即()1x x e f x e -> 所以()(0)g x g > 所以0x >即不等式:1)(+>x x e x f e 的解集为0+∞(,)变式:已知定义在R 上的可导函数()y f x =满足'()1f x <,若(12)()13f m f m m -->-,求m 的取值范围.解:令()()g x f x x =- 则()()1g x f x ''=- 因为'()1f x <所以()()10g x f x ''=-<所以()()g x f x x =-为R 上递减函数 由(12)()13f m f m m -->- 得:(12)()f m m f m m ---(1-2)> 即(12)()g m g m -> 所以12m m ->即13m <九.函数零点个数(方程根的个数)例9. 已知2()2ln()f x x a x x =+--在0x =处取得极值.若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围.解: '2()21f x x x a=--+ 因为2()2ln()f x x a x x =+--在0x =处取得极值 所以'2(0)1=0f a=-, 即2a =,检验知2a =符合题意.令2()()2ln(2)[1,1]g x f x b x x x b x =+=+--+∈-,'52()22()21(11)x x g x x x +=--=--≤≤ 所以()=(0)2ln 2g x g b =+极大值因为方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根所以(1)0(0)0(1)0g g g -≤⎧⎪>⎨⎪≤⎩,即02ln 202ln 320b b b ≤⎧⎪+>⎨⎪-+≤⎩解得:2ln 222ln 3b -<≤-所以实数b 的取值范围是:2ln 222ln3]--(, 变式:已知函数()y f x =是R 上的可导函数,当0x ¹时,有'()()0f x f x x+>,判断函数13()()F x xf x x=+的零点个数解:当0x ¹时,有'()()0f x f x x+> 即'()()0xf x f x x+> 令()()g x xf x =,则'()()()g x xf x f x ¢=+所以当0x >时,'()()()0g x xf x f x ¢=+>,函数()y g x =在0+∞(,)单调递增 且()g(0)=0g x >所以当0x >时,13()()0F x xf x x=+>恒成立,函数()y F x =无零点 当0x <时,'()()()0g x xf x f x ¢=+<,函数()y g x =在0∞(-,)单调递减 且()g(0)=0g x >恒成立 所以13()()F x xf x x=+在0∞(-,)上为单调递减函数 且当0x →时,()0xf x ®,所以13()0F x x? 当x →-∞时,10x®,所以()()0F x xf x ? 所以13()()F x xf x x=+在0∞(-,)上有唯一零点 综上所述:13()()F x xf x x =+在0∞∞(-,)(0,+)上有唯一零点 十.探究函数图像例10.设函数在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图像可能为下列图像的 .解:由()y f x =的图像可判断出:()f x 在(,0)-∞递减,在(0)+∞,上先增后减再增 所以在(,0)-∞上()0f x '<,在(0)+∞,上先有()0f x '>,后有()0f x '<,再有()0f x '>. 所以图(4)符合.变式:已知函数ln(2)()x f x x =,若关于x 的不等式2()()0f x af x +>只有两个整数解,求实数a 的取值范围. 解:21ln(2)()=x f x x -',令()=0f x '得2e x = 所以当02e x <<时,()0,()f x f x '>单调递增 当2e x >时,()0,()f x f x '<单调递减 由当12x <时,()0f x <,当12x >时,()0f x >(1)(2)(3)(4)作出()f x 的大致函数图像如图所示: 因为2()()0f x af x +>(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意;(2)若0a >,则()()0f x a f x <->或,由图像可知,()0f x >,有无穷多整数解(舍)(3)若0a <则()0()f x f x a <>-或,由图像可知,()0f x <无整数解, 所以()f x a >-有两个整数解因为(1)(2)ln 2f f ==,且()f x 在(,)2e +∞上单调递减 所以()f x a >-的两个整数解为:1,2x x == 又ln 6(3)3f =所以ln 6ln 23a ≤-< 所以ln 6ln 23a -<≤-。
利用导数判断函数单调性

利用导数判断函数单调性函数的单调性是数学中一个重要的概念,它描述了函数在指定区间上是递增还是递减的特性。
通过判断函数的导数的正负性,我们可以确定函数在不同区间上的单调性。
本文将介绍通过导数判断函数单调性的方法,并提供一些实例来帮助读者更好地理解。
导数的定义在介绍如何利用导数判断函数单调性之前,让我们先复习一下导数的定义。
给定函数y = f(x),如果在某个点x处导数存在,那么该导数表示函数在该点的变化率。
导数可以通过以下公式表示:f'(x) = lim({f(x + h) - f(x)}/{h}) as h approaches 0其中,f’(x)表示函数f(x)的导数。
可以看出,导数的定义是通过求函数在某个点附近的斜率来描述函数的变化率。
利用导数判断函数单调性的方法函数在某个区间上的单调性可以通过导数的正负来判断。
具体而言,如果在区间[a, b]上,函数的导数大于0,则函数在该区间上是递增的;如果导数小于0,则函数在该区间上是递减的。
这可以用以下定理来描述:定理 1:如果函数f(x)在一个区间(a, b)上连续,并且在该区间上处处可导,则有:1.如果f’(x) > 0在(a, b)上成立,则f(x)在(a, b)上递增。
2.如果f’(x) < 0在(a, b)上成立,则f(x)在(a, b)上递减。
基于这一定理,我们可以通过以下步骤来判断函数在指定区间上的单调性:1.求出函数的导数f’(x)。
2.找出导数f’(x)的所有零点,这些点被称为函数f(x)的临界点。
3.根据临界点将区间分为一系列子区间。
4.检查每个子区间内的导数的正负性。
5.根据导数的正负性判断函数在每个子区间内的单调性。
值得注意的是,我们还需要考虑函数在临界点和区间的端点上的单调性。
对于区间端点,我们可以采用类似的方式判断端点处的单调性。
接下来,我们将通过一些实例来帮助读者理解如何利用导数判断函数单调性。
实例 1考虑函数f(x) = x^2 - 2x + 1在区间(-∞, +∞)上的单调性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.求函数f(x)=x2-2ln x的单调区间.
解 f′(x)=2x-2x=2x2x-1,
又 f(x)的定义域为{x∈R|x>0},
∴x,f′(x)、f(x)的取值变化情况如下表:
x (0,1) 1 (1,+∞)
f′(x) - 0 +
f(x)
1
由上表可知,函数 f(x)在区间(0,1)上是减函数,在区间(1,+
题型二 求函数的单调区间
【例 2】 求函数 f(x)=3x2-2ln x 的单调区间.
解 函数定义域为(0,+∞),
f′(x)=6x-2x=2·3x2x-1=6x-
33x+ x
33,
令 f′(x)>0 则 x> 33或- 33<x<0,
又∵x>0,∴x> 33,
令 f′(x)<0,则 x<- 33或 0<x< 33,
f(x)单调递增区间为-∞,-a-3
a2-3,
-a+
3
a2-3,+∞
;
函
数
f(x) 单 调 递 减 区 间 为
-a-
3
a2-3,-a+3
a2-3.
(2)若函数在区间-23,-13内是减函数,则说明 f′(x)=3x2
+2ax+1=0 两根在区间-23,-13外, 因此 f′-23≤0,且 f′-13≤0,由此可以解得 a≥2. 因此 a 的取值范围是[2,+∞).
=a·b在区间(-1,1)上是增函数,求t的取值范围.
错因分析 上述的解法中,把f′(x)>0视为了f(x)在某区间上 为增函数的充要条件,事实上f′(x)>0是f(x)在某区间上为增函数 的充分不必要条件.
[正解一] 由题意得 f(x)=x2(1-x)+t(x+1)=-x3+x2+tx+t,则 f′(x)=-3x2+2x+t.
[正解二] 由题意得f(x)=x2(1-x)+t(x+1) =-x3+x2+tx+t, 则f′(x)=-3x2+2x+t. 若f(x)在(-1,1)上是增函数,则在(-1,1)上f′(x)≥0. ∵f′(x)的图象是开口向下的抛物线, ∴当且仅当f′(1)=t-1≥0,且f′(-1)=t-5≥0时, f(x)在(-1,1)上满足f′(x)>0, 即f(x)在(-1,1)上是增函数. 故t的取值范围是t≥5.
(2)解
f′(x)=xcos
x-sin x2
x,令g(x)=xcos
x-sin
x,
则g′(x)=cos x-xsin x-cos x=-xsin x,
∵x∈(0,π),∴g′(x)<0,故g(x)是减函数,
∴g(x)<g(0)=0,∴x∈(0,π)时,f′(x)<0,
∴f(x)=sinx x在区间(0,π)上是减函数.
又∵x>0,∴0<x< 33,
∴f(x)=3x2-2ln
x
的增区间为
33,+∞,减区间
为0,
3
3
.
题型三 已知单调性求参数的取值范围
【例 3】 已知函数 f(x)=x3+ax2+x+1,a∈R.
(1)讨论函数 f(x)的单调区间;
(2)设函数 f(x)在区间-23,-13内是减函数,求 a 的取值范围. 解 (1)f(x)=x3+ax2+x+1,f′(x)=3x2+2ax+1,
x>
3
a2-3时,f′(x)>0,函数
f(x)单调递增,
当-a-3
a2-3 -a+
<x<
3
a2-3时,f′(x)<0,函数
f(x)单调递减.
此时函数的单调增区间为
(-∞,-a-3
a2-3),-a+3
a2-3,+∞;
单调递减区间为
-a-
3
a2-3,-a+
3
a2-3.
故若- 3≤a≤ 3,f(x)在 R 上为增函数;若 a> 3或 a<- 3函数
课堂总结
1.利用导数的正负,可以很好的判定函数的单调性,具体结论如
下:已知函数 y=f(x), (1)如对任意 x∈(a,b),恒有 f′(x)>0,则 f(x)在区间(a,b)内单调
递增; (2)如对任意 x∈(a,b),恒有 f′(x)<0,则 f(x)在区间(a,b)内单调
递减.
2.用导数求函数单调区间的步骤如下: (1)确定f(x)的定义域; (2)求导数f′(x); (3)由f′(x)>0(或f′(x)<0)解出相应的x的取值范围.当 f′(x)>0时,f(x)在相应区间上是增函数;当f′(x)<0时,f(x)在相 应区间上是减函数.
三、课堂练习
1.(1)试证明:函数 f(x)=sinx x在区间π2,π上单调递减. (2)试问:若将题中区间改为(0,π),函数 f(x)的单调性如何?
(1)证明
f′(x)=xcos
x-sin x2
x,又
x∈π2,π,
则 cos x<0,∴xcos x-sin x<0,
∴f′(x)<0,∴f(x)在π2,π上是减函数.
解 ∵f′(x)=3x2+2x+m,由于f(x)是R上的单调函数,∴
f′(x)>0恒成立或f′(x)<0恒成立,由于3>0,
∴只能有f′(x)>0恒成立,∴Δ=4-12m<0,
故m>
1 3
,但由于m=
1 3
时,也符合题意,故实数m的取值范围
是13,+∞.
探究: 误区警示 因认为f(x)为增(减)函数的充要条件是 f′(x)>0(f′(x)<0)而致误 【示例】 已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)
若 f(x)在(-1,1)上是增函数,则在(-1,1)上 f′(x)≥0. f′(x)≥0⇔t≥3x2-2x 在区间(-1,1)上恒成立, 考虑函数 g(x)=3x2-2x 的图象是对称轴为 x=13且开口向上的抛物 线, 故要使 t≥3x2-2x 在区间(-1,1)上恒成立, 只需 t≥(3x2-2x)max=3×(-1)2-2×(-1)=5, 则 t 的取值范围是 t≥5.
∞)上是增函数或直接由 f′(x)>0,
得2x2x-1>0, ∴xx2>-0,1>0, 得x>1; 由f′(x)<0,即x2-x 1<0, 由xx2>-0,1<0, 解得0<x<1. 故f(x)的递增区间为(1,+∞),递减区间为(0,1).
3.若函数f(x)=x3+x2+mx+1是R上的单调函数,求实数m 的取值范围.
思考:可导函数f(x)在(a,b)上递增(减)的充要条件是什 么?
提示 可导函数f(x)在(a,b)上递增(减)的充要条件是 f′(x)≥0(f′(x)≤0)在(a,b)上恒成立,且f′(x)在(a,b)的任意子区间 内都不恒等于零.这就是说,函数f(x)在区间上的单调性并不排 斥在区间内的个别点处有f′(x)=0.
3.利用导数的正负与函数单调性的关系可以证明函数的单 调性,求函数的单调区间、证明不等式、求参数的范围等.证明 不等式需要构造函数.
二、课程讲解 题型一 判断或证明函数的单调性 【例 1】 证明:函数 f(x)=lnxx在区间(0,e)上是增函数.
证明
∵f(x)=lnx
x,∴f′(x)=x·1x-x2ln
x=1-xl2n
x .
又0<x<e,∴ln
x<ln
e=1.∴f′(x)=
1-ln x2
x
>0,故f(x)在区间
(0,e)上是单调递增函数.
3.3 导数在研究函数中的应用 3.3.1 利用导数研究函数的单调性
一、预习检查
1.设函数 y=f(x)在某个区间上的导数为 f′(x) , 如果f′(x)>0 ,那么函数 y=f(x)递增,如果 f′(x)<0 ,那 么函数 y=f(x)递减. 2.从导数定义看,函数的导数就是函数值关于自变量 的 变化率 ,变化率的绝对值越大说明变得越快,绝对值越 小说明变得越慢;从函数的图象看,导数是切线的 斜率,斜率的 绝对值大说明切线 陡 ,曲线也就陡,斜率的绝对值小说明切线 较 平 ,曲线也就平缓一些.
预习效果检查
1.若 f(x)在[a,b]上连续且在区间(a,b)内,f′(x)>0,且 f(a)≥0, 则在(a,b)内有( ).
A.f(x)>0 C.f(x)=0
B.f(x)<0 D.不能确定
解析 因f(x)在(a,b)上为增函数, ∴f(x)>f(a)≥0.
答案 A
2.函数f(x)=x+ln x的单调增区间为( ).
当 Δ=(2a)2-3×4=4a2-12≤0,即- 3≤a≤ 3时,f′(x)≥0 恒
ቤተ መጻሕፍቲ ባይዱ
成立,
此时 f(x)为单调递增函数,单调区间为(-∞,+∞).
当 Δ=(2a)2-3×4=4a2-12>0,即 a> 3或 a<- 3时,函数 f′(x)
存在零解,
此时当
-a-
x<
3
a2-3时,f′(x)>0,
当
-a+
A.(-∞,-1),(0,+∞) B.(0,+∞)
C.(-1,0)
D.(-1,1)
解析 ∵f′(x)=1+1x=x+x 1,
∴由于f′(x)>0,且由f(x)的定义域:{x|x>0},知x>0时,f′(x)>0 恒成立.
答案 B
3.函数y=x3-3x的单调递减区间是________.
解析 ∵y′=3x2-3=3(x2-1), ∴令y′<0,即3(x+1)(x-1)<0,解得-1<x<1. 答案 (-1,1)