第18讲 利用导数研究函数的单调性(原卷版)2021届新课改地区高三数学一轮专题复习
新教材老高考适用2023高考数学一轮总复习第四章第二节利用导数研究函数的单调性pptx课件北师大版

第二节 利用导数研究函数的单调性
内
容
索
引
01
强基础 增分策略
02
增素能 精准突破
课标解读
1.结合实例,借助几何直观了
解函数的单调性与导数的关
系.
2.能利用导数研究函数的单
调性,会求函数的单调区间.
3.能够利用导数解决与函数
单调性有关的问题.
衍生考点
核心素养
1.研究不含参函数的
单调性
数学抽象
+1
(2)若-1≤a<0,由于 ≤0,所以
+1
(- )
.
2
+1
,
+∞
+1
0,
.
f'(x)<0,即 f(x)的单调递减区间是(0,+∞).
;
+1
(3)若 a<-1, >0,当 x∈
当 x∈
+1
, +∞
+1
0,
时,f'(x)>0,所以 f(x)的单调递增区间是
且g(-2)=g(2)=2f(2)=0,g(0)=0.因为f(x)>0,所以当x>0时,由g(x)=xf(x)>0得
2.讨论含参函数的单
逻辑推理
调性
数学运算
3.与导数有关的函数
数学建模
单调性的应用
强基础 增分策略
知识梳理
1.函数的单调性与其导数的关系
导数的符号与函数的单调性之间具有如下的关系:
(1)若在某个区间内,函数y=f(x)的导数f'(x)>0,则在这个区间内,函数
【2021新高考数学】利用导数求函数的单调性、极值 、最值

【举一反三】
1.函数 y=4x2+1的单调增区间为________. x
1,+∞ 【答案】 2
【解析】
由
y=4x2+1,得 x
y′=8x-x12(x≠0),令
y′>0,即
8x-x12>0,解得
x>1, 2
∴函数
y=4x2+1的单调增区间为
2
.
2
2
当 x (, 2 ) 时,函数为增函数;当 x ( 2 , ) 时,函数也为增函数.
2
2
令 f (x) 6x2 3 0 ,解得 2 x 2 .当 x ( 2 , 2 ) 时,函数为减函数.
2
2
22
故函数 f (x) 2x3 3x 的单调递增区间为 (, 2 ) 和 ( 2 , ) ,单调递减区间为 ( 2 , 2 ) .
当求得的单调区间不止一个时,单调区间要用“,”或“和”字等隔开,不要用符号“∪”连接
【举一反三】 1.函数 y=4x2+1的单调增区间为________.
x 2.函数 f(x)=x·ex-ex+1 的单调增区间是________. 3.已知函数 f(x)=xln x,则 f(x)的单调减区间是________. 4.已知定义在区间(-π,π)上的函数 f(x)=xsin x+cos x,则 f(x)的单调增区间是_______.
2x 2 (1)求 a 的值; (2)求函数 f(x)的极值.
第十四讲 利用导数求函数的单调性、极值 、最值
【套路秘籍】
一.函数的单调性 在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在这个区间内单调递增;如果 f′(x)<0,那么函数 y=f(x) 在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数 y=f(x)的极值的方法 解方程 f′(x)=0,当 f′(x0)=0 时:
高考数学复习考点知识专题讲解课件第18讲 导数与不等式 第2课时 利用导数研究恒成立问题

1<x≤e时,f'(x)>0,此时f(x)单调递增.∴f(x)的单调递减区间为(0,1),单调递增区间
为(1,e],f(x)的极小值为f(1)=1,无极大值.
课堂考点探究
变式题1 已知f(x)=ax-ln
ln
x,x∈(0,e],g(x)= ,x∈(0,e],其中e是自然对数的底数,
a∈R.
1
1
上的最大值为- ,f(x)在 ,2
2
2
上的最小值为ln 2-2.
课堂考点探究
变式题2 [2021·重庆八中模拟] 已知函数f(x)=ln
1 2
x- x .
2
(2)若不等式f(x)>(2-a)x2有解,求实数a的取值范围.
解:原不等式即为ln
1 2
ln
1
ln
1
x- x >(2-a)x2,可化简为2-a< 2 - .记g(x)= 2 - ,则原不等式
用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结
构特征构造一个可导函数是用导数证明不等式的关键.
课堂考点探究
(2)可化为不等式恒成立问题的基本类型:
类型1:函数f(x)在区间[a,b]上单调递增,只需f'(x)≥0在[a,b]上恒成立.
类型2:函数f(x)在区间[a,b]上单调递减,只需f'(x)≤0在[a,b]上恒成立.
值的过程中常用的放缩方法有函数放缩法、基本不等式放缩法、叠加不等式
放缩法等.
课堂考点探究
探究点一
恒成立与能成立问题
例1 [2022·南京调研] 设函数f(x)=(x2-a)ex,a∈R,e是自然对数的底数.
第18讲 利用导数研究函数的单调性(解析版)2021届新课改地区高三数学一轮专题复习

3. 已知函数单调性求参数的值或参数的范围
(1)函数 y=f(x)在区间(a,b)上单调递增,可转化为 f′(x)≥0 在(a,b)上恒成立,且在(a,b)的任意子区间上不
恒为_0;也可转化为(a,b)⊆增区间. 函数 y=f(x)在区间(a,b)上单调递减,可转化为 f′(x)≤0 在(a,b)上恒成立,且在(a,b)的任意子区间上不恒 为_0;也可转化为(a,b)⊆减区间. (2)函数 y=f(x)的增区间是(a,b),可转化为(a,b)=增区间,也可转化为 f′(x)>0 的解集是(a,b);
6、函数 f(x)=x3-6x2 的单调递减区间为________.
【答案】(0,4)
【解析】:f′(x)=3x2-12x=3x(x-4),
由 f′(x)<0,得 0<x<4,
∴函数 f(x)的单调递减区间为(0,4).
7、(多填题)已知函数 f(x)=x3+mx2+nx-2 的图象过点(-1,-6),函数 g(x)=f′(x)+6x 的图象关于 y 轴对
∴h(x)在(2,3)递增,h(x)>h(2)=3,
∴实数 a 的取值范围为 a≤3;
②由题意得 g′(x)=x2-ax+2<0 在(-2,-1)上有解,∴a<x+2在(-2,-1)上有解, x
【答案】D
【解析】
函数
f(x)=-2lnx-x-3的定义域为(0,+∞),且 x
f′(x)=-2x-1+x32=-x2+x22x-3,解不等式
f′(x)>0,即 x2+2x-3<0,由于 x>0,解得 0<x<1.因此,函数 y=f(x)的单调递增区间为(0,1).故选 D.
3、函数 f(x)=ax3+bx2+cx+d 的图像如图,则函数 y=ax2+3bx+c的单调递增区间是( ) 23
(浙江版)高考数学一轮复习专题3.3利用导数研究函数的单调性(讲)(2021学年)

(浙江版)2018年高考数学一轮复习专题3.3 利用导数研究函数的单调性(讲)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江版)2018年高考数学一轮复习专题3.3利用导数研究函数的单调性(讲))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江版)2018年高考数学一轮复习专题3.3 利用导数研究函数的单调性(讲)的全部内容。
专题3.3利用导数研究函数的单调性【考纲解读】【知识清单】1.利用导数研究函数的单调性在(,)a b任意子区间内都不恒等于0.f x在(,)f x,'()a b内可导函数()a b上为增函数.≥⇔在(,)f x f x'()0()a b上为减函数.≤⇔在(,)'()0()f x f x对点练习:【2016北京理数】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值;(2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2))(x f 的单调递增区间为(,)-∞+∞。
所以,当)1,(-∞∈x 时,0)(<'x g ,)(x g 在区间)1,(-∞上单调递减; 当),1(+∞∈x 时,0)(>'x g ,)(x g 在区间),1(+∞上单调递增. 故1)1(=g 是)(x g 在区间),(+∞-∞上的最小值, 从而),(,0)(+∞-∞∈>x x g 。
综上可知,0)(>'x f ,),(+∞-∞∈x ,故)(x f 的单调递增区间为),(+∞-∞。
2023年新高考数学一轮复习4-2 应用导数研究函数的单调性(知识点讲解)含详解

专题4.2 应用导数研究函数的单调性(知识点讲解)【知识框架】【核心素养】考查利用导数求函数的单调区间或讨论函数的单调性以及由函数的单调性求参数范围,凸显数学运算、逻辑推理的核心素养.【知识点展示】(一)导数与函数的单调性1.在(,)a b 内可导函数()f x ,'()f x 在(,)a b 任意子区间内都不恒等于0.'()0()f x f x ≥⇔在(,)a b 上为增函数.'()0()f x f x ≤⇔在(,)a b 上为减函数.2.利用导数研究函数的单调性的方法步骤:①确定函数f(x)的定义域;②求导数f ′(x);③由f ′(x)>0(或f ′(x)<0)解出相应的x 的取值范围,当f ′(x)>0时,f(x)在相应区间上是增函数;当f ′(x)<0时,f(x)在相应区间上是减增函数.特别提醒:讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.【常考题型剖析】题型一:判断或证明函数的单调性例1.(2017·山东·高考真题(文))若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是( )A .()2xf x -= B .()2f x x = C .()-3xf x = D .()cos f x x =例2.(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围. 例3.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【总结提升】1.利用导数研究函数的单调性的关键在于准确判定导数的符号,易错点是忽视函数的定义域.2.当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.讨论的标准有以下几种可能:(1)f ′(x )=0是否有根;(2)若f ′(x )=0有根,求出的根是否在定义域内; (3)若在定义域内有两个根,比较两个根的大小. 题型二:求函数的单调区间例4.(2012·辽宁·高考真题(文))函数y=12x 2-㏑x 的单调递减区间为( ) A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)例5.(2016·北京·高考真题(理))设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+, (1)求a ,b 的值; (2)求()f x 的单调区间. 【总结提升】1.利用导数求函数单调区间的方法(1)当导函数不等式可解时,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,解出方程的实根,按实根把函数的定义域划分区间,确定各区间f ′(x )的符号,从而确定单调区间.(3)若导函数的方程、不等式都不可解,根据f ′(x )结构特征,利用图象与性质确定f ′(x )的符号,从而确定单调区间.温馨提醒:所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.2.解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. 题型三: 利用函数的单调性解不等式例6.(2015·全国·高考真题(理))设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞例7.(2017·江苏·高考真题)已知函数()3xx 1f x =x 2x+e -e-,其中e 是自然数对数的底数,若()()2f a-1+f 2a 0≤,则实数a 的取值范围是_________. 【总结提升】比较大小或解不等式的思路方法(1)根据导数计算公式和已知的不等式构造函数,利用不等关系得出函数的单调性,即可确定函数值的大小关系,关键是观察已知条件构造出恰当的函数.(2)含有两个变元的不等式,可以把两个变元看作两个不同的自变量,构造函数后利用单调性确定其不等关系.题型四:利用函数的单调性比较大小 例8.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >>B .b a c >>C .a b c >>D .a c b >>例9.(2007·陕西·高考真题(理))已知f (x )是定义在(0,+∞) 上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ). A .af (b )≤bf (a ) B .bf (a )≤af (b ) C .af (a )≤f (b )D .bf (b )≤f (a )例10.(2013·天津·高考真题(文))设函数()2x f x e x =+-,2()ln 3g x x x =+-若实数,a b 满足()0f a =,()0g b =则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<例11.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【总结提升】1.在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.2.构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果. 常见构造的辅助函数形式有: (1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′; (5)f ′(x )-f (x )→()[]'x f x e. 题型五:根据函数的单调性求参数范围例12.(2014·全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是A .(],2-∞-B .(],1-∞-C .[)2,+∞D .[)1,+∞例13.(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.例14.(2014·全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【总结提升】由函数的单调性求参数的取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围.(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围. 题型六:利用导数研究函数的图象例15.(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =例16.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .例17.(2017·浙江·高考真题)函数y ()y ()f x f x ==,的导函数的图象如图所示,则函数y ()f x =的图象可能是A .B .C .D .【规律方法】函数图象的辨识主要从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 题型七:与函数单调性相关的恒成立问题例18.(2022·广东·执信中学高三阶段练习)已知函数 ()e xf x x =-,则 ()f x 的单调递增区间为________; 若对任意的()0,x ∞∈+, 不等式 ln 2e 1xx ax+-≥恒成立, 则实数 a 的取值范围为________. 例19.(2022·全国·高三专题练习)已知函数()()e ln xf x m x m =+∈R ,若对任意正数12,x x ,当12x x >时,都有()()1212f x f x x x ->-成立,则实数m 的取值范围是______.例20.(2010·全国·高考真题(理))设函数()21x f x e x ax =---.(1)若0a =,求()f x 的单调区间;(2)若当0x ≥时()0f x ≥恒成立,求a 的取值范围. 【规律方法】处理此类问题,往往利用“构造函数法”、“分离参数法”.专题4.2 应用导数研究函数的单调性(知识点讲解)【知识框架】【核心素养】考查利用导数求函数的单调区间或讨论函数的单调性以及由函数的单调性求参数范围,凸显数学运算、逻辑推理的核心素养.【知识点展示】(一)导数与函数的单调性1.在(,)a b 内可导函数()f x ,'()f x 在(,)a b 任意子区间内都不恒等于0.'()0()f x f x ≥⇔在(,)a b 上为增函数.'()0()f x f x ≤⇔在(,)a b 上为减函数.2.利用导数研究函数的单调性的方法步骤:①确定函数f(x)的定义域;②求导数f ′(x);③由f ′(x)>0(或f ′(x)<0)解出相应的x 的取值范围,当f ′(x)>0时,f(x)在相应区间上是增函数;当f ′(x)<0时,f(x)在相应区间上是减增函数.特别提醒:讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(二)常用结论1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.【常考题型剖析】题型一:判断或证明函数的单调性例1.(2017·山东·高考真题(文))若函数()e xf x (e=2.71828,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是( )A .()2xf x -= B .()2f x x = C .()-3xf x = D .()cos f x x =【答案】A 【解析】 【详解】对于A,令()e 2x x g x -=⋅,11()e (22ln )e 2(1ln )022x x x x xg x ---'=+=+>,则()g x 在R 上单调递增,故()f x 具有M 性质,故选A.例2.(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >.【解析】 【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【详解】(1)函数的定义域为()0,∞+, 又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a<<时,()0f x '<;当1x a >时,()0f x '>;所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点,所以()y f x =的图象在x 轴的上方,由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭,故33ln 0a +>即1a e>.例3.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 【答案】(1)答案见解析;(2) 和()11a ---,. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;(2)首先求得导数过坐标原点的切线方程,然后将原问题转化为方程求解的问题,据此即可求得公共点坐标. 【详解】(1)由函数的解析式可得:()232f x x x a '=-+,导函数的判别式412a ∆=-,当14120,3a a ∆=-≤≥时,()()0,f x f x '≥在R 上单调递增,当时,的解为:12113113,33a ax x --+-==, 当113,3a x ⎛⎫--∈-∞ ⎪ ⎪⎝⎭时,单调递增;当113113,33a a x ⎛⎫--+-∈ ⎪ ⎪⎝⎭时,单调递减;当113,3a x ⎛⎫+-∈+∞ ⎪ ⎪⎝⎭时,单调递增;综上可得:当时,在R 上单调递增,当时,在113,3a ⎛⎫---∞ ⎪ ⎪⎝⎭,113,3a⎛⎫+-+∞ ⎪ ⎪⎝⎭上单调递增,在⎣⎦上单调递减. (2)由题意可得:()3200001f x x x ax =-++,()200032f x x x a '=-+,则切线方程为:()()()322000000132y x x ax x x a x x --++=-+-,切线过坐标原点,则:()()()32200000001320x x ax x x a x --++=-+-,整理可得:3200210x x --=,即:()()20001210x x x -++=,解得:,则,()0'()11f x f a '==+切线方程为:()1y a x =+, 与联立得321(1)x x ax a x -++=+,化简得3210x x x --+=,由于切点的横坐标1必然是该方程的一个根,()1x ∴-是321x x x --+的一个因式,∴该方程可以分解因式为()()2110,x x --=解得121,1x x ==-,()11f a -=--,综上,曲线过坐标原点的切线与曲线的公共点的坐标为和()11a ---,. 【总结提升】1.利用导数研究函数的单调性的关键在于准确判定导数的符号,易错点是忽视函数的定义域.2.当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.讨论的标准有以下几种可能:(1)f ′(x )=0是否有根;(2)若f ′(x )=0有根,求出的根是否在定义域内; (3)若在定义域内有两个根,比较两个根的大小. 题型二:求函数的单调区间例4.(2012·辽宁·高考真题(文))函数y=12x 2-㏑x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞) D .(0,+∞)【答案】B 【解析】 【详解】对函数21ln 2y x x =-求导,得211x y x x x='-=-(x>0),令210{0x x x -≤>解得(0,1]x ∈,因此函数21ln 2y x x =-的单调减区间为(0,1],故选B例5.(2016·北京·高考真题(理))设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(1)求a ,b 的值; (2)求()f x 的单调区间.【答案】(Ⅰ)2a =,b e =;(2)()f x 的单调递增区间为(,)-∞+∞. 【解析】 【详解】试题分析:(Ⅰ)根据题意求出,根据(2)22,(2)1f e f e =+=-'求a,b 的值即可;(Ⅱ)由题意判断的符号,即判断1()1x g x x e -=-+的单调性,知g(x)>0,即>0,由此求得f(x)的单调区间.试题解析:(Ⅰ)因为()a x f x xe bx -=+,所以()(1)a x f x x e b -=-+'. 依题设,(2)22,{(2)1,f e f e =+=-'即222222,{1,a a eb e e b e --+=+-+=- 解得2,e a b ==.(Ⅱ)由(Ⅰ)知2()x f x xe ex -=+. 由21()(1)x x f x e x e --=-+'及20x e ->知,与11x x e --+同号.令1()1x g x x e -=-+,则1()1x g x e -=-+'. 所以,当时,,在区间上单调递减; 当时,,在区间上单调递增. 故是在区间上的最小值,从而.综上可知,,.故的单调递增区间为.【总结提升】1.利用导数求函数单调区间的方法(1)当导函数不等式可解时,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,解出方程的实根,按实根把函数的定义域划分区间,确定各区间f ′(x )的符号,从而确定单调区间.(3)若导函数的方程、不等式都不可解,根据f ′(x )结构特征,利用图象与性质确定f ′(x )的符号,从而确定单调区间.温馨提醒:所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.2.解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. 题型三: 利用函数的单调性解不等式例6.(2015·全国·高考真题(理))设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)C .(,1)(1,0)-∞--D .(0,1)(1,)⋃+∞【答案】A 【解析】 【详解】构造新函数()()f xg x x=,()()()2 'xf x f x g x x -=',当0x >时()'0g x <. 所以在()0,∞+上()()f xg x x=单减,又()10f =,即()10g =.所以()()0f x g x x =>可得01x <<,此时()0f x >,又()f x 为奇函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为:()(),10,1-∞-⋃. 故选A.点睛:本题主要考查利用导数研究函数的单调性,需要构造函数,例如()()xf x f x '-,想到构造()()f xg x x=.一般:(1)条件含有()()f x f x '+,就构造()()x g x e f x =,(2)若()()f x f x -',就构造()()xf xg x e =,(3)()()2f x f x +',就构造()()2x g x e f x =,(4)()()2f x f x -'就构造()()2xf xg x e =,等便于给出导数时联想构造函数.例7.(2017·江苏·高考真题)已知函数()3x x 1f x =x 2x+e -e-,其中e 是自然数对数的底数,若()()2f a-1+f 2a 0≤,则实数a 的取值范围是_________.【答案】1[1,]2-【解析】 【详解】因为31()2e ()ex x f x x x f x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+,所以数()f x 在R 上单调递增, 又2(1)(2)0f a f a -+≤,即2(2)(1)f a f a ≤-,所以221a a ≤-,即2210a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-. 【总结提升】比较大小或解不等式的思路方法(1)根据导数计算公式和已知的不等式构造函数,利用不等关系得出函数的单调性,即可确定函数值的大小关系,关键是观察已知条件构造出恰当的函数.(2)含有两个变元的不等式,可以把两个变元看作两个不同的自变量,构造函数后利用单调性确定其不等关系.题型四:利用函数的单调性比较大小 例8.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】 由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭ 所以11tan 44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>, 故选:A例9.(2007·陕西·高考真题(理))已知f (x )是定义在(0,+∞) 上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意的0<a <b ,则必有( ). A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )【答案】A 【解析】 【详解】因为xf ′(x )≤-f (x ),f (x )≥0,所以()f x x ⎡⎤⎢⎥⎣⎦′=2'()()xf x f x x -≤22()f x x -≤0, 则函数()f x x在(0,+∞)上单调递减.由于0<a <b ,则()()f a f b a b≥,即af (b )≤bf (a ) 例10.(2013·天津·高考真题(文))设函数()2x f x e x =+-,2()ln 3g x x x =+-若实数,a b 满足()0f a =,()0g b =则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<【答案】A 【解析】 【详解】试题分析:对函数()2x f x e x =+-求导得()=1x f x e '+,函数单调递增,()()010,110f f e =-=+,由()0f a =知01a <<,同理对函数2()ln 3g x x x =+-求导,知在定义域内单调递增,(1)-20g =<,由()0g b =知1b >,所以()0()g a f b <<.例11.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增,所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C. 【总结提升】1.在比较()1f x ,()2f x ,,()n f x 的大小时,首先应该根据函数()f x 的奇偶性与周期性将()1f x ,()2f x ,,()n f x 通过等值变形将自变量置于同一个单调区间,然后根据单调性比较大小.2.构造函数解不等式或比较大小一般地,在不等式中若同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的和、差、积、商的新函数,再借助导数探索新函数的性质,进而求出结果.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→()[]'f x x; (4)f ′(x )+f (x )→[e x f (x )]′; (5)f ′(x )-f (x )→()[]'x f x e. 题型五:根据函数的单调性求参数范围例12.(2014·全国·高考真题(文))若函数()ln f x kx x =-在区间()1,+∞上单调递增,则实数k 的取值范围是A .(],2-∞-B .(],1-∞-C .[)2,+∞D .[)1,+∞【答案】D 【解析】 【详解】 试题分析:,∵函数()ln f x kx x =-在区间()1,+∞单调递增,∴在区间()1,+∞上恒成立.∴,而在区间()1,+∞上单调递减,∴.∴的取值范围是[)1,+∞.故选D .例13.(2019·北京·高考真题(理))设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】 -1; (],0-∞. 【解析】 【分析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用导函数的解析式可得a 的取值范围. 【详解】若函数()x xf x e ae -=+为奇函数,则()()(),x x x x f x f x e ae e ae ---=-+=-+,()()1 0x x a e e -++=对任意的x 恒成立.若函数()x x f x e ae -=+是R 上的增函数,则()' 0x xf x e ae -=-≥恒成立,2,0x a e a ≤≤.即实数a 的取值范围是(],0-∞例14.(2014·全国·高考真题(理))若函数()cos 2sin f x x a x =+在区间(,)62ππ内是减函数,则实数a 的取值范围是_______. 【答案】2a ≤ 【解析】()()2sin 2cos 4sin cos cos cos 4sin .,62f x x a x x x a x x x a x ππ⎛⎫=-+=-+=-+∈ ⎪⎝'⎭时,()f x 是减函数,又cos 0x >,∴由()0f x '≤得4sin 0,4sin x a a x -+≤∴≤在,62ππ⎛⎫⎪⎝⎭上恒成立,()min 4sin ,,262a x x a ππ⎛⎫⎛⎫∴≤∈∴≤ ⎪ ⎪⎝⎭⎝⎭.【总结提升】由函数的单调性求参数的取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围.(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围. 题型六:利用导数研究函数的图象例15.(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D 【解析】 【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ; 对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,2102164y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D.例16.(2018·全国·高考真题(文))函数()2e e x xf x x --=的图像大致为 ( )A .B .C .D .【答案】B 【解析】 【详解】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A,1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.例17.(2017·浙江·高考真题)函数y ()y ()f x f x ==,的导函数的图象如图所示,则函数y ()f x =的图象可能是A .B .C .D .【答案】D【解析】 【详解】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.【规律方法】函数图象的辨识主要从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 题型七:与函数单调性相关的恒成立问题例18.(2022·广东·执信中学高三阶段练习)已知函数 ()e xf x x =-,则 ()f x 的单调递增区间为________; 若对任意的()0,x ∞∈+, 不等式 ln 2e 1xx ax+-≥恒成立, 则实数 a 的取值范围为________.【答案】 (0,)+∞(填[)0,∞+亦可) 1(,]2-∞【解析】 【分析】求出函数导数,利用导数求函数单调区间,不等式恒成立可分离参数后求函数()e ln x g x x x x =⋅--的最小值,令ln t x x =+换元后可根据单调性求最值. 【详解】 ()1x f x e =-',令()0f x '>,可得()f x 的单调递增区间(0,)+∞ (或[)0+∞,亦可); ln 2e 1x x ax+-≥可化为2e ln x a x x x ≤⋅--. 令()e ln x g x x x x =⋅--=ln e e ln x x x x ⋅--=ln e (ln )x x x x +-+, 设ln t x x =+,则()e =-t h t t ,由()e xf x x =-在[)0+∞,上单调递增可知, 0()(0)e 01h t h ≥=-=,则21a ≤, 故解得12a ≤. 故答案为:(0,)+∞(填[)0,∞+亦可);12a ≤例19.(2022·全国·高三专题练习)已知函数()()e ln xf x m x m =+∈R ,若对任意正数12,x x ,当12x x >时,都有()()1212f x f x x x ->-成立,则实数m 的取值范围是______. 【答案】[)0,∞+ 【解析】 【分析】令()()g x f x x =-,进而原题等价于()g x 在()0,∞+单调递增,从而转化为()e 10x mg x x'=+-≥,在()0,∞+上恒成立,参变分离即可求出结果.【详解】由()()1212f x f x x x ->-得,()()1122f x x f x x ->- 令()()g x f x x =-,∴()()12g x g x > ∴()g x 在()0,∞+单调递增,又∵()()e ln xg x f x x m x x =-=+-∴()e 10xmg x x'=+-≥,在()0,∞+上恒成立,即()1e x m x ≥- 令()()1e x h x x =-,则()()e 110xh x x '=-++<∴()h x 在()0,∞+单调递减,又因为()()01e 00h =-⨯=,∴0m ≥.故答案为:[)0,∞+.例20.(2010·全国·高考真题(理))设函数()21x f x e x ax =---.(1)若0a =,求()f x 的单调区间;(2)若当0x ≥时()0f x ≥恒成立,求a 的取值范围.【答案】(1) f (x )在(-∞,0)单调减少,在(0,+∞)单调增加;(2) a 的取值范围为(-∞,12].【解析】【分析】(1)a =0时,()1x f x e x =--,()1x f x e '=-.分别令f ′(x )<0,f ′(x )>0可求()f x 的单调区间;(2求导得到)f ′(x )=e x -1-2ax .由(1)知e x ≥1+x ,当且仅当x =0时等号成立.故问题转化为f ′(x )≥x -2ax =(1-2a )x ,从而对1-2a 的符号进行讨论即可得出结果.【详解】(1)a =0时,()1x f x e x =--,()1x f x e '=-.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加(2) ()12x f x e ax '-=-.由(1)知1x e x ≥+,当且仅当x =0时等号成立.故f ′(x )≥x -2ax =(1-2a )x ,从而当1-2a ≥0,即a ≤时,f ′(x )≥0(x ≥0),而f (0)=0,于是当x ≥0时,f (x )≥0.由1x e x ≥+ (x ≠0)得1x e x -≥- (x ≠0),从而当a >时,f ′(x )< 1x e -+2a (1x e --)=x e - (1x e -)(x e -2a ),故当x ∈(0,ln2a )时, f ′(x )<0,而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0,综上可得a 的取值范围为(-∞,].【规律方法】处理此类问题,往往利用“构造函数法”、“分离参数法”.。
2021版新高考数学一轮复习第三章导数及其应用3.2利用导数研究函数的单调性课件新人教B版
第二节ꢀ利用导数研究函数的单调性内容索引【教材·知识梳理】函数的导数与单调性的关系函数y=f(x)在某个区间内可导:单调递增①若f′(x)>0,则f(x)在这个区间内_________;单调递减②若f′(x)<0,则f(x)在这个区间内_________;常数函数③若f′(x)=0,则f(x)在这个区间内是_________.【常用结论】1.利用导数求函数单调区间的方法(1)当导函数不等式可解时,解不等式f′(x) >0或f′(x) <0求出单调区间.(2)当方程f′(x)=0可解时,解出方程的实根,按实根把函数的定义域划分区间,确定各区间f′(x)的符号,从而确定单调区间.(3)若导函数的方程、不等式都不可解,根据f′(x)结构特征,利用图象与性质确定f′(x)的符号,从而确定单调区间.2.两个条件(1)f′(x)>0是函数f(x)为增函数的充分不必要条件.(2)f′(x)<0是函数f(x)为减函数的充分不必要条件.3.确定单调区间端点值的三个依据(1)导函数等于零的点.(2)函数不连续的点.(3)函数不可导的点.4.三点注意(1)在函数定义域内讨论导数的符号.(2)两个或多个增(减)区间之间的连接符号,不用“∪”,可用“,”或用“和”.(3)区间端点可以属于单调区间,也可以不属于单调区间.【知识点辨析】(正确的打“√”,错误的打“×”)(1)在(a,b)内f′(x)≤0,且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数.(ꢀꢀ)(2)若函数f(x)在定义域上都有f′(x)<0,则函数f(x)在定义域上一定单调递减. (ꢀꢀ)(3)已知函数f(x)在区间[a,b]上单调递增,则f′(x)>0恒成立.(ꢀꢀ)提示:(1)√.(2)×.不一定,如函数y=的导函数y′=-<0恒成立,但是函数y=的图象不是恒下降的.(3)×.不一定,如y=x3在[-1,3]上单调递增,但是y′=3x2在x=0处的值为0.【易错点索引】序号易错警示典题索引1 2忽视定义域优先的原则分类讨论时分类标准出错考点一、T1,2考点二、典例已知单调性求参数的问题时,所列不等式是否取等号出错3考点三、角度3【教材·基础自测】1.(选修2-2P25例3改编)函数f(x)=x-ln x的单调递减区间为(ꢀꢀ)A.(0,1)ꢀꢀꢀꢀB.(0,+∞)C.(1,+∞)D.(-∞,0)∪(1,+∞)【解析】选A.函数的定义域是(0,+∞),且f′(x)=1-,令f′(x)<0,得0<x<1.2.(选修2-2 P26练习AT1改编)已知函数f(x)的导函数f ′(x)=ax2+bx+c的图象如图所示,则f(x)的图象可能是(ꢀꢀ)【解析】选D.由题图可知,当x<0和x>x时,导函数f ′(x)=ax2+bx+c<0,知相应的1时,导函数f ′(x)=ax2+bx+c>0,知相应函数f(x)在该区间上单调递减; 当0<x<x1的函数f(x)在该区间上单调递增.3.(选修2-2 P27练习AT4改编)利用导数讨论指数函数f(x)=a x(a>0,a≠1)的单调性.【解析】指数函数f(x)=a x的定义域为R,因为f′(x)=a x ln a,对于任意x∈R,总有a x>0,所以当0<a<1时,ln a<0,f′(x)<0,函数在R上单调递减,当a>1时,ln a>0,f′(x)>0,函数在R上单调递增.综上,当0<a<1时,函数f(x)=a x单调递减,当a>1时,函数f(x)=a x单调递增.ꢀ考点一ꢀ不含参数的函数的单调性ꢀꢀ【题组练透】1.函数y=xln x的单调递减区间是(ꢀꢀ)A.(-∞,e-1) C.(e,+∞)B.(e-1,+∞) D.(0,e-1)2.函数f(x)=的单调递增区间为________.ꢀ3.(2019·浙江高考改编)函数f(x)=的单调递减区间为________.ꢀ4.(2019·天津高考改编)函数f(x)=e x cos x的单调递增区间为________.世纪金榜导学号ꢀ【解析】1.选D.函数y=xln x的定义域为(0,+∞),因为y=xln x,所以y′=ln x+1,令y′<0得0<x<e-1,所以减区间为(0,e-1).2.因为f(x)=所以f′(x)=解得x<-1-,,由f′(x)>0,所以f(x)的递增区间为(-∞,-1-)和(-1+,+∞).答案:(-∞,-1-)和(-1+,+∞)3.f(x)=-ln x+的定义域为(0,+∞). f′(x)=由x>0知>0,2+1>0,所以由f′(x)<0得-2<0,解得0<x<3,所以函数f(x)的单调递减区间为(0,3).答案:(0,3)4.由已知,有f′(x)=e x(cos x-sin x).因此,当x∈(k∈Z)时,有sin x<cos x,得f′(x)>0,则f(x)单调递增.所以f(x)的单调递增区间为(k∈Z).答案:(k∈Z)【思维多变】题2中,若将“f(x)=”改为“f(x)=x2e x”,则函数f(x)的单调递减区间是________.ꢀ【解析】因为f(x)=x2e x,所以f′(x)=2xe x+x2e x=(x2+2x)e x.由f′(x)<0,解得-2<x<0,所以函数f(x)=x2e x的单调递减区间是(-2,0).答案:(-2,0)【规律方法】确定函数单调区间的步骤(1)确定函数y=f(x)的定义域.(2)求f ′(x).(3)解不等式f ′(x)>0,解集在定义域内的部分为单调递增区间.(4)解不等式f ′(x)<0,解集在定义域内的部分为单调递减区间.【秒杀绝招】ꢀ排除法解T1,根据函数的定义域排除A,已知当x∈(1,+∞)时,y=x和y=ln x都是增函数且为正数,所以y=xln x也是增函数,从而排除B,C.考点二ꢀ含参数的函数的单调性ꢀ【典例】已知函数f(x)=ln x+ax2-(2a+1)x.若a>0,试讨论函数f(x)的单调性.【解题导思】序号题目拆解求f(x)的定义域,求f′(x)并(1)求f′(x),解方程进行恰当的因式分解,求出方f′(x)=0程f′(x)=0的根用导数为零的实数分割定义域,(2)由f′(x)的符号确定逐个区间分析导数的符号,确f(x)的单调性定单调性【解析】因为f(x)=ln x+ax2-(2a+1)x,所以f′(x)=由题意知函数f(x)的定义域为(0,+∞),令f′(x)=0得x=1或x=(1)若由f′(x)>0得x>1或0<x<,,(1,+∞)上单调递增,在上由f′(x)<0得<x<1,即函数f(x)在单调递减;(2)若>1,即0<a<, 由f′(x)>0得x>或0<x<1,由f′(x)<0得1<x<, 即函数f(x)在(0,1),上单调递增, 在上单调递减;(3)若=1,即a=,则在(0,+∞)上恒有f′(x)≥0,即函数f(x)在(0,+∞)上单调递增.综上可得:当0<a<时,函数f(x)在(0,1)上单调递增, 在上单调递减,在上单调递增;当a=时,函数f(x)在(0,+∞)上单调递增;上单调递增, 在上单调递减,在(1,+∞)当a>时,函数f(x)在上单调递增.【规律方法】解决含参数的函数的单调性问题应注意两点(1)研究含参数的函数的单调性问题,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.【变式训练】已知函数f(x)=(x-3)e x+a(x-2)2,其中e为自然对数的底数,a∈R.讨论f(x)的单调性.【解析】f′(x)=e x+(x-3)e x+2a(x-2)=(x-2)(e x+2a).(1)当a≥0时,令f′(x)>0,得x>2,令f′(x)<0,得x<2,所以f(x)在(2,+∞)上单调递增,在(-∞,2)上单调递减.(2)当a<0时,由f′(x)=0得x=2或x=l n(-2a),①当l n(-2a)<2,即a>时,当x∈(-∞,l n(-2a))时,f′(x)>0,当x∈(l n(-2a),2)时,f′(x)<0,当x∈(2,+∞)时,f′(x)>0.所以f(x)在(-∞,ln(-2a))和(2,+∞)上单调递增,在(ln(-2a),2)上单调递减.②当ln(-2a)=2即a=③当ln(-2a)>2即a<时,f′(x)≥0恒成立,f(x)在R上单调递增.时,当x∈(-∞,2)时,f′(x)>0,当x∈(2,l n(-2a))时,f′(x)<0,当x∈(l n(-2a),+∞)时,f′(x)>0.所以f(x)在(-∞,2)和(ln(-2a),+∞)上单调递增,在(2,ln(-2a))上单调递减.考点三ꢀ利用导数解决函数单调性的应用问题ꢀ考什么:(1)考查函数图象的识别、比较大小或解不等式、根据函数的单调性求参数等问题.(2)考查直观想象、数学运算、逻辑推理的核心素养及数形结合、转化与化归的思想方法.怎么考:与基本初等函数、不等式等综合考查函数的图象及函数的单调性的应用等问题.新趋势:以导数法研究函数单调性为基础,综合考查利用单调性比较大小、解不等式及知单调性求参数的范围.命题精解读由函数的单调性求参数的取值范围的方法(1)可导函数在区间D 上单调,实际上就是在该区间上f ′ (x)≥0(或f ′ (x)≤0)恒成立,从而构建不等式, 求出参数的取值范围,要注意“=”是否可以取到.学霸好方法(2)可导函数在区间D 上存在单调区间,实际上就是f ′(x)>0(或f ′(x)<0)在该区间上存在解集,即f ′(x)>0(或f ′(x)<0)max min 在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x)在区间D 上的单调性,区间D 上含有参数时,可先求出f(x)的单调区间,令D 是其单调区间的子集,从而求出参数的取值范围.命题角度1函数图象的识别【典例】函数f(x)=x2+xsin x的图象大致为()【解析】选A.因为f(-x)=x2-xsin(-x)=x2+xsin x=f(x),所以f(x)为偶函数,B不符合题意, f(x)=x2+xsin x=x(x+sin x),令g(x)=x+sin x,则g′(x)=1+cos x ≥0恒成立,所以g(x)是单调递增函数,则当x>0时,g(x)>g(0)=0,故x>0时,f(x) =xg(x),f′(x)=g(x)+xg′(x)>0,即f(x)在(0,+∞)上单调递增,故只有A符合题意.【解后反思】辨别函数的图象主要从哪几个角度分析?提示:从函数奇偶性、单调性、最值及函数图象所过的特殊点等角度分析.命题角度2比较大小或解不等式【典例】(2019·兰州模拟)函数f(x)在定义域R内可导,f(x)=f(4-x),且(x-2)f′(x)>0.若a=f(0),b=f,c=f(3),则a,b,c的大小关系是()世纪金榜导学号A.c>b>aB.c>a>bC.a>b>cD.b>a>c【解析】选C.由f(x)=f(4-x)可知,f(x)的图象关于直线x=2对称,根据题意知,当x∈(-∞,2)时,f′(x)<0,f(x)为减函数;当x∈(2,+∞)时,f′(x)>0,f(x)为增函数.所以f(3)=f(1)<f<f(0),即c<b<a.【解后反思】单调性比较大小或解不等式,实际上是自变量的大小与相应函数值的大小关系的互推,比较大小时对自变量的取值范围有什么要求?提示:必须在同一个单调区间内.命题角度3根据函数的单调性求参数【典例】(2019·北京高考)设函数f(x)=e x+ae-x(a为常数).若f(x)为奇函数,则a=________;若f(x)是R上的增函数,则a的取值范围是________.世纪金榜导学号【解析】①显然f(0)有意义,又f(x)为奇函数,所以f(0)=0,得a=-1.②因为f(x)是R上的增函数,所以f′(x)=e x-ae-x=≥0恒成立,即g(x)=(e x)2≥a恒成立,又因为g(x)>0,且当x趋向于-∞时,g(x)趋向于0,所以0≥a,即a的取值范围是(-∞,0].答案:-1(-∞,0]【解后反思】函数f(x)在某区间上是增函数,推出f′(x)>0还是f′(x)≥0?提示:推出f′(x)≥0.【题组通关】【变式巩固·练】1.设函数y=f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)可能为()【解析】选D.由题意得,当x<0时,函数y=f(x)单调递增,故f′(x)>0;当x>0时,函数y=f(x)先增再减然后再增,故导函数的符号为先正再负然后再正.结合所给选项可得D符合题意.2.已知函数f′(x)是函数f(x)的导函数,f(1)=,对任意实数都有f(x)-f′(x) >0,设F(x)=,则不等式F(x)<的解集为()A.(-∞,1) C.(1,e)B.(1,+∞) D.(e,+∞)【解析】选B.根据题意,F(x)=,其导数F′(x)=又由f(x)-f′(x)>0,则有F′(x) <0,即函数F(x)在R上为减函数,又由f(1)=,则F(1)==,不等式F(x)<等价于F(x)<F(1),则有x>1,则不等式的解集为(1,+∞).3.若f(x)=2x3-3x2-12x+3在区间[m,m+4]上是单调函数,则实数m的取值范围是________.【解析】因为f(x)=2x3-3x2-12x+3,所以f′(x)=6x2-6x-12=6(x+1)(x-2),令f′(x)>0,得x<-1或x>2;令f′(x)<0,得-1<x<2, f(x)在(-∞,-1]和[2,+∞)上单调递增,在(-1,2)上单调递减.若f(x)在区间[m,m+4]上是单调函数,则m+4≤-1或或m≥2.所以m≤-5或m≥2,则m的取值范围是(-∞,-5]∪[2,+∞).答案:(-∞,-5]∪[2,+∞)【综合创新·练】(2020·内江模拟)若函数f(x)=ax2+x l n x-x存在单调递增区间,则a的取值范围是()【解析】选B.因为f(x)=ax2+x l n x-x存在单调递增区间,则f′(x)=ax+l n x ≥0在(0,+∞)上有解,即a≥在(0,+∞)上有解,,x>0,则g′(x)=令g(x)=,当x>e时,g′(x)>0,g(x)单调递增,当0<x<e时,g′(x)<0,g(x)单调递减,又x→0,g(x)→+∞,x→+∞,g(x)<0且g(x)→0,因为g(e)=-,所以a≥-,当a=-时,f′(x)=-x+l n x,令h(x)=-x+l n x,则h′(x)=-,当x>e时,h′(x)<0,函数单调递减,当0<x<e时,h′(x)>0,函数单调递增,h(x)≤h(e)=0,即f′(x)≤0恒成立,此时不满足题意,所以a的取值范围是.解题新思维构造法的应用【结论】构建新函数解答比较大小和不等式问题分析已知条件的特点构造新的函数,对新函数求导确定其单调性,再由单调性进行大小的比较.。
高考数学一轮复习-用导数研究函数的单调性ppt课件
恒成立,即 ≥
恒成立,又 =
在 , +∞ 上单调递减,故
< ,所以
+
+
+
≥ ,当 = 时,导数不恒为0.故选D.
02
研考点 题型突破
题型一 不含参数的函数的单调性
典例1 函数y = xln x(
D )
A.是严格增函数
B.在
1
0,
e
上是严格增函数,在
1
, +∞
e
上是严格减函数
为 , .故选A.
(2)函数f x
[解析] 函数
或 =
2
x2
0,
= x 的增区间为________.
ln 2
2
⋅ − ⋅ ⋅
= ,则′ =
,当
.
.令′ = ,解得 =
∈ −∞, 时,′ < ,函数 单调递减,当 ∈ ,
(2)已知函数f x = ex − e−x − 2x + 1,则不等式f 2x − 3 >
3
, +∞
1的解集为_________.
2
[解析] = − − − + ,其定义域为,
∴ ′ = + − − ≥ ⋅ − − = ,当且仅当 = 时取“=”,∴ 在
在 a, b 上单调递减,则当x ∈ a, b 时,f′ x ≤ 0恒成立.
2.若函数f x 在 a, b 上存在增区间,则当x ∈ a, b 时,f′ x > 0有解;若函数f x
在 a, b 上存在减区间,则当x ∈ a, b 时,f′ x < 0有解.
(浙江版)高考数学一轮复习专题3.3利用导数研究函数的单调性(测)(2021学年)
(浙江版)2018年高考数学一轮复习专题3.3 利用导数研究函数的单调性(测)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江版)2018年高考数学一轮复习专题3.3 利用导数研究函数的单调性(测))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江版)2018年高考数学一轮复习专题3.3 利用导数研究函数的单调性(测)的全部内容。
专题3。
3 利用导数研究函数的单调性一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的。
)1.若方程330x x m -+=在[0,2]上有解,则实数m 的取值范围是( )A .[2,2]- B.[0,2] C.[2,0]- D.(,2)-∞-∪(2,)+∞ 【答案】A2。
定义在()0,+∞上的可导函数()f x 满足()'f x ()x f x ⋅<,且()20f =,则()0f x x>的解集为( ) A .()0,2 B .()()0,22,+∞C.()2,+∞D.()()0,33,+∞【答案】A 【解析】因为()'f x ()x f x ⋅<,所以()'f x ()0x f x ⋅-<()()()20f x f x x f x x x ''-⎡⎤=<⎢⎥⎣⎦,令()()f x g x x =,则()g x 为()0,+∞上的减函数,又因为()20f =,所以()20g =,所以()0g x >的解为()0,2即()0f x x >的解集为()0,2,故选A。
3.已知函数),0(ln )(2R b a x bx ax x f ∈>-+=,若对任意0>x ,)1()(f x f ≥,则( ) A .b a 2ln -< B. b a 2ln -≤ C 。
2021新高考数学新课程一轮复习课件-利用导数研究函数的单调性
2.小题热身 (1)设 f′(x)是函数 f(x)的导函数,y=f′(x)的图象如图所示,则 y=f(x) 的图象最有可能是( )
答案 C
解析 由 y=f′(x)的图象易得,当 x<0 或 x>2 时,f′(x)>0;当 0<x<2 时,f′(x)<0.所以函数 y=f(x)在(-∞,0)和(2,+∞)上单调递增,在(0,2) 上单调递减,故选 C.
解 f(x)的定义域为(0,+∞),
a-1
2ax2+a-1
f′(x)= x +2ax= x .
①当 a≥1 时,f′(x)>0,故 f(x)在(0,+∞)上单调递增;
②当 a≤0 时,f′(x)<0,故 f(x)在(0,+∞)上单调递减;
③当 0<a<1 时,令 f′(x)=0,解得 x=
则当 x∈0,
3.已知函数 f(x)=4x+ax-ln x-32,其中 a∈R,且曲线 y=f(x)在点(1, f(1))处的切线垂直于直线 y=12x.
(1)求 a 的值; 解 (1)对 f(x)求导得 f′(x)=14-xa2-1x, 由 f(x)在点(1,f(1))处的切线垂直于直线 y=12x, 知 f′(1)=-34-a=-2,解得 a=54.
已知函数 f(x)=(x-1)ex-x2,g(x)=aex-2ax+a2-10(a∈R). (1)求曲线 y=f(x)在点(1,f(1))处的切线方程;
解 (1)由题意,得 f′(x)=xex-2x,则 f′(1)=e-2. 又 f(1)=-1, 故所求切线方程为 y-(-1)=(e-2)(x-1), 即 y=(e-2)x+1-e.
确定不含参数的函数单调区间的步骤 (1)确定函数 f(x)的定义域. (2)求 f′(x). (3)解不等式 f′(x)>0,解集在定义域内的部分为单调递增区间. (4)解不等式 f′(x)<0,解集在定义域内的部分为单调递减区间.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
变式 1、(1)设函数 f(x)在 R 上的导函数为 f′(x),且 2f(x)+xf′(x)>x2,则下列不等式在 R 上恒成立的是( )
D.(-1,0)∪(0,1)
变式
2 、( 2019
秋 • 滨 州 期 末 ) 已 知 定 义 在 [0, )
上的函数
f (x)
的导函数为
f (x)
,且
f (0) 0
,
2
f (x) cos x f (x)sin x 0 ,则下列判断中正确的是 ( )
6/9
A.
f
(
)
6
f
(
)
6 24
C.
f
5/9
2021 届新课改地区高三数学一轮专题复习
的取值范围是( )
A.(-∞,-1)∪(0,1)
B.(-1,0)∪(1,+∞)
C.(-∞,-1)∪(-1,0)
D.(0,1)∪(1,+∞)
(2)设 f(x),g(x)分别是定义在 R 上的奇函数和偶函数,当 x<0 时,f′(x)g(x)+f(x)g′(x)>0,且 g(-3)=0,则不
32 (1)求 b,c 的值; (2)设函数 g(x)=f(x)+2x,且 g(x)在区间(-2,-1)内存在单调递减区间,求实数 a 的取值范围.
考点三、函数单调区间的讨论 例 3 已知函数 f(x)=lnx+a(1-x),a∈R. (1)当 a=1 时,求 f(x)的单调性; (2)讨论 f(x)的单调性.
;
2、【2017 年高考浙江】函数 y=f(x)的导函数 y f (x) 的图象如图所示,则函数 y=f(x)的图象可能是
3、【2018 年高考全国Ⅱ卷理数】函数
f
x
ex
ex x2
的图像大致为
4、【2018 年高考全国Ⅲ卷理数】函数 y x4 x2 2 的图像大致为
7/9
2021 届新课改地区高三数学一轮专题复习
方法总结 1. 对含参函数的合理分类,关键是找到引起分类讨论的原因. 2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根 的大小等都是引起分类讨论的原因. 变式 1、已知函数 f(x)=a(x-1)2-x+ln x(a>0).讨论 f(x)的单调性.
2
考点四 构造函数研究单调性 例 4、(1)设 f′(x)是奇函数 f(x)(x∈R)的导函数,f(-1)=0,当 x>0 时,xf′(x)-f(x)<0,则使得 f(x)>0 成立的 x
A.f(x)>0
B.f(x)<0
C.f(x)>x
D.f(x)<x
(2)已知定义域为{x|x≠0}的偶函数 f(x),其导函数为 f′(x),对任意正实数 x 满足 xf′(x)>-2f(x),若 g(x)=x2f(x),
则不等式 g(x)<g(1)的解集是( )
A.(-∞,1)
B.(-1,1)
C.(-∞,0)∪(0,1)
ex (1)求实数 k 的值; (2)求函数 f(x)的单调区间.
考点二、给定区间求参数的范围 例 2、已知函数 f (x) 1 x3 x2 ax 1 . (Ⅰ)若曲线 y f ( x) 在点(0,1) 处切线的斜率为3 ,求函数 f ( x) 的单调区间; (Ⅱ)若函数 f ( x) 在区间[2, a ] 上单调递增,求 a 的取值范围. 【点评】 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力. 2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决 问题的方法和技巧,感悟数学解题背后的思维和内涵. 变式 1、设函数 f(x)=1x3-ax2+bx+c,曲线 y=f(x)在点(0,f(0))处的切线方程为 y=1.
5、【2019 年高考北京理数】设函数 f x ex aex (a 为常数).若 f(x)为奇函数,则 a=________;
若 f(x)是 R 上的增函数,则 a 的取值范围是___________.
6、【2017
年高考江苏】已知函数
f
(x)
x3
2x
Байду номын сангаас ex
1 ex
,其中
e
是自然对数的底数.若
() 6
2
f
() 3
2021 届新课改地区高三数学一轮专题复习
B.
f
(ln
3
)
0
D.
f
( 4
)
2f( )
3
五、优化提升与真题演练
1、【2018 年高考天津理数】已知函数 f (x) ax , g(x) loga x ,其中 a>1.
则函数 h(x) f (x) x ln a 的单调区间
32 (1)求 b,c 的值; (2)设函数 g(x)=f(x)+2x. ①若 g(x)在区间(2,3)上单调递增,求实数 a 的取值范围; ②若 g(x)在区间(-2,-1)内存在单调递减的区间,求实数 a 的取值范围.
4/9
2021 届新课改地区高三数学一轮专题复习 变式 2、设函数 f(x)=1x3-ax2+bx+c,曲线 y=f(x)在点(0,f(0))处的切线方程为 y=1.
2/9
2021 届新课改地区高三数学一轮专题复习
7、(多填题)已知函数 f(x)=x3+mx2+nx-2 的图象过点(-1,-6),函数 g(x)=f′(x)+6x 的图象关于 y 轴对 称.则 m=________,f(x)的单调递减区间为________.
四、例题选讲 考点一、求函数的单调区间 例 1 求下列函数的单调区间: (1)f(x)=x3-1x2-2x+3;
等式 f(x)g(x)<0 的解集是________________.
方法总结:(1)对于不等式 f′(x)+g′(x)>0(或<0),构造函数 F(x)=f(x)+g(x); (2)对于不等式 f′(x)-g′(x)>0(或<0),构造函数 F(x)=f(x)-g(x); 特别地,对于不等式 f′(x)>k(或<k)(k≠0),构造函数 F(x)=f(x)-kx. (3)对于不等式 f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数 F(x)=f(x)g(x); (4)对于不等式 f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数 F(x)=错误!(g(x)≠0);
23
A. (-∞,-2]
1,+∞ B. 2
第 3 题图
C. [-2,3)
9,+∞ D. 8
4、已知
f(x)=aln
x+1x2(a>0),若对任意两个不相等的正实数 2
x1,x2,都有f(x1)-f(x2)>2 x1-x2
恒成立,则 a 的取值范围为( )
A.(0,1]
B.(1,+∞)
C.(0,1)
D.[1,+∞)
2 (2)g(x)=x2-2lnx.
方法总结:1. 利用导数求函数 f(x)的单调区间的一般步骤为:(1)确定函数 f(x)的定义域;(2)求导函数 f′(x);
(3)在函数 f(x)的定义域内解不等式 f′(x)>0 和 f′(x)<0;(4)根据(3)的结果确定函数 f(x)的单调区间.
2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函
数的符号.
变式 1、已知函数 f(x)=x+a-ln x-3,其中 a∈R,且曲线 y=f(x)在点(1,f(1))处的切线垂直于直线 y=1x.
4x
2
2
(1)求 a 的值;
(2)求函数 f(x)的单调区间.
3/9
2021 届新课改地区高三数学一轮专题复习 变式 2、已知函数 f(x)=ln x+k(k 为常数),曲线 y=f(x)在点(1,f(1))处的切线与 x 轴平行.
三、自主热身、归纳总结
1、若函数 y=f(x)的图像如下图所示,则函数 y=f′(x)的图像有可能是(
)
第 1 题图
1/9
2021 届新课改地区高三数学一轮专题复习
A
B
C
D
2、函数 f(x)=-2lnx-x-3的单调递增区间是( ) x
A. (0,+∞) B. (-3,1) C. (1,+∞) D. (0,1) 3、函数 f(x)=ax3+bx2+cx+d 的图像如图,则函数 y=ax2+3bx+c的单调递增区间是( )
5、定义在 R 上的可导函数 y f (x) 的导函数的图象如图所示,以下结论正确的是 ( )
A. 3 是 f (x) 的一个极小值点 B. 2 和 1 都是 f (x) 的极大值点 C. f (x) 的单调递增区间是 (3, ) D. f (x) 的单调递减区间是 (, 3) 6、函数 f(x)=x3-6x2 的单调递减区间为________.
② f (x) 3x
③ f (x) x3
④ f (x) x2 2
8、【2019 年高考全国Ⅲ卷理数】已知函数 f (x) 2x3 ax2 b . (1)讨论 f (x) 的单调性;
9、【2018 年高考全国Ⅰ卷理数】已知函数 f (x) 1 x a ln x . x
8/9
2021 届新课改地区高三数学一轮专题复习
2021 届新课改地区高三数学一轮专题复习
第 18 讲:利用导数研究函数的单调性
一、课程标准 1、结合实例,借助几何直观探索并了解函数的单调性与导数的关系; 2、能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.