《3.3.1函数的单调性与导数》教学案

合集下载

函数的单调性与导数教案

函数的单调性与导数教案

函数的单调性与导数教案一、教学目标1. 让学生理解函数的单调性的概念,能够判断函数的单调性。

2. 让学生掌握导数的定义,能够计算常见函数的导数。

3. 让学生理解导数与函数单调性的关系,能够利用导数判断函数的单调性。

二、教学内容1. 函数的单调性定义:如果函数f(x)在区间I上,对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≤f(x2),则称f(x)在区间I上为增函数;如果对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≥f(x2),则称f(x)在区间I上为减函数。

2. 导数的定义定义:函数f(x)在点x处的导数定义为函数在点x处的切线斜率,记作f'(x),即f'(x) =lim┬(h→0)⁡〖(f(x+h)-f(x))/h〗。

3. 常见函数的导数(1)常数函数f(x) = c,其导数为f'(x) = 0。

(2)幂函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。

(3)指数函数f(x) = a^x,其导数为f'(x) = a^x ln(a)。

(4)对数函数f(x) = ln(x),其导数为f'(x) = 1/x。

4. 导数与函数单调性的关系(1)如果f'(x) > 0,则f(x)在区间(-∞, +∞)上为增函数。

(2)如果f'(x) < 0,则f(x)在区间(-∞, +∞)上为减函数。

(3)如果f'(x) = 0,则f(x)可能在某点处改变单调性。

三、教学方法1. 采用讲解法,讲解函数的单调性和导数的定义及计算方法。

2. 采用案例分析法,分析导数与函数单调性的关系。

3. 采用练习法,让学生通过练习巩固所学知识。

四、教学步骤1. 导入:回顾函数的概念,引导学生思考函数的单调性。

2. 讲解:讲解函数的单调性的定义,并通过实例演示如何判断函数的单调性。

3. 讲解:引入导数的定义,讲解常见函数的导数计算方法。

数学《函数单调性与导数》教案

数学《函数单调性与导数》教案

数学《函数单调性与导数》教案教学目标:1. 知道函数单调性的定义,掌握判断单调性的方法。

2. 知道导数的定义,掌握求导的方法。

3. 熟练掌握函数单调性与导数的关系,能够应用相关知识解决实际问题。

教学重点:1. 函数单调性与导数的概念及其关系。

2. 求导数的方法和技巧。

3. 应用函数单调性和导数解决实际问题。

教学难点:1. 求高阶导数,各种复杂函数的单调性判断。

2. 应用函数单调性与导数解决实际问题。

教学方法:1. 讲授法:讲解相关知识点,示范演示,点拨解释。

2. 实验法:以具体例子演示如何判断函数的单调性。

3. 问题解决法:提供丰富的例题及作业,引导学生自主思考,解决问题。

教学过程设计:Part 1:函数单调性的引入1. 通过一个具体的例子引入函数单调性的概念,让学生理解函数单调性的含义。

2. 介绍单调递增和单调递减的概念,以及如何判断一个函数的单调性。

3. 引导学生思考,研究不同类型函数单调性的特点和判断方法。

Part 2:导数的定义和求导方法1. 导数的概念:定义导数,解释导数的几何意义和物理意义。

2. 求导方法:讲解求导过程,引导学生掌握基本的求导技巧。

3. 常用函数的导数:讲解常用函数的导数公式,让学生记忆。

Part 3:函数单调性与导数1. 函数单调性与导数的关系:引导学生研究函数单调性与导数之间的关系。

2. 求解函数单调性:利用导数判断函数单调性,让学生掌握方法。

3. 应用导数求解实际问题:让学生通过实际问题应用导数,求解函数单调性问题。

Part 4:案例分析1. 给出一些实际问题,让学生通过函数单调性和导数的方法求解。

2. 分组讨论,展示各自的解题思路和方法,互相学习。

Part 5:练习与总结1. 提供一些例题给学生练习,巩固所学知识。

2. 学生自己整理笔记,总结函数单调性与导数的概念及其应用教具准备:1. 教师演示用的白板或黑板、彩色粉笔或白板笔。

2. 学生实验用的计算器。

3. 相关练习题和例题。

3.3.1函数的单调性与导数(二)

3.3.1函数的单调性与导数(二)
8
• 解法二:(数形结合) • 如图所示,f′(x)=(x-1)[x-(a-1)].若在 (1,4) 内 f′(x)≤0 , (6 ,+ ∞ ) 内 f′(x)≥0 ,且 f′(x) =0有一根为1,则另一根在[4,6]上.
f′(4)≤0, 所以 f′(6)≥0,
3(5-a)≤0, 即 5(7-a)≥0,
x3
因为函数在(0,1]上单调递增
2 f '(x)>0,即a - 3 在x (0, 1]上恒成立 x 1 而g(x) 3 在(0, 1]上单调递增, x g(x)max g(1)=-1
a〉 -1
11
2 当a 1时,f '(x) 2 3 x 所以a的范围是[-1,+) 练习1 1 1
所以 5≤a≤7.
9
• 解法三:(转化为不等式的恒成立问题) • f′(x) = x2 - ax + a - 1. 因为 f(x) 在 (1,4) 内单调递减,所 以f′(x)≤0在(1,4)上恒成立.即a(x-1)≥x2-1在(1,4)上 恒成立,所以a≥x+1,因为2<x+1<5,所以当a≥5时, f′(x)≤0在(1,4)上恒成立, • 又因为f(x)在(6,+∞)上单调递增,所以f′(x)≥0在 (6,+∞)上恒成立,
象“陡峭”,在 (b, )
或 ( , a )
内的图象平缓.
5
练习
函数 y f 的大致形状
( x ) 的图象如图所示, 试画出导函数 f ( x )图象
6
题型:根据函数的单调性求参数的取值范围
例2:求参数的范围 若函数f(x) ax 3 - x 2 x - 5在(-,+)上单调递增, 求a的取值范围

3.3.1 函数的单调性与导数

3.3.1 函数的单调性与导数
活动与探究 1 (1)函数 y=xcos x-sin x 在下面哪个区间内是增函数( )
A.
π 2
,
3π 2
B.(π,2π)
C.
3π 2
,
5π 2
D.(2π,3π)
思路分析:只需判断在哪个区间上导函数的值大于零即可.
答案:B
解析:y'=cos x-xsin x-cos x=-xsin x,若 y=f(x)在某区间内是增
函数,只需在此区间内 y'恒大于零即可.
∴只有选项 B 符合题意,当 x∈(π,2π)时,y'>0 恒成立.
(2)求函数 f(x)=x2-ln x 的单调区间.
思路分析:求函数的单调区间,即求定义域上满足 f'(x)>0 或 f'(x)<0 的区间.
解:函数 f(x)的定义域为(0,+∞),
f'(x)=2x-1������ = (
∴当 t<0 时,f(x)的递增区间为
-∞,
������ 2
,(-t,+∞),递减区间为
������ 2
,-t
;
当 t>0 时,f(x)的递增区间为(-∞,-t),
������ 2
,
+

,递减区间为
-������,
������ 2
.
迁移与应用 已知函数 f(x)=12ax2+ln x(a∈R),求 f(x)的单调区间.
则(-9,0)是 3x2-2mx<0 的解集,
∴3×(-9)2-2×(-9)×m=0,m=-227.
∴a≤(2x3)min.∵x∈[2,+∞),y=2x3 是增函数,

3.3.1、函数的单调性与导数教案

3.3.1、函数的单调性与导数教案

3.3.1、函数的单调性与导数【教学目标】1、了解函数的单调性与导数的关系;2、能利用导数研究函数的单调性,会求函数的单调区间。

【教学重点】利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

【教学难点】利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

【教学过程】 一、创设情景函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. 二、新课讲授1、提出问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?2、知识探究:通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.3、函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图3.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减. 4、知识归纳:函数的单调性与导数的关系在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.5、求解函数()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域; (2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 三、典例分析例1、已知导函数'()f x 的下列信息:当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减;当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2、判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=- 当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练例3、如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况.解:()()()()()()()()1,2,3,4B A D C →→→→思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些. 如图3.3-7所示,函数()y f x =在()0,b 或(),0a 内的图像“陡峭”, 在(),b +∞或(),a -∞内的图像“平缓”.例4、求证:函数3223121y x x x =+-+在区间()2,1-内是减函数.证明:因为()()()'22661262612y x x x x x x =+-=+-=-+当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.小结:证明可导函数()f x 在(),a b 内的单调性步骤:(1)求导函数()'f x ;(2)判断()'fx 在(),a b 内的符号;(3)做出结论:()'0fx >为增函数,()'0f x <为减函数.例5、已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.说明:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.例6、已知函数y =x +x1,试讨论出此函数的单调区间.解:y ′=(x +x1)′ =1-1·x -2=222)1)(1(1xx x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1. ∴y =x +x1的单调增区间是(-∞,-1)和(1,+∞).令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)四、随堂训练1、求下列函数的单调区间: (1) f (x )=2x 3-6x 2+7 (2) f (x )=x1+2x (3) f (x )=sin x , x ]2,0[π∈ (4) y=xlnx 2、函数()2sin f x x x =-在(,)-∞+∞上( )A 、是增函数B 、是减函数C 、有最大值D 、有最小值 3、函数y=x+2x(x>0)的单调减区间为( )A. (2,+∞)B. (0,2)C. ( 2 ,+∞)D. (0, 2 ) 4、若在区间(,)a b 内有'()0f x >,且()0f a ≥,则在(,)a b 有( )A 、()0f x >B 、()0f x <C 、()0f x =D 、不能确定5、函数24y x x a =-+的增区间是 ;减区间是 ;6、函数3()f x x x =-的增区间是 和 ;减区间是 ;7、32()41f x x x x =-+-在区间 递增。

人教版高中数学优质教案1:3.3.1 函数的单调性和导数 教学设计

人教版高中数学优质教案1:3.3.1 函数的单调性和导数 教学设计

3.3.1 函数的单调性与导数教学目标重点:利用导数研究函数的单调性,会求函数的单调区间. 难点:⒈探究函数的单调性与导数的关系;⒉如何用导数判断函数的单调性. 知识点:1.探索函数的单调性与导数的关系;2.会利用导数判断函数的单调性并求函数的单调区间.能力点:1.通过本节的学习,掌握用导数研究单调性的方法.2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想.教具准备:多媒体课件,三角板 课堂模式:学案导学 一.引入新课师:判断函数的单调性有哪些方法?比如判断2x y =的单调性,如何进行? 生:用定义法、图像法.师:因为二次函数的图像我们非常熟悉,可以画出其图像,指出其单调区间,再想一下,有没有需要注意的地方? 生:注意定义域.师:如果遇到函数x x y 33-=,如何判断单调性呢?你能画出该函数的图像吗? 师:定义是解决问题的最根本方法,但定义法较繁琐,又不能画出它的图像,那该如何解决呢?揭示并板书课题:函数的单调性与导数【设计意图】通过复习回顾,巩固旧知.从已学过的知识(判断二次函数的单调性)入手,提出新的问题(判断三次函数的单调性),引起认知冲突,激发学习的兴趣.师:函数是描述客观世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.函数的单调性与函数的导数一样都是反映函数变化情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢? 二.探究新知师:如图(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 生:通过观察图像,可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.【设计意图】从具体的实际情景出发,提出本节课要探索的问题,函数的单调性与导数的关系.为学生提供一个联想的“源”,巧妙设问,把学习任务转移给学生;让学生完成对函数单调性与导数关系的第一次认识,明确研究课题.师:导数的几何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么函数的单调性与导数有什么关系呢?观察下面函数的图像,探讨函数的单调性与其导数正负的关系.(1)函数x y =的定义域为R ,并且在定义域上是增函数,其导数01/>=y ; (2)函数2x y =的定义域为R ,在),(+∞-∞上单调递减,在),0(+∞上单调递增;而x y 2/=,当0<x 时,其导数0/<y ;当0>x 时,其导数0/>y ;当0=x 时,其导数0/=y .(3)函数3x y =的定义域为R ,在定义域上为增函数;而2/3x y =,若0≠x ,则其导数032>x ,当0=x 时,其导数032=x ;(4)函数x y 1=的定义域为),0()0,(+∞⋃-∞,在)0,(-∞上单调递减,在),0(+∞上单调递减,而2/1xy -=,因为0≠x ,所以0/<y .师:以上四个函数的单调性及其导数符号的关系说明,在区间),(b a 内,如果0)(/>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)(/<x f ,那么函数)(x f y =在这个区间内单调递减.【设计意图】从具体的函数出发,体会数形结合思想的运用.让学生体会从特殊到一般,从具体到抽象的过程,降低思维难度,让学生在老师的引导下自主学习和探索,提高学习的成就感和自信心. 三. 理解新知师:如图,导数'0()f x 表示函数)(x f 在点00(,)x y 处的切线的斜率.观察图像回答,函数在某个点处的导数值与函数在该点处的单调性是怎样的关系?生:在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数)(x f 在0x 附近单调递增;在1x x =处,0)(1/<x f ,切线是“左上右下”式的,这时,函数)(x f 在1x 附近单调递减.师生共同总结:函数的单调性与导数的关系: 在某个区间),(b a 内,如果0)(/>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)(/<x f ,那么函数)(x f y =在这个区间内单调递减.说明:如果0)(/=x f ,那么函数)(x f y =在这个区间内是常函数.【设计意图】通过导数的几何意义来验证由具体函数所得到的结论,形成一般性结论.让学生经历观察、分析、归纳、发现规律的过程,体会函数单调性与导数的关系. 四.运用新知例1、已知导函数'()f x 的下列信息:当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图所示. 学生思考,并在纸上画出函数图像教师投影若干学生的作业情况,学生共同分析.【设计意图】让学生通过此题加深理解导函数是如何影响原函数的,这是今后利用 导函数研究函数的必备技能.这里让学生切实理解,为今后学习扫清障碍. 例2、判断下列函数的单调性,并求出单调区间. (1)3()3f x x x =+;(2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈;(4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以,'22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图1所示.(2)因为2()23f x x x =--,所以,()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图2所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-<因此,函数()sin f x x x =-在(0,)π单调递减,如图3所示. (4)因为32()23241f x x x x =+-+,所以.当'()0f x >,即时,函数2()23f x x x =--; 当'()0f x <,即时,函数2()23f x x x =--; 函数32()23241f x x x x =+-+的图像如图4所示.【设计意图】让学生初步体会用导数的方法确定函数单调性的简便. 【师生活动】总结求()y f x =单调区间的步骤: (1)确定函数()y f x =的定义域;(2)求导数''()y f x =;(3)解不等式'()0f x >,解集在定义域内的部分为增区间; (4)解不等式'()0f x <,解集在定义域内的部分为减区间. 例3.已知函数xx y 1+=,试讨论出此函数的单调区间. 解:2222//)1)(1(111)1(x x x x x x x x y +-=-=-=+=2令0)1)(1(2>+-xx x . 解得11-<>x x 或∴xx y 1+=的单调增区间是:),1()1-,(+∞-∞和 令0)1)(1(2<+-x x x ,解得1001<<<<-x x 或 ∴xx y 1+=的单调减区间是:)1,0()0,1(和-五.课堂小结(1)函数的单调性与导数的关系 (2)求解函数()yf x =单调区间【设计意图】通过师生共同反思,优化学生的认知结构. 六. 布置作业 必做:课本A 组 1,2【设计意图】体现了分层、有梯度的教学,学生动手练习,加强学生的应用意识. 七、板书设计。

函数的单调性与导数 说课稿 教案 教学设计

函数的单调性与导数  说课稿  教案  教学设计

函数的单调性与导数教学目标:1.了解可导函数的单调性与其导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次.教学重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;教学难点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 教学过程设计(一)、情景引入,激发兴趣。

【教师引入】黑暗中,你是怎样通过远处汽车自身的灯光判断该车是上坡还是下坡的?(二)、探究新知,揭示概念探究1.问题:图1.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像. 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<.探究2.2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图1.3-3,导数'0()f x 表示函数()f x 在点00(,)x y 处的切线的斜率.猜想:导数与函数的单调性有什么联系呢?在0x x =处,'0()0f x >,切线是“左下右上”式的,这时,函数()f x 在0x 附近单调递增; 在1x x =处,'0()0f x <,切线是“左上右下”式的,这时,函数()f x 在1x 附近单调递减.(三)、分析归纳,抽象概括 函数的单调性与导数的关系曲线 切线斜率k >0 上升函数()y f x = ()0f x '> ? 递增()x I ∈在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增; 如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数.(2)“某区间”指的是定义域的子集,研究函数单调性问题“定义域优先”. (四)、知识应用,深化理解例1.已知导函数'()f x 的下列信息: 当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增; 当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2.判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以, '22()333(1)0f x x x =+=+>因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以 .当'()0f x >,即 时,函数2()23f x x x =-- ; 当'()0f x <,即 时,函数2()23f x x x =-- ; 函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示. 注:(3)、(4)生练课堂练习1.求下列函数的单调区间1.f (x )=2x 3-6x 2+7 2.f (x )=x1+2x3. f (x )=sin x , x ]2,0[π∈4. y=xlnx(五)、归纳小结、布置作业。

人教版高中数学优质教案5:3.3.1 函数的单调性与导数 教学设计

人教版高中数学优质教案5:3.3.1 函数的单调性与导数 教学设计

3.3.1 函数的单调性与导数一、教学设计: 内容和内容[解析]该部分的内容主要讲述的是函数的单调性与导数之间的关系,为函数的单调性研究提供了一个更为便捷的方法.在学习本节课之前,学生在必修1的《函数性质》内容中学习了函数单调性的定义以及利用图像得出单调区间的方法,另外还学习了导数的几何意义就是函数图象上的点所在的切线斜率.在函数单调性定义中提到:在定义域中的某个区间内任取两个不相等的自变量12,x x ,通过求1()f x 与2()f x 的大小关系可以判断函数的单调性.同时注意到导数的定义中的描述:000()()'()limx x f x f x f x x x →-=-.将导数的定义结合1212()()0f x f x x x ->-时,()f x 为增函数;1212()()0f x f x x x -<-时,()f x 为减函数.可以判定()f x 在某个区间上如果满足'()0f x >,则()f x 在该区间上为增函数;反之,如果'()0f x <,则()f x 在该区间上为减函数.另外,相比于利用单调性定义判定1()f x 与2()f x 的大小关系来确定函数单调性的繁琐运算,求导函数的过程要简洁许多,这就为学生判断一些相对比较复杂的函数的单调性提供一个有力的方法.目标和目标[解析] 1.知识与技能目标:(1)了解函数的单调性与导函数之间的关系;(2)能利用导数研究简单函数的单调性,并掌握原函数与导函数之间的关系; (3)掌握函数单调性的求法,用以解决一些简单的问题. 2.过程与方法目标: (1)利用函数1()f x x x=+回顾单调性的定义和利用图象求单调区间的方法; (2)利用一个函数作为引入,让学生明确本节课学习之后将要达到的学习效果; (3)借助一个函数图象和几何画板让学生体验单调区间与导函数之间的关系;(4)利用所得的结论,让学生研究三个函数的单调区间;(5)利用三个函数图像,作出相应的原函数与导函数的图像草图,让学生体会原函数与导函数之间的图象联系;(6)利用引入中的例题,对本节课所学的内容进行应用并作适当的拓展、总结.3.情感、态度与价值观目标:通过例题的设计培养学生的阅读与理解能力,在图象的研究中培养学生的观察能力,鼓励学生之间的相互协作,培养学生友善的社会主义核心价值观.教学过程由图可得,()f x 的增区间为(,1)-∞-,(1,)+∞,减区间为(1,0)-,(0,1)例2:已知函数()f x 的图象如图所示,且'()f x 是()f x 的导函数.(1)写出()f x 的单调增区间; (2)在你所写出的单调增区间中任选五点作切线.观察所得切线的斜率,归纳出相应的规律,并与你的组员分享你的结论;(3)写出()f x 的单调减区间; (4)在你所写出的单调减区间中任选五点作切线.观察所得切线的斜率,归纳出相应的规律,并与你的组员分享你的 结论;(5)结合切线的斜率与导数的关系,求'()0f x >与'()0f x <的解集;(6)观察单调区间与(5)的解集之间的关系,并总结单调区间和导函数之间的关系.解:(1)增区间是:(1,1)-;如果出于教学进度的考虑,教师可以直接用几何画板向学生演示()f x 图象中各个点的切线斜率特征,并给出相应的结论.但是这样只能使学生成为课堂教学的旁观者.通过让学生自己在纸上作出几条切线观察,进行归纳后与其他组员分享,能极大的提高 学生课堂的参与度,即使自己不会也会被其他组员感染而参与研究.若其他同学与他教师一条条的放映处题目,让学生依序解答每道题,切忌一次性将所有的问题投影出来,使学生产生畏难心理.然后观察学生的活动情况,根据学生的反应作出是否放映下一个问题的判断.同时对学生学习过程中存在的问题及时给予点拨.在学生得出猜想之后,教师再利用几何画板多次演示切点所在的单调区间对斜线斜率的符号的影响. 最后再总结函数的单调区间与导函数之间的关系,让学生对所给出的结论有更好的理解.学生通过阅读题目要求,对图象进行独立研究,将所得到的结果与其他组员分享,并根据所得结论的异同进行及时的纠正或讨论.学情预设:学生在此处会出现端点处作切线,得到导函数在单调区间上可以等于0的结论,对于这个问题可以放到后续的图象中一句话带过,教师不必纠缠.教学实践心得《函数的单调性与导数》的教学价值的挖掘与思考导数部分的内容在高中数学教学中占据着举足轻重的地位,这从对导数时常作为压轴题进行考察就可见一斑.而在压轴题中时常都是以探究式的出题方式要求学生在摸索中找到解题的方法,这既要求学生对相关知识点有较为熟练的基本解题能力,还需要有较为扎实的探究问题的技能.这就要求在本阶段的教学绝对不能依靠以教师为主体的精英化教育时代留下的经验,用绝对量的题目和不断加大的题目难度进行教学,并要求学生如法炮制的在解题过程中应用.它可以综合应用高中阶段所有的知识点进行命题,同时内容本身的解题步骤就比较复杂,如果教师在课堂上以讲为主,时常会发现学生心不在焉,甚至在课堂上睡觉.那么应该用怎样的方法来启发学生对问题进行探究呢?在解答这个问题之前,先分析一下当前时代下人们学习方式的转变.在工业时代,人们的学习方式主要还是以口口相传或者经验传授的方式进行学习.而在网络时代,人们在学习的过程中更加注重主体参与、体验式的学习方式,因为所有的信息都能够信手拈来为我所用.那么面对杂乱无章的海量信息,教师更多的应该扮演引导者的角色,把探究过程中的操作步骤留给学生,让学生在合作探究的过程中慢慢去体会知识的形成与应用的过程.以软件为例,现在的软件首先会用step by step的方式对你进行指导,让你能够尽快了解软件的基本功能和操作方式.客户在了解了产品的基本功能之后,就可以在熟练操作的基础上对该软件的功能进行进一步的开发,另外对于复杂的软件则可以不断通过搜索引擎找到相关的案例进行手把手的操作,提升自我的应用能力,让软件更好的为我服务.这给导数的探究式教学提供了宝贵的借鉴.1.设置问题必须低起点.将导数应用在函数的研究中,学生之前从来没有使用过.所以在课程学习的最初阶段,教师应当努力维护学生对新鲜事物所拥有的本能的好奇,努力避免用复杂的问题瞬间将学生的学习热情扼杀在萌芽的状态.华罗庚先生曾经说过:“(数学教育)要尽可能的退,退到数学最本质的内容.”而这种“退”主要是要让学生能够在学习的最初阶段能够较好的抓住所学内容的本质.图象作为函数研究中的重要工具有着直观与便捷的特点,在《导数与函数单调性》的例题中先用图象作为探究的切入点,可以让学生直接开始对所给的图象作切线,尽可能靠近学生的“最近发展区”,可操作性比较强.2.一步一步引导最初学习.学生刚开始接触将导数作为方法研究函数的内容,教师不能要求学生一下就直接懂得探究的方法,应当对探究中的每一步都进行指点,让学生将自己的“最近发展区”在教师的指导下不断的向前推进并逐步形成自己的方法.另外结合心理学研究的结果:相比于耳朵听到的内容,眼睛看到的内容在记忆中留下的印象要更为深刻.教师可以在课堂的一开始将学生的基础定位定位尽可能低,以便于让尽可能多的学生能够参与到课堂的学习.3.便捷化的操作.操作越简单越能激起学习者的探究热情.在最初的引入阶段利用单调性的定义探究函数的单调性需要的步骤和技巧极多.而在学习导数的内容之后,学生可以对比两种解法,导数所具备的的明显的便捷性与普适性将会引导学生不断深入的学习下去.在得到导数与函数单调性的代数上的意义之后,紧接着又能够得到导数与函数单调性在图象上的相互关系.4.建立学生智能的概念.学生是一个具有主观能动性的人,教师其实并不需要一开始就将复杂的题目向学生进行传授,而更应该回归到本源,将原本复杂的题目进行分解,让学生通过自主探究完成简单的问题,接着再慢慢的熟练掌握知识的内涵与作用.这时他就能对这些知识和技能进行重构,最终完成复杂的任务,这是大脑进行思考的基本顺序.所以在设置《导数和函数单调性》的问题时,在文字或者语言提示中不断的为学生铺路,尽可能让学生自主的解答学习过程中所存在的问题,不断挖掘知识的潜在价值,这甚至可以为后续的研究提供借鉴.当教师在后续的课程中设置同样的语言可以触发学生相同的思考,为后续的学习铺路.本节课由于是第一课时,所以教学的过程中依然停留在课堂内的学习.在网络化的时代,甚至可以鼓励学生在课堂上使用手机搜索自己存在的问题,还可以将自己在学习过程中的体会发布到网络上与其他同学进行分享,将课堂内的学习延伸到网络上,提高学生的学习乐趣和应用手机解决实际问题的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.1《函数的单调性与导数》教学案
教学目标:
1.了解可导函数的单调性与其导数的关系;
2.能利用导数研究函数的单调性,会求函数的单调区间,对多项式函数一般不超过三次;
教学重点:
利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
教学难点:
利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间
教学过程:
一.创设情景
函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用.
二.新课讲授
1.问题:图3.3-1(1),它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图像.
运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别? 通过观察图像,我们可以发现:
(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.
(2) 从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减
函数.相应地,'()()0v t h t =<.
2.函数的单调性与导数的关系
观察下面函数的图像,探讨函数的单调性与其导数正负的关系.
如图3.3-3,导数'0()f x 表示函数()f x 在
点00(,)x y 处的切线的斜率.
在0x x =处,'0()0f x >,切线是“左下右上”式的,
这时,函数()f x 在0x 附近单调递增;
在1x x =处,'0()0f x <,切线是“左上右下”式的,
这时,函数()f x 在1x 附近单调递减.
结论:函数的单调性与导数的关系
在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如
果'()0f x <,那么函数()y f x =在这个区间内单调递减.
说明:(1)特别的,如果'()0f x =,那么函数()y f x =在这个区间内是常函数. 3.求解函数()y f x =单调区间的步骤:
(1)确定函数()y f x =的定义域;
(2)求导数''
()y f x =;
(3)解不等式'()0f x >,解集在定义域内的部分为增区间;
(4)解不等式'()0f x <,解集在定义域内的部分为减区间.
三.典例分析
例1.已知导函数'()f x 的下列信息:
当14x <<时,'()0f x >;
当4x >,或1x <时,'()0f x <;
当4x =,或1x =时,'()0f x =
试画出函数()y f x =图像的大致形状.
解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;
当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'
()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示.
例2.判断下列函数的单调性,并求出单调区间.
(1)3()3f x x x =+; (2)2()23f x x x =--
(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以,
'22()333(1)0f x x x =+=+>
因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.
(2)因为2()23f x x x =--,所以, ()'
()2221f x x x =-=-
当'()0f x >,即1x >时,函数2()23f x x x =--单调递增;
当'()0f x <,即1x <时,函数2
()23f x x x =--单调递减;
函数2()23f x x x =--的图像如图3.3-5(2)所示.
(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示.
(4)因为32()23241f x x x x =+-+,所以 .
当'()0f x >,即 时,函数2
()23f x x x =-- ;
当'()0f x <,即 时,函数2()23f x x x =-- ;
函数32()23241f x x x x =+-+的图像如图3.3-5(4)所示.
注:(3)、(4)生练
例3 如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.
分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A )符合上述变化情况.同理可知其它三种容器的情况.
解:()()()()()()()()1,2,3,4B A D C →→→→
思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?
一般的,如果一个函数在某一范围内导数的绝对值较大,
那么函数在这个范围内变化的快,
这时,函数的图像就比较“陡峭”;
反之,函数的图像就“平缓”一些.
如图3.3-7所示,函数()y f x =在()0,b 或(),0a 内的图像“陡峭”,
在(),b +∞或(),a -∞内的图像“平缓”.
例4 求证:函数3223121y x x x =+-+在区间()2,1-内是减函数. 证明:因为()
()()'22
661262612y x x x x x x =+-=+-=-+ 当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.
说明:证明可导函数()f x 在(),a b 内的单调性步骤:
(1)求导函数()'f
x ;
(2)判断()'f x 在(),a b 内的符号; (3)做出结论:()'0f
x >为增函数,()'0f x <为减函数. 四.课堂练习
1.求下列函数的单调区间
1.f (x )=2x 3-6x 2+7
2.f (x )=
x 1+2x 3. f (x )=sinx , x ]2,0[π∈ 4. y =xlnx 2.已知函数 232()4()3f x x ax x x R =+-
∈在区间[]1,1-上是增函数,求实数a 的取值范围.
五.回顾总结
(1)函数的单调性与导数的关系
(2)求解函数()y f x =单调区间
(3)证明可导函数()f x 在(),a b 内的单调性。

相关文档
最新文档