(完整版)利用导数求函数单调性题型全归纳

合集下载

专题12 利用导数解决函数的单调性

专题12 利用导数解决函数的单调性

专题12导数与函数的单调性问题【高考地位】在近几年的高考中,导数在研究函数的单调性中的应用是必考内容,它以不但避开了初等函数变形的难点,定义法证明的繁杂,而且使解法程序化,优化解题策略、简化运算,具有较强的工具性的作用.导数在研究函数的单调性中的应用主要有两方面的应用:一是分析函数的单调性;二是已知函数在某区间上的单调性求参数的取值范围.在高考中的各种题型中均有出现,其试题难度考查相对较大.类型一求无参函数的单调区间例1已知函数()ln xf x e=.(1)当1a =时,判断()f x 的单调性;【解析】(1)当1a =时,()ln 1xx f x e+=,第一步,计算函数()f x 的定义域:()0,+∞.第二步,求出函数()f x 的导函数'()f x :()1ln 1xx x f x e --'=第三步,令()1ln 1g x x x=--,则()g x 在()0,∞+上为减函数,且()10g =所以,当()0,1x ∈时,()0g x >,()0f x '>,()f x 单调递增;当()1,x ∈+∞时,()0g x <,()0f x '<,()f x 单调递减.故()f x 递增区间为()0,1;()f x 递减区间为()1,+∞【变式演练1】函数()2sin sin 2f x x x =⋅,0,2x π⎡⎤∈⎢⎥⎣⎦的单调递增区间为__________.【答案】(0,)3π;(区间两端开闭都可以)【分析】利用三角恒等变换得32sin y =,再利用换元法设sin [0,1]t x =∈,利用导数和复合函数的单调性解不等式0sin x <<,即可得到答案;【详解】令223sin sin 22sin cos sin 2sin y x x x x x =⋅=⋅=,设sin [0,1]t x =∈,则3()2h t t =,∴()'362h t tt =',2242246122346t t t t t t---=,[0.1)t∈,∴()002h t t >⇒<<',∴0sin 03x x π<<<<,∴()f x 在区间(0,)3π单调递增.故答案为:(0,)3π.【点睛】本题考查复合函数的单调性与导数的结合,考查运算求解能力,求解时注意复合函数的单调性是同增异减的原则.【变式演练2】已知函数()()2ln 1x xf x x e e -=+++,则不等式()()2210f x f x --+≤的解集为___________.【答案】(]1,3,3⎡⎫-∞-+∞⎪⎢⎣⎭【分析】首先根据题意得到()f x 是偶函数,利用导数和奇偶性得到函数()f x 的单调区间,再利用单调性和奇偶性解不等式即可.【详解】因为()()2ln 1x xf x x e e -=+++,x ∈R ,所以()()()2ln 1x xf x x e e f x -+-=++=,所以()f x 是偶函数.因为()22222111x x xx x x e f x e e x x e-'==++-+-+当0x >时,()0f x '>,所以()f x 在()0,∞+上单调递增.又因为()f x 是偶函数,所以()f x 在(),0-∞上单调递减.所以()()2210f x f x --+≤,即()()221f x f x -≤+,所以221x x -≤+,即23830x x +-≥,解得3x ≤-或13x ≥.故答案为:(]1,3,3⎡⎫-∞-+∞⎪⎢⎣⎭.【变式演练3】已知函数()2sin f x x x =-+,若a f =,(2)b f =--,2(log 7)c f =,则,,a b c 的大小关系为()A .a b c <<B .b c a<<C .c a b<<D .a c b<<【答案】D 【解析】【分析】求得函数()f x 单调性与奇偶性,再结合指数函数与对数函数的性质,得出2log 72>>,得到()22(log 7)(f f f >>,进而得到2(2)(log 7)(f f f -->>,即可得到答案.【详解】由题意,函数()2sin f x x x =-+的定义域为R ,且()2()sin()2sin ()f x x x x x f x -=-⋅-+-=-=-,即()()f x f x -=-,所以函数()f x 是R 上的奇函数,又由()2cos 0f x x '=-+<,所以函数()f x 为R 上的单调递减函数,又因为133>=,22log 7log 42>=且22log 7log 83<=,即22log 73<<,所以2log 72>>,可得()22(log 7)(f f f >>,又由函数()f x 是R 上的奇函数,可得()(2)2f f --=,所以2(2)(log 7)(f f f -->>,即a c b <<.故选:D.【点睛】本题主要考查了函数的奇偶性与函数的单调性,以及指数函数与对数函数的图象与性质的综合应用,其中解答中熟练应用函数的基本性质,结合指数函数与对数函数的性质求得自变量的大小关系式解答的关键,着重考查了推理与运算能力.【变式演练4】定义在R 上的连续函数()f x ,导函数为()f x '.若对任意不等于1-的实数x ,均有()()()10x f x f x '+->⎡⎤⎣⎦成立,且()()211xf x f x e -+=--,则下列命题中一定成立的是()A .()()10f f ->B .()()21ef f -<-C .()()220e f f -<D .()()220e f f ->【答案】B 【解析】【分析】构造函数()()x f x g x e=,利用导数分析出函数()y g x =在(),1-∞-上单调递增,在()1,-+∞上单调递减,并推导出函数()()x f x g x e=的图象关于直线1x =-对称,进而可判断出各选项的正误.【详解】构造函数()()xf xg x e=,则()()()x f x f x g x e '-'=,当1x ≠-时,()()()10x f x f x '+->⎡⎤⎣⎦.当1x >-时,则()()0f x f x '->,()0g x '<;当1x <-时,则()()0f x f x '-<,()0g x '>.所以,函数()()xf xg x e=在(),1-∞-上单调递增,在()1,-+∞上单调递减.又()()211xf x f x e-+=--,所以()()1111xxf x f x ee-+---+--=,即()()11g x g x -+=--,故函数()()x f x g x e=的图象关于直线1x =-对称.对于A 选项,()()10g g ->,即()()10ef f ->,()1f -与()0f 的大小关系不确定,A 选项错误;对于B 选项,()()21g g -<-,即()()221e f ef -<-,即()()21ef f -<-,B 选项正确;对于C 、D 选项,()()20g g -=,即()()220e f f -=,C 、D 选项错误.故选:B .【点睛】本题考查利用构造函数法判断函数值的大小关系,根据导数不等式的结构构造新函数是解题的关键,考查推理能力,属于难题.类型二判定含参数的函数的单调性例2已知函数()()2ln 21f x x x ax a R =+-+∈.(1)讨论()f x 的单调性;【解析】(1)第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :()2122122(0)'x ax x x x xf a x -+=+-=>,记()2221g x x ax =-+.第二步,讨论参数的取值范围,何时使得导函数'()f x 按照给定的区间大于0或小于0:当0a ≤时,因为0x >,所以()1g x >,所以函数()f x 在()0,∞+上单调递增;当0a <≤时,因为()2420a ∆=-≤,所以()0g x ≥,函数()f x 在()0,∞+上单调递增;当a >时,由()00x g x >⎧⎨>⎩,解得22,22a a x ⎛+∈⎪⎝⎭,第三步,根据导函数的符号变换判断其单调区间:所以函数()f x 在区间22,22a a ⎛-+⎝⎭上单调递减,在区间20,2a ⎛- ⎪⎝⎭和22a ⎛⎫++∞⎪ ⎪⎝⎭上单调递增.【变式演练5】(主导函数是一次型函数)已知函数()=1,f x nx ax a R -∈.(1)讨论函数f x ()的单调性;【解析】(1)因为()ln (0)f x x ax x =->,所以11()'-=-=ax f x a x x,当0a时,()0f x '>,即函数()f x 在(0,)+∞单调递增;当0a >时,令()0f x '>,即10ax ->,解得10x a<<;令()0f x '<,即10ax -<,解得1x a>,综上所述:当0a 时,函数()f x 在(0,)+∞单调递增;当0a >时,函数()f x 在10,a ⎛⎫ ⎪⎝⎭单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭单调递减.【变式演练6】(主导函数为类一次型)已知函数()xf x e ax -=+.(I )讨论()f x 的单调性;【解析】(Ⅰ)函数()y f x =的定义域为R ,且()xf x a e -'=-.①当0a ≤时,()0f x '<,函数()y f x =在R 上单调递减;②当0a >时,令()0f x '<,可得ln x a <-;令()0f x '>,可得ln x a >-.此时,函数()y f x =的单调递减区间为(),ln a -∞-,单调递增区间为()ln ,a -+∞;【变式演练7】(主导函数为二次型)【2020届山西省高三高考考前适应性测试(二)】已知函数()2ln af x x a x x=--,0a ≥.(1)讨论()f x 的单调性;【解析】(1)函数()2ln a f x x a x x =--的定义域为()0,∞+,()222221a a x ax af x x x x-+'=+-=.令()22g x x ax a =-+,244a a ∆=-.①当2440a a ∆=-≤时,即当01a ≤≤时,对任意的0x >,()0g x ≥,则()0f x '≥,此时,函数()y f x =在()0,∞+上单调递增;②当2440a a ∆=->时,即当1a >时,方程()0g x =有两个不等的实根,设为1x 、2x ,且12x x <,令220x ax a -+=,解得10x a =>,20x a =+>.解不等式()0f x '<,可得a x a <<+解不等式()0f x '>,可得0x a <<-或x a >+此时,函数()y f x =的单调递增区间为(0,a ,()a ++∞,单调递减区间为(a a -+.综上所述,当01a ≤≤时,函数()y f x =的单调递增区间为()0,∞+,无递减区间;当1a >时,函数()y f x =的单调递增区间为(0,a ,()a ++∞,单调递减区间为(a a -+;【变式演练8】(主导函数是类二次型)已知函数2()(1)x f x k x e x =--,其中k ∈R.(1)当k 2≤时,求函数()f x 的单调区间;【解析】(1)()2(2)x x f x kxe x x ke '=-=-,当0k ≤时20x ke -<,令'()0f x >得0x <,令'()0f x <得0x >,故()f x 的单调递增区间为(0)()f x -∞,,的单调递减区间为(0)+∞,当02k <≤时,令'()0f x =得0x =,或2ln 0x k=≥,当02k <<时2ln0k >,当'()0f x >时2ln x k >或0x <;当'()0f x >时20ln x k <<;()f x 的单调递增区间为()2,0,ln ,k ⎛⎫-∞+∞ ⎪⎝⎭;减区间为20ln k ⎛⎫ ⎪⎝⎭,.当2k =时2ln0k=,当0x >时'()0f x >;当0x <时'()0f x >;()f x 的单调递增区间为(),-∞+∞;【变式演练9】已知函数()22ln f x x x =-,若()f x 在区间()2,1m m +上单调递增,则m 的取值范围是()A .1,14⎡⎫⎪⎢⎣⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .1,12⎡⎫⎪⎢⎣⎭D .[)0,1【答案】A 【分析】利用导数求出函数()f x 的单调递增区间为1,2⎛⎫+∞ ⎪⎝⎭,进而可得出()12,1,2m m ⎛⎫+⊆+∞ ⎪⎝⎭,可得出关于实数m的不等式组,由此可解得实数m 的取值范围.【详解】因为()22ln f x x x =-的定义域为()0,∞+,()14f x x x'=-,由()0f x '>,得140x x ->,解得12x >,所以()f x 的递增区间为1,2⎛⎫+∞ ⎪⎝⎭.由于()f x 在区间()2,1m m +上单调递增,则()12,1,2m m ⎛⎫+⊆+∞ ⎪⎝⎭,所以12122m mm +>⎧⎪⎨≥⎪⎩,解得114m ≤<.因此,实数m 的取值范围是1,14⎡⎫⎪⎢⎣⎭.故选:A.【点睛】方法点睛:利用函数()f x 在区间D 上单调递增求参数,可转化为以下两种类型:(1)区间D 为函数()f x 单调递增区间的子集;(2)对任意的x D ∈,()0f x '≥恒成立.同时也要注意区间左端点和右端点值的大小关系.类型三由函数单调性求参数取值范围例3.若()()21ln 242f x x b x =-++在()2,-+∞上是减函数,则实数b 的范围是()A .(],1-∞-B .(],0-∞C .(]1,0-D .[)1,-+∞【答案】A【解析】第一步:计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :因为()()21ln 242f x x b x =-++,故可得()2b f x x x '=-++,第二步根据题意转化为相应的恒成立问题:因为()f x 在区间()2,-+∞是减函数,故02bx x -+≤+在区间()2,-+∞上恒成立.因为20x +>,故上式可整理化简为()2b x x ≤+在区间()2,-+∞上恒成立,因为()2y x x =+在区间()2,-+∞上的最小值为1-,第三步得出结论:故只需b ≤-1.故选:A.【点睛】本题考查根据函数的单调性,利用导数求解参数范围的问题,属基础题.【变式演练11】(转化为任意型恒成立)【四川省绵阳市2020高三高考数学(文科)三诊】函数2()(2)x f x e x ax b =-++在(1,1)-上单调递增,则2816a b ++的最小值为()A .4B .16C .20D .18【答案】B 【解析】【分析】由函数()()22xf x exax b =-++在()1,1-上单调递增得:()2402a x a b x -+-++≥在()1,1-上恒成立,转化成26020a b b +-≥⎧⎨+≥⎩,结合线性规划知识求解即可【详解】因为函数()()22xf x e xax b =-++在()1,1-上单调递增,所以()()()()22''22'xx f x ex ax b e x ax b =-+++-++=()2402x a x a b e x ⎡⎤+-++≥⎣⎦-在()1,1-上恒成立.又0x e >,所以()2402a x a b x -+-++≥在()1,1-上恒成立.记()()224g x a x x a b -=+-++,则()()()()12401240g a a b g a a b ⎧-=---++≥⎪⎨=-+-++≥⎪⎩,整理得:26020a b b +-≥⎧⎨+≥⎩,把横坐标看作a 轴,纵坐标看作b 轴,作出不等式组表示的区域如下图,令2816a z b =++,则2288a z b =-+-,抛物线28a b =-恰好过图中点()4,2G -,由线性规划知识可得:当抛物线2288a zb =-+-过点()4,2G -时,28z -最小,此时z 取得最小值.所以()2min 4821616z =+⨯-+=故选B【点睛】本题主要考查了单调性与导数的关系,还考查了恒成立问题及线性规划求最值,考查计算能力及转化能力,属于中档题.【变式演练12】(转化为变号零点)已知函数2()ln 1f x x a x =-+在(1,2)内不是单调函数,则实数a 的取值范围是()A .[)2,8B .[]2,8C .(][),28,-∞+∞ D .()2,8【答案】D【解析】【分析】函数()f x 的定义域为(0,)+∞,22()2a x a f x x x x-'=-=,根据题意可得到,12<<,从而可得答案.【详解】解: 函数2()1f x x alnx =-+,定义域{|0}x x >,∴22()2a x a f x x x x-'=-=,当0a时,()0f x '>,()f x 在(0,)+∞上是增函数,不符合题意,当0a >时,在⎫+∞⎪⎪⎭上,()0f x '>,()f x 单调递增,在⎛ ⎝上,()0f x '<,()f x 单调递减, 函数2()1f x x alnx =-+在(1,2)内不是单调函数,12∴<<,28a ∴<<,故选:D .【点睛】本题考查利用导数研究函数的单调性,依题意得到02a -是关键,也是难点所在,属于中档题.【变式演练13】(直接给给定单调区间)已知函数()32113f x x mx nx =+++的单调递减区间是()3,1-,则m n +的值为()A .-4B .-2C .2D .4【答案】B【解析】【分析】根据()f x 的单调区间,得到导函数()'fx 的零点,结合根与系数关系,求得m n +的值.【详解】依题意()'22f x x mx n =++,由于函数()32113f x x mx nx =+++的单调递减区间是()3,1-,所以3x =-,1x =是()'22fx x mx n =++的两个零点,所以3121313m m n n -+=-=⎧⎧⇒⎨⎨-⨯==-⎩⎩,所以2m n +=-.故选:B【点睛】本小题主要考查利用导数研究函数的单调性,属于中档题.【变式演练14】(转化为存在型恒成立)若f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,则a 的取值范围是()A .(﹣∞,0]B .(﹣∞,0)C .[0,+∞)D .(0,+∞)【答案】D【解析】【分析】f (x )在(1,+∞)上存在单调递增区间,等价于()f x '>0在(1,+∞)上有解.因此结合()f x '的单调性求出其在(1,+∞)上的最值,即可得出结论.【详解】f (x )321132x x =-++2ax 在(1,+∞)上存在单调递增区间,只需()f x '>0在(1,+∞)上有解即可.由已知得2()2f x x x a '=-++,该函数开口向下,对称轴为12x =,故()f x '在(1,+∞)上递减,所以(1)f '=2a >0,解得a >0.故选:D.【点睛】本题主要考查了函数单调性的应用,难度不大.。

高中数学利用导数研究函数单调性基础知识梳理+常考例题汇总

高中数学利用导数研究函数单调性基础知识梳理+常考例题汇总

∴(-2)+(-1)=a,即 a=-3. 3.[变条件]本例(2)变为:若 g(x)在(-2,-1)内不单调,其他条件不变,求实数 a 的取值范围. 【解析】由 1 知 g(x)在(-2,-1)内为减函数时,实数 a 的取值范围是(-∞,- 3]. 若 g(x)在(-2,-1)内为增函数,则 a≥x+ 2 在(-2,-1)内恒成立,
2.已知函数 f(x)= x a -ln x- 3 ,其中 a∈R,且曲线 y=f(x)在点(1,f(1))处
4x
2
的切线垂直于直线 y= 1 x.
2
(1)求 a 的值;
(2)求函数 f(x)的单调区间.
【解析】(1)对 f(x)求导得 f′(x)= 1 - a - 1 ,
4 x2 x
由 f(x)在点(1,f(1))处的切线垂直于直线 y= 1 x,
【解析】f′(x)= 1 ·x+ln x-k-1=ln x-k,
x
①当 k≤0 时,因为 x>1,所以 f′(x)=ln x-k>0,
所以函数 f(x)的单调递增区间是(1,+∞),无单调递减区间.
②当 k>0 时,令 ln x-k=0,解得 x=ek,
当 1<x<ek 时,f′(x)<0;当 x>ek 时,f′(x)>0.
x
又∵y=x+ 2 在(-2,- 2 )内单调递增,在(- 2 ,-1)内单调递减,
x
∴y=x+ 2 的值域为(-3,-2 2 ),
x
∴实数 a 的取值范围是[-2 2 ,+∞), ∴函数 g(x)在(-2,-1)内单调时,a 的取值范围是(-∞,-3]∪[-2 2 ,+∞), 故 g(x)在(-2,-1)上不单调时,实数 a 的取值范围是(-3,-2 2 ). [解题技法]由函数的单调性求参数的取值范围的方法 (1)由可导函数 f(x)在 D 上单调递增(或递减)求参数范围问题,可转化为 f′(x)≥ 0(或 f′(x)≤0)对 x∈D 恒成立问题,再参变分离,转化为求最值问题,要注意“=”

利用导数研究函数单调性5种常见题型总结(原卷版)

利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。

五十三期:导数单调性十种题型归纳

五十三期:导数单调性十种题型归纳

五十三期:导数单调性十种题型归纳导数单调性是微积分中重要的概念之一,是指函数在定义域上的单调性特征。

在解题过程中,常常会遇到与导数单调性相关的题型,这里将十种常见的题型归纳总结如下。

一、直接利用导数的正负判别这种题型要求我们利用导数的正负来判断函数的单调性。

具体来说,我们需要计算函数的导函数,然后通过求解导数的符号来确定函数的单调性。

当导数恒大于零时,函数单调递增;当导数恒小于零时,函数单调递减。

二、利用导数的正负变化这种题型要求我们通过导数的正负变化来判断函数的单调性。

具体来说,我们需要找出函数的导函数,然后观察导函数的正负变化情况。

当导数先减小后增大时,函数存在极值点,在极值点附近函数单调性发生变化;当导数先增大后减小时,函数存在极值点,在极值点附近函数单调性发生变化。

三、应用导数的加减法则这种题型要求我们利用导数的加减法则来判断函数的单调性。

具体来说,我们需要将函数表示为若干个函数之和或之差,并进一步求出每个函数的导数。

然后,根据导数的正负判断每个函数的单调性,并结合加减法则得出函数整体的单调性。

四、应用导数的乘法法则这种题型要求我们利用导数的乘法法则来判断函数的单调性。

具体来说,我们需要将函数表示为若干个函数之积,并求出每个函数的导数。

然后,根据导数的正负判断每个函数的单调性,并结合乘法法则得出函数整体的单调性。

五、应用函数的单调性判别法这种题型要求我们利用函数的单调性判别法来判断函数的单调性。

具体来说,我们需要根据函数的定义和性质,结合导数的正负判别,来判断函数在给定区间上的单调性。

六、应用导数的奇偶性这种题型要求我们利用导数的奇偶性来判断函数的单调性。

具体来说,如果函数以奇对称或偶对称的方式分布,则可以通过导数的奇偶性来判断函数的单调性。

七、综合利用多种方法这种题型要求我们综合利用多种方法来判断函数的单调性。

具体来说,我们可以应用前述的各种方法和技巧,结合具体题目的条件和要求,来判断函数的单调性。

利用导数求函数的单调性-高考数学大题精做之解答题题型全覆盖高端精品

利用导数求函数的单调性-高考数学大题精做之解答题题型全覆盖高端精品

高考数学大题精做之解答题题型全覆盖高端精品第六篇函数与导数专题02利用导数求函数的单调性类型对应典例不含参数的函数单调性典例1含参函数中主导函数是一次函数典例2含参函数中主导函数是类一次函数典例3含参函数中主导函数是二次函数(不能因式分解)典例4含参函数中主导函数是二次函数(能因式分解)典例5含参函数中主导函数是类二次函数典例6利用函数单调性求参数取值范围典例7【典例1】已知函数()()1ln f x x a R ax=+∈在1x =处的切线与直线210x y -+=平行.(1)求实数a 的值,并判断函数()f x 的单调性;(2)若函数()f x m =有两个零点1x ,2x ,且12x x <,求证:121x x +>.【典例2】已知函数op =−En −.(1)讨论函数op 的单调性.(2)若∀>0,op ≥0,求B 的最大值.【典例3】已知函数ln ()(,)x af x bx a b R x-=-∈.(1)当0b =时,讨论函数()f x 的单调性;(2)若函数()()f x g x x=在x =e 为自然对数的底)时取得极值,且函数()g x 在(0,)e 上有两个零点,求实数b 的取值范围.【典例4】已知函数()()21ln 2f x x x ax a R =++∈,()232x g x e x x =+-.(1)讨论()f x 的单调性;(2)定义:对于函数()f x ,若存在0x ,使()00f x x =成立,则称0x 为函数()f x 的不动点.如果函数()()()F x f x g x =-存在不动点,求实数a 的取值范围.【典例5】已知函数22()ln f x x ax a x =--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()0f x ≥,求a 的取值范围.【典例6】已知()ln xe f x a x ax x=+-.(1)若0a <,讨论函数()f x 的单调性;(2)当1a =-时,若不等式1()()0xf x bx b e x x+---≥在[1,)+∞上恒成立,求b 的取值范围.【典例7】已知函数()ln ()x e f x x x ax a R =-+∈.(1)若函数()f x 在[1,)+∞上单调递减,求实数a 的取值范围;(2)若1a =,求()f x 的最大值.1.已知函数()()22122()2xf x x x e ax a R =-+-∈.(1)当a e =时,求函数()f x 的单调区间;(2)证明:当2a ≤-时,()2f x ≥.2.已知函数()1f x ax lnx =--,a R ∈.(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.3.已知函数()()2()1ln 1(0)f x a x x x ax a =++-->是减函数.(1)试确定a 的值;(2)已知数列{}()()*123ln 11n n n n n a a T a a a a n N n +==∈+ ,求证:()ln 212n nn T +<-⎡⎤⎣⎦.4.已知函数()22ln .f x a x x =-()1讨论函数()f x 的单调性;()2当0a >时,求函数()f x 在区间()21,e 上的零点个数.5.已知函数()()ln f x x ax a R =-∈.(1)讨论()f x 的单调性;(2)若1a =-,当0x >时,函数()()()220g x x mf x m =->有且只有一个零点,求m 的值.6.设22(),()11x e f x xe ax g x nx x x a=-=+-+-.(1)求()g x 的单调区间;(2)讨论()f x 零点的个数;(3)当0a >时,设()()()0h x f x ag x =-恒成立,求实数a 的取值范围.7.已知函数2()2ln ()f x x ax x a R =-+∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,当a ≥()()21f x f x -的最大值.参考答案【典例1】【详解】(1)函数()f x 的定义域:()0,+∞,()11112f a =-=',解得2a =,()1ln 2f x x x ∴=+,()22112122x f x x x x -∴=-='令()0f x '<,解得102x <<,故()f x 在10,2⎛⎫⎪⎝⎭上是单调递减;令()0f x '>,解得12x >,故()f x 在1,2⎛⎫+∞ ⎪⎝⎭上是单调递增.(2)由12,x x 为函数()f x m =的两个零点,得121211ln ,ln 22x m x m x x +=+=两式相减,可得121211ln ln 022x x x x -+-=即112212ln 2x x x x x x -=,1212122ln x xx x x x -=,因此1211212ln x x x x x -=,2121212ln x x x x x -=令12x t x =,由12x x <,得01t <<.则121111+=2ln 2ln 2ln t t t t x x t t t---+=,构造函数()()12ln 01h t t t t t =--<<,则()()22211210t h t t t t -=+-=>'所以函数()h t 在()0,1上单调递增,故()()1h t h <,即12ln 0t t t--<,可知112ln t t t->.故命题121x x +>得证.【典例2】解:(1)函数op 的定义域为(0,+∞),由op =−En −,得n(p =1−=K,当≤0时,n(p >0,所以函数op 在(0,+∞)上单调递增.当>0时,则∈(0,p 时,n(p <0,函数op 在(0,p 上单调递减;∈(s +∞)时,n(p >0,函数op 在(s +∞)上单调递增.(2)由(1)可知,当<0时,函数op 在(0,+∞)上单调递增,当→0时,op →−∞与op ≥0相矛盾;当=0时,∀>0,op ≥0,所以≤0,此时B =0.当>0时,函数op 在(0,p 上单调递减,函数op 在(s +∞)上单调递增.op min =op =−En −≥0,即−En ≥,则B ≤2−2lno >0).令op =2−2lno >0),则n(p =o1−2lnp .令n(p >0,则0<<,令n(p <0,则>,当=时,op =2,即当=,=B 的最大值为2.综上,B 的最大值为2.【典例3】【详解】(1)当0b =时,()ln x af x x-=,()()221ln 1ln x x a a x x f x x x ⋅--+-==',令()0f x '=,得1a x e +=,当()10,ax e+∈时,()0f x '>,当()1,ax e+∈+∞时,()0f x '<.所以函数()f x 在()10,ae+上单调递增,在()1,ae++∞上单调递减.(2)()()2ln f x x a g x b x x-==-,()()2431ln 2122ln x x a xa x x g x x x ⋅--⋅-=='+,∵()g x在x =∴0g '=即1210a +-=,∴0a =.所以()2ln x g x b x =-,()312ln xg x x-'=,函数()g x在(上单调递增,在)+∞上单调递减,得函数的极大值12gb e=-,∴当函数()g x 在()0,e 上有两个零点时,必有()0,10,2g e b e ⎧<⎪⎨->⎪⎩得2112b e e<<.当2112b e e <<时,210g e b e ⎛⎫=--< ⎪⎝⎭.∴()g x的两个零点分别在区间1e ⎛ ⎝与)e 中.∴的取值范围是211,2e e ⎛⎫⎪⎝⎭.【典例4】【详解】(1)()f x 的定义域为()()()210,0x ax f x x x,+++∞=>',对于函数210y x ax =++≥,①当240a ∆=-≤时,即22a -≤≤时,210x ax ++≥在0x >恒成立.()210x ax f x x++∴=≥'在()0,+∞恒成立.()f x ∴在()0,+∞为增函数;②当0∆>,即2a <-或2a >时,当2a <-时,由()0f x '>,得42a x --<或42a x ->,44022a a --<<,()f x ∴在40,2a ⎛-- ⎪⎝⎭为增函数,44,22a a ⎛--+ ⎪⎝⎭减函数.,2a ⎛⎫-++∞⎪ ⎪⎝⎭为增函数,当2a >时,由()210x ax f x x++=>'在()0,+∞恒成立,()f x ∴在()0,+∞为增函数。

利用导数研究函数的单调性的题型分析

利用导数研究函数的单调性的题型分析

利用导数研究函数的单调性题型分析题型一:利用导数求函数的单调区间 例:求下列函数的单调区间. (1)y = 2x 3— 3x 解:⑴由题意得y '=6x 2— 3. (2)f (x ) = 3x 2 - 2ln x . 2 或 x > 2 , 当x € (— 8,— )时,函数为增函数,当 x € ,+8 )时,函数也为增函数. 2 2 令 y '=6x 2— 3 >0 ,解得 x v — 令 y '=6x 2— 3 v 0 , 解得二v x v2当x € (— -, 2)时,函数为减函数. 2 2 故函数的递増区间为(一8,--^)和(-^ ,+8 ),递减区间为(一-^,-^).⑵函数的定义域为(0,+8 ), 2 3x 2— 1 f '(x ) = 6x —-= 2 • x3x 2 — 1 “ 3• ------ >0.且 x >0,可解得 x >—; x 3 3x 2— 1 - 3 • v 0,由 x > 0 得,0 v x v , x 3 •••f(x )的增区间为(十,+8 ),减区间为(0, 十). 3 3 令 f '(x ) > 0,即令 f '(x )v 0,即规律总结: 1•在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义 域内讨论,定义域为实数集 R 可以省略不写. 2 .当求得的单调区间不止一个时, 单调区间要用“,”或“和”字等隔开,不要用符号“U 连接,如(1)题中的增区间. 变式训练:求下列函数的单调区间: (1)求函数f (x ) = 2x 3— 9x 2 + 12x — 3的单调区间; ⑵求函数y = x 3 — 2x 2 + x 的单调区间. 【解】(1)此函数的定义域为 R, f '(x ) = 6x 2— 18x + 12 = 6(x — 1)(x — 2). 令 6(x — 1)(x — 2) v 0,解得 1 v x v 2 , 所以函数f (x )的单调递减区间是(1,2).1或x v 一.3因此y= x3—2x2+ x的单调递增区间为1 (1, ), (—m,?)•令 6(x— 1)(x — 2) >0,解得x>2 或x v 1 ,所以函数f(x)的单调递增区间是(2 ,+^ ),(—汽1). ⑵此函数的定义域为R.y '=3x2— 4x+ 1,令 3x2— 4x + 1 >0 ,解得x >11再令 3x2— 4x + 1 v 0,解得一v x v 1.31因此y= x3— 2x2+ x的单调递减区间为(才,1).bx例:讨论函数f(x)= 2 ---- (— 1 v x v 1 , b丸)的单调性.x2— 1【思路探究】(1)函数的定义域是怎样的?函数是奇函数还是偶函数?(2)若先讨论x € (0,1) 上的单调性,能否判断f '(X)在(0,1)上的正负?b的取值对其有影响吗?解:因f(x)的定义域为(一1,1);函数f(x)是奇函数,.••只需讨论函数在 (0,1)上的单调性.“ b(x21)•f (x)= 2 2~(x 1)t」2 2 2(x21)当 0 v x v 1 时,x2+ 1 > 0, (x2— 1)2> 0,••• T 20(x 1)•••当b > 0 时,f'(x) v 0. •••函数f(x)在 (0,1)上是减函数;当b v 0时,f'(x)>0 ,•函数f(x)在(0,1)上是增函数;又函数f(x)是奇函数,而奇函数的图象关于原点对称,从而可知: 当b > 0时,f(x)在(—1,1)上是减函数;当b v 0时,f(x)在(—1,1)上是增函数.规律方法:1.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式f '(x)>0(f'(x)v 0)在给定区间上恒成立.一般步骤为:①求导数f(X);②判断f'(x)的符号;③给出单调性结论.2 .导数的正负决定了函数的增减,当导函数中含有参数时,应注意对参数进行分类讨论.变式训练:b求函数y = x+一(b工0)的单调区间.xb b x2—b【解】函数y = x +一(b工0)的定义域为{x|x^0}, y' = — _= 厂x x2 x2①当b v 0时,在函数定义域内y ' >恒成立,所以函数的单调递增区间为(一3 0)和(0, );②当b > 0时,令y,解得x>r b或x v—- b,所以函数的单调递增区间为(一® —-,:b) 和(” ,:b ,+^ );令y 'V,解得—” b v x v ; b且x丸, 所以函数的单调递减区间为(一, 0)和(0 , 'b).题型二:利用函数单调性求参数1 1例: (2013 •郑州模拟函数f(x)= ax+ x ln x,且图象在点(一,f(-))处的切线斜率为1(e为自e ef (x) x然对数的底数).(1)求实数a的值;(2)设g(x) ,研究函数g(x)的单调性x 11解:(1)f(x) = ax+ x ln x, f'x(= a + 1 + In x,依题意f'(-) = a= 1,所以a = 1. ef (x) x x ln x x— 1 — In x⑵因为g(x) =莒,所以g 'X-;—1 设 0(x)= x — 1 — In x,贝U『x( = 1 —一.x1当x>1时,『x(= 1 —_>0 , 0(x)是增函数,x对?x>1 , 0(x)> 0(1) = 0,即当x>1 时,g '刈>0 ,故g(x)在(1 ,+^ )上为增函数;1当0< x<1时,『刈=1—一<0 , 0(x)是减函数,x对?x€ (0,1) , 0(x)> 0(1) = 0,即当 0<x<1 时,g 'x(>0 ,故g(x)在(0,1)上为增函数.方法规律:1 •导数法求函数单调区间的一般步骤(1)确定函数f(x)的定义域;(2)求导数f 'x(; (3)在函数f(x)的定义域内解不等式f 'x(>0和f '刈<0 ; (4)根据⑶的结果确定函数f(x)的单调区间.2 .导数法证明函数f(x)在(a, b)内的单调性的步骤:(1)求f' x( ; (2)确认f'x)在(a, b)内的符号;(3)作出结论:f 'x(>0时为增函数;f'刈<0时为减函数.3 .导数法求参数的取值范围:已知函数的单调性,求参数的取值范围,应用条件f'x) > 0(或f '刈< 0) x€ (a, b),转化为不等式恒成立求解.训练:解:函数 f (x)的定义域为(0, ), f '(x) 2x -(2x) 1 (2x 1)(2x 1) 2x 2x 2x由f'(x) 0 得x1,由 f'(x),要使函数在定义域内的一个子区间k 1,k 1内不是单调函数,则有0 k 1k 1,解得1 k -,即k的取值范围2 3是[叱).22.(2013 数且a丰f(x)= (x + a)2—7b ln x + 1,其中a, b 是常)上单调递增,求a的取值范围;1.若函数f x x Inx 1在其定义域内的一个子区间k 1,k 1内不是单调函数,2则实数k的取值范围__________________ .•湖北省八校高三第二次联考)已知函数0.(1) bir 1 时,f(x)在区间(1 ,+^4⑵当b = -a2时,讨论f(x)的单调性.7【解】 (1)b三 1 ,「.f(x) = (x + a)2— 7ln x + 1 ,.f(x) = 2x + 2a—x7•••当x>1时,f(x)是增函数,••• f 'x( = 2x + 2a —一》0在x>1时恒成立.x7即a>——x在x>1时恒成立.2x7 7 5 5•.•当x>1 时,y = —x 是减函数,.••当x>1 时,y = —x< — ,「.a h.2x 2x 2 25故a的取值范围是[2宀).4(2) b' = ;a2,.・.f(x)= (x + a)2— 4a2ln x+ 1, x € (0 ,+^ ).2x2+ 2ax— 4a2 2 (x—a)( x+ 2a)•f(x)= = .x x当a>0时,f'刈>0,得x> a或x< — 2a,故f(x)的减区间为(0, a),增区间为(a,+^ );当a<0时,f' x)>0,得x> — 2a或x< a,故f(x)的减区间为(0,— 2a),增区间为(一2a,a3.设函数f(x) = ax—一一 2ln x.x(1) 若f'(2) = 0,求f(x)的单调区间;(2) 若f(x)在定义域上是增函数,求实数a的取值范围.a 2解:⑴W)的定义域为(0,+^),律)=o,且f'(x)= a+X2-;,a 4•••a+4 -仁0=5.3分4 4 2 2f心5+门—厂尹—5x+2),1由f'(x) > 0 结合x > 0 ,得 0 v x v 或x > 2 ,1 1•••f(x)的递增区间为(0, 2]和[2宀),递减区间为(2,2).6分⑵若f(x)在定义域上是增函数,则f '(x)>0对x>0恒成立,8分a 2 ax2— 2x+ a•f(x) = a + 二— = 2 ,•需x>0 时ax2— 2x+ a» 恒成立 10 分x2 xx22x化为a对x>0恒成立,x2+ 12x 2••• 一 = <1,当且仅当x = 1时取等号.x2+1 1x + 一x•••a>1,即a€ [1 ,+s).12 分3x4•已知函数f(x)= — 2x2+ In x,其中a为常数.(1)若a = 1,求函数f(x)的单调区间;a若函数f(x)在区间[1,2]上为单调函数,求a的取值范围.解:(1)若a= 1 时,f(x) = 3x — 2x2+ In x,定义域为(0,+^ ),1 — 4x2+ 3x + 1f' x( = 一一 4x + 3 =x x (4x 1)(x 1)x(x>0).当f 'x(>0 , x € (0,1)时,函数f(x) = 3x — 2x2+ In x 单调递增.当f '刈<0 , x € (1 ,+s )时,函数(x) = 3x —2x2+ In x 单调递减.故函数f(x)的单调递增区间为(0,1),单调递减区间为(1 ,+^ ).3 1(2)f 'x( = -— 4x +一,若函数f(x)在区间[1,2]上为单调函数,即在[1,2]上,a x3 1 3 1f '刈= —4x + 一>0 或f' x) = —4x + 一< 0 ,a x a x即一一4x+—》0或一一4x+—W0在[1,2]上恒成立.即一》4x— -或—W4x.axax a x a x1 3 3令h(x)= 4x-一,因为函数h(x)在[1,2]上单调递增,所以一》h(2)或w h(1),x a a3 15 3 2即—》—或一w 3,解得a<0或0< aw—或a > 1.a 2 a 5题型三:利用导数解决不等式例:定义在R上的函数f(x)的导函数为f'(x),已知f(x 1)是偶函数且(x 1)f '(x) 0.若为x2,且为x2 2,则f (x1)与f(x2)的大小关系是A. f(xj f(X2)B.f(xJ f(X2)C. f(G f(X2)D.不确定解析:由(x 1)f '(x) 0可知,当x 1时,f '(x) 0函数递减.当x 1时,f '(x) 0函数递增•因为函数f(x 1)是偶函数,所以f (x 1) f (1 x), f (x) f (2 x),即函数的对称轴为x 1.所以若1 X1 x2 ,则f(X1) f(X2)•若X1 1 ,则必有X2 2,则X2 2 X1 1,此时由f(X2)f(2 X1),即f(X2)f (2 为)f(xj,综上f(x) f (X2),选 C.变式训练:1.函数f (x)在定义域R内可导,若f(1 x) f (1 x),且当x ( ,1)时,1(x 1) f (x) 0,设a f(0) , b f(—), c f (3),则(D)2A. a b cB. b c aC. c b aD. cab2•已知函数f(x)对定义域R内的任意x都有f (x) = f (4 x),且当x 2时其导函数f (X)满足xf (x) 2f (X),若2 a 4则a aA. f(2 ) f(3) f (log 2 a)B. f(3) f (log 2 a) f (2 )C. f (log 2a) f (3) f(2a)D. f (log2a) f(2a) f(3)解:由f (x) = f (4 x),可知函数关于x 2对称.由xf (x) 2 f (x),得(x 2) f (x) 0, 所以当x 2时,f(x) 0 ,函数递增,所以当x 2时,函数递减.当A、 f (0)<f (0.6)<f (-0.5)B、f (0)<f (-0.5)<f(0.6)C、f (0.6)<f (-0.5)<f(0)D、f(-0.5)vf (0)<f (0.6)解:因为函数f(x)=x2 cosx为偶函数,所以f( 0.5) f(0.5),f' (x)=2x sinx ‘丄或0 x -,即不等式的2 2 2 a 4,1 log2 a 2,222a24,即4 2a16.所以f (log2 a) f(4 log2a),所以2 4 log2a3 ,即24 log2 a 3 2a,所以f(4 log2a) f(3) f(2a),即f (log 2 a) f (3) f(2a),选 C.3.已知函数f(x)=x2-cosx,贝U f (0.6),f (0),f (-0.5)的大小关系是0 x时,f' (x)=2 x sin x 0 ,所以函数在0 x~递增,所以有f(0)vf (0.5)<f(0.6),即f (0)<f( 0.5)<f(0.6),选B4 . [2013 •太原模]已知函数f(x + 1)是偶函数,且x>1时,f'M)<0恒成立, 又f(4) = 0 ,则(x +3)f(x+ 4)<0 的解集为()A. ( — s,—2) U (4 ,+s B) (—6, -3) U (04)C. (—s,—6) U (4 ,+s D). ( — 6 , —3) (0 ,+s)解:函数f(x +1)是偶函数,其图象关于y轴对称,这个函数图象向右平移1个单位得函数y = f(x)的图象,可得函数y = f(x)的图象关于直线x = 1对称,x>1时,f'x()v0恒成立,说明函数在(1 ,+s )上单调递减,根据对称性可得函数在(—s, 1)上单调递增•根据f(4) = 0 可得当x>4时,f(x)<0,根据对称性可得当x< — 2时,f(x)<0,当一2<x<1或1< x<4时,x+ 3>0 , x + 3<0 , x + 3>0 ,f(x)>0.不等式(x+ 3)f(x + 4)<0等价于或当时,f (x + 4) <0 f (x+ 4) >0. f ( x+ 4) <0x> — 3, x+ 3<0 , x v — 3,解得x>0 ;当时,x+ 4>4 或x + 4< — 2 , f (x + 4) >0 — 2< x + 4<1 或 1< x + 4<4 ,解得—6<x< — 3.故不等式(x + 3) f(x+ 4)<0 的解集为(—6 , — 3) U (0 ,+s ).15.设f (x)是定义在 R上的奇函数,当x 0时,f '(x) 0 ,且f ( ?) 0 ,则不等式f (x) 0的解集为_____ .解:因为函数f (x)为奇函数。

导数研究函数单调性5种题型总结(解析版)--2024高考数学常考题型精华版

导数研究函数单调性5种题型总结(解析版)--2024高考数学常考题型精华版

第5讲导数研究函数单调性5种题型总结【考点分析】考点一:含参数单调性讨论①先求函数定义域;②求导,化简,通分,分解因式;③x 系数有未知数a ,先考虑x 系数0=a 的情况;再考虑0,0<>a a 情况,求出()0='x f 的根,判断根与定义域,及根的大小关系,穿针引线,判断导函数正负,进而判断单调性;④若不能分解因式,若分子为二次函数则考虑讨论判别式∆,若不是二次函数可以考虑二次求导【题型目录】题型一:导函数为一次函数型题型二:导函数为准一次函数型题型三:导函数为二次可分解因式型题型四:导函数为二次不可因式分解型题型五:导函数为准二次函数型【典型例题】题型一:导函数为一次函数型【例1】(2023河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R .(1)讨论函数()f x 的单调性;【例2】(2022·辽宁营口·高二期末)已知函数()ln 1f x a x x =+-(其中a 为参数).(1)求函数()f x 的单调区间;【例3】(2022·江西·二模(文))己知函数()()R a x ax x f ∈++=1ln ,讨论()f x 的单调性。

【解析】1(),0ax f x x x'+=>,①当0a ≥时,1()0ax f x x+'=>恒成立,()f x 在(0,)+∞上单调递增②当0a <时,令()0f x '>得10x a<<-,∴()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减综上所述:当0a <时,()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ⎛⎫-+∞ ⎪⎝⎭上单调递减;当0a ≥时,()f x 在(0,)+∞上单调递增;【例4】(2022·广东·模拟预测)已知函数()()()R m mx x x f ∈--=1ln ,讨论函数()f x 的单调性。

高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析

高二数学利用导数研究函数的单调性试题答案及解析1.已知函数f(x)=ax2+bln x在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.【答案】(1);(2)减区间(0,1),增区间(1,+∞)【解析】(1)由函数f(x)=ax2+bln x在x=1处有极值可知,解得;(2)由(1)可知,其定义域是(0,+∞),由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).试题解析:(1)又函数f(x)=ax2+bln x在x=1处有极值,所以解得.(2)由(1)可知,其定义域是(0,+∞)由,得由,得所以函数的单调减区间(0,1),增区间(1,+∞).【考点】1.导数与极值;2.导数与单调性2.已知函数f(x)= -ax(a∈R,e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若a=1,函数g(x)=(x-m)f(x)-+x2+x在区间(0,+)上为增函数,求整数m 的最大值.【答案】(1)所以在为减函数,在为增函数;(2)最大值为1【解析】(1)利用函数的单调性与导数的关系;(2)解决类似的问题时,注意区分函数的最值和极值.求函数的最值时,要先求函数在区间内使的点,再计算函数在区间内所有使的点和区间端点处的函数值,最后比较即得.(3)第二问关键是分离参数,把所求问题转化为求函数的最小值问题.(4)若可导函数在指定的区间上单调递增(减),求参数问题,可转化为恒成立,从而构建不等式,要注意“=”是否可以取到.试题解析:解:(Ⅰ)定义域为,,当时,,所以在上为增函数; 2分当时,由得,且当时,,当时,所以在为减函数,在为增函数. 6分(Ⅱ)当时,,若在区间上为增函数,则在恒成立,即在恒成立 8分令,;,;令,可知,,又当时,所以函数在只有一个零点,设为,即,且; 9分由上可知当时,即;当时,即,所以,,有最小值, 10分把代入上式可得,又因为,所以,又恒成立,所以,又因为为整数,所以,所以整数的最大值为1. 12分【考点】(1)利用导数求函数的单调性;(2)利用导数求函数的最值问题.3.函数的单调递减区间是 .【答案】【解析】,;令,得;所以函数的单调递减区间为.【考点】利用导数研究函数的单调性.4.已知函数f(x)=ln(x+1)+ax2-x,a∈R.(1)当时,求函数y=f(x)的极值;(2)是否存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b)?若存在,求实数a的取值范围,若不存在,请说明理由.【答案】(1)在x=1处取到极小值为,在x=0处取到极大值为0;(2).【解析】(1)将代入函数f(x)解析式,求出函数f(x)的导函数,令导函数等于零,求出其根;然后列出x的取值范围与的符号及f(x)的单调性情况表,从表就可得到函数f(x)的极值;(2)由题意首先求得:,故应按分类讨论:当a≤0时,易知函数f(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,从而当b∈(0,1)时f(b)<f(0),所以不存在实数b∈(0,1),符合题意;当a>0时,令有x=0或,又要按根大于零,小于零和等于零分类讨论;对各种情况求函数f(x)x∈(-1,b]的最大值,使其最大值恰为f(b),分别求得a的取值范围,然而将所得范围求并即得所求的范围;若求得的a的取值范围为空则不存在,否则存在.试题解析:(1)当时,,则,化简得(x>-1) 2分列表如下:(1,+)+∴函数f(x)在(-1,0),(1,+∞)上单调递增,在(0,1)上单调递减,且f(0)=0,, 4分∴函数y=f(x)在x=1处取到极小值为,在x=0处取到极大值为0; 5分(2)由题意(1)当a≤0时,函数f(x)在(-1,0)上单调递增,在(0,+∞)上单调递减,此时,不存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b); 7分(2)当a>0时,令有x=0或,(ⅰ)当即时,函数f(x)在和(0,+∞)上单调递增,在上单调递减,要存在实数b∈(0,1),使得当x∈(-1,b]时,函数f(x)的最大值为f(b),则,代入化简得(1)令,因恒成立,故恒有,∴时,(1)式恒成立; 10分(ⅱ)当即时,函数f(x)在和上单调递增,在上单调递减,此时由题,只需,解得,又,∴此时实数a的取值范围是; 12分(ⅲ)当时,函数f(x)在上单调递增,显然符合题意; 13分综上,实数a的取值范围是. 14分【考点】1.函数的极值;2.函数的最值;3.分类讨论.5.若关于的不等式的解集中的正整数解有且只有3个,则实数的取值范围是.【答案】.【解析】原不等式可化为(其中,否则原不等式无解),令,则,令,得且令有,且当,所以的简图如图所示,当时,,当时,,当时,,又且,要使不等式的解集中正整数有且只有3个,由图可知即包含,,,所以只需,故.【考点】导数的应用,数形结合思想.6.已知,,(1)当时,求的单调区间(2)若在上是递减的,求实数的取值范围;(3)是否存在实数,使的极大值为3?若存在,求的值;若不存在,请说明理由.【答案】(1)单调递增区间为,单调递减区间为,;(2);(3)不存在实数,使的极大值为3.【解析】(1)先由得到h(x)的具体解析表达式,求出其导函数,通过解不等式得到其增区间,解不等式得到其减区间;(2)在上是递减的等价于在上恒成立,从而通过分离参数转化为恒成立,从而获得实数的取值范围;(3)先利用导数方法将的极大值用a的代数式表达出来,得到的极大值在处取到,即,令其等于3显然不好判断是否有解,我们可以再利用导数的方法判断出在上单调递增,从而可知所求实数a不存在.试题解析:(1) 当时,,则令,解得;令,解得或所以的单调递增区间为,单调递减区间为,(2)由在上是递减的,得在上恒成立,即在上恒成立,解得,又因为,所以实数的取值范围为(3),令,解得或由表可知,的极大值在处取到,即,设,则,所以在上单调递增,所以不存在实数,使的极大值为3【考点】1.利用导数求函数的单调区间;2.已知函数的单调性求参数的取值范围;3.函数的极值.7.设函数.(1)若在时有极值,求实数的值和的极大值;(2)若在定义域上是增函数,求实数的取值范围.【答案】(1);的极大值为;(2).【解析】(1)在时有极值,意味着,可求解的值,再利用大于零或小于零求出函数的单调区间,进而确定函数的极大值;(2)转化成在定义域内恒成立问题,进而采用分离参数法,再利用基本不等式法即可求出参数的取值范围.试题解析:(1)∵在时有极值,∴有又∴,∴∴有由得,又∴由得或由得∴在区间和上递增,在区间上递减∴的极大值为(2)若在定义域上是增函数,则在时恒成立,需时恒成立,化为恒成立,,为所求.【考点】1.函数的极值与导数;2.函数的单调性与导数;3.分离参数法;4.基本不等式.8.已知定义域为R的函数,且对任意实数x,总有/(x)<3则不等式<3x-15的解集为()A.(﹣∞,4)B.(﹣∞,﹣4)C.(﹣∞,﹣4)∪(4,﹢∞)D.(4,﹢∞)【答案】【解析】设,则所求的不等式解集可理解为使的解集.的导函数为,根据题意可知对任意实数恒成立,所以在上单调递减.则,令,则根据单调递减可知:.【考点】导数法判断单调性;根据单调性解不等式.9.已知函数若对任意x1∈[0,1],存在x2∈[1,2],使,求实数a的取值范围?【答案】【解析】根据题意可知,函数在上的最小值得大于等于在上的值,所以得求得函数在上的最小值,通过导数法,判断单调性得最小值;然后令,建立关于的不等式,设出新的函数,探讨与的关系,从而得出满足条件的实数.试题解析:根据 ,求导可得,显然,所以函数在上单调递增.所以根据题意可知存在,使得,即即能成立,令,则要使,在能成立,只需使,又函数中,,求导可得.当时,显然,所以函数在上单调递减.所以,故只需.【考点】导数法求最值,单调性.10.已知定义在R上的函数f(x)=-2x3+bx2+cx(b,c∈R),函数F(x)=f(x)-3x2是奇函数,函数f(x)满足.(1)求f(x)的解析式;(2)讨论f(x)在区间(-3,3)上的单调性.【答案】(1);(2)单调递增区间为,单调递减区间为,.【解析】(1)先对求导可得,由得,又F(x)=f(x)-3x2是奇函数,得的值,代加上式可得,可得函数解析式;(2)由(1)知函数的导函数,令得增区间,令得减区间.试题解析:解:(1) 1分F(x)=f(x)-3x2是奇函数,得 3分,得 5分6分(2)令得 10分-0 +0-所以单调递增区间为单调递减区间为, 12分【考点】求导,函数的单调性与导数的关系.11.在区间内不是增函数的是()A.B.C.D.【答案】D【解析】选项中,时都有,所以在上为单调递增函数,所以在是增函数;选项在,而在上为增函数,所以在是增函数;选项,令得或,所以在为增函数,而,所以在上增函数;选项,令,得。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用导数求函数单调性题型全归纳一.求单调区间二.函数单调性的判定与逆用 三.利用单调性求字母取值范围 四.比较大小 五.证明不等式 六.求极值 七.求最值 八.解不等式九.函数零点个数(方程根的个数) 十.探究函数图像一.求单调区间 例1. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间解:()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.则令()()g x f x '=,因为当0,1a a >≠,所以2()2ln 0xg x a a '=+>所以()f x '在R 上是增函数,又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+, 故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞, 变式:已知()xf x e ax =-,求()f x 的单调区间解:'()xf x e a =-,当0a ≤时,'()0f x >,()f x 单调递增当0a >时,由'()0xf x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增 由'()0xf x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间 当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞,二.函数单调性的判定与逆用例2.已知函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数,求正整数a 的取值集合 解:2()322f x x ax '=+-因为函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数 所以2()322=0f x x ax '=+-在1132(,)上有解 所以''11()()032f f <,又*a N ∈,解得:5542a <<,所以正整数a 的取值集合{2} 三.利用单调性求字母取值范围 例3. 已知函数()ln xf x ax x,若函数()y f x 在1(,)上是减函数,求实数a 的最小值. 解:因为()ln xf x ax x在1(,)上是减函数所以'2ln 1()0(ln )x f x ax 在1(,)上恒成立,即2ln 1(ln )x ax 在1(,)上恒成立令ln ,(1)t x x ,则0t,21()(0)t h t t t ,则max ()ah t因为222111111()=()()24t h t t t tt,所以max 1()=(2)4h t h ,所以14a 变式:若函数3211()(1)132f x x ax a x 在区间1,4()上为减函数,在区间(6,)上为增函数,试求实数a 的取值范围.解:2'()=1f x x ax a因为函数()yf x 在区间1,4()上为减函数,在区间(6,)上为增函数所以''()0(1,4)()0,(6,)f x x f x x,恒成立,即2210(1,4)10,(6,)x ax a x xaxa x,所以2211,(1,4)111,(6,)1x ax x x x ax xx ,所以4161a a,所以57a四.比较大小例4. 设a 为实数,当ln 210a x且时,比较x e 与221x ax 的大小关系.解:令2()21(0)x f x e x axx,则'()=22xf x e x a令'()()g x f x则'()e 2xg x ,令'()0g x 得:ln 2x当ln 2x 时,'()0g x ;当ln 2x时,'()0g x所以ln2min ()()=(ln 2)2ln 2222ln 22g x g x g e aa极小值,因为ln 21a,所以'()()0g x f x ,所以()f x 在0(,)上单调递增 所以()(0)0f x f ,即2210xe x ax ,所以221xe x ax变式:对于R 上的可导函数()y f x ,若满足'(3)()0xf x ,比较(1)(11)f f 与2(3)f 的大小关系.解:因为'(3)()0xf x所以当3x >时,'()0f x >,()f x 单调递增,故(11)(3)f f > 当3x <时,'()0f x <,()f x 单调递减,故(1)(3)f f > 所以(1)(11)2(3)f f f五.证明不等式例5.已知函数|ln |)(x x f =,()(1)g x k x =- (R)k ∈.证明:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 证明:令()|ln |(1)=ln (1),(1,)G x x k x x k x x =----∈+∞ 则有'11(),(1,)kxG x k x x x-=-=∈+∞ 当01k k ≤≥或时,'()0G x >,故 ()G x 在1+∞(,)上单调递增,()G(1)0G x >=.故任意实数 (1,)x ∈+∞ 均满足题意.当 01k << 时,令'()=0G x ,得11x k=>. 当1(1,)x k ∈时,'()0G x >,故 ()G x 在1(1,)k 上单调递增当1()x k ∈+∞,时,'()0G x <,故 ()G x 在1()k +∞,上单调递减 取01x k=,对任意0(1,)x x ∈,有'()0G x >,故()G x 在0(1,)x 上单调递增所以()G(1)0G x >=即()()f x g x >,综上所述:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 变式:已知关于x 的方程2(1)xx e ax a --=有两个不同的实数根12x x 、.求证:120x x <+证明:因为2(1)xx e ax a --=,所以2(1)1x x e a x -=+,令2(1)()1x x e f x x -=+则222222(23)[(1)2]()11x xx x x e x x e f x x x --+--+'==++()()当0x >时()0f x '<,()f x 单调递减,当0x <时()0f x '>,()f x 单调递增 因为关于x 的方程2(1)xx e ax a --=有两个不同的实数根12x x 、 所以不妨设12(,0),(0,)x x ∈-∞∈+∞,要证:120x x <+,只需证:21x x <-因为210x x -∈+∞(,),且函数()f x 在0+∞(,)上单调递减 所以只需证:21()()f x f x >-,又因为21()=()f x f x ,所以只需证:11()()f x f x >-即证:11112211(1)(1)11x x x e x e x x --+>++ 即证:(1)(1)0xxx e x e---+>对0x ∈-∞(,)恒成立 令g()(1)(1)x xx x e x e -=--+,0x ∈-∞(,),则g ()()xx x x e e -'=-因为0x ∈-∞(,),所以0xx e e -->所以g ()()0xx x x ee -'=-<恒成立所以g()(1)(1)xxx x e x e -=--+在0-∞(,)上单调递减,所以g()(0)0x g >= 综上所述:120x x <+ 六.求极值例6.已知函数2()()xf x x ax a e =++,是否存在实数a ,使得函数()f x 的极大值为3?若存在,求出a 的值,若不存在,请说明理由.解:'22()(2)()[(2)2]=()(2)xxxxf x x a e x ax a e x a x a e x a x e =++++=+++++ 令'()=0f x 得:2x a x =-=-或当2a =时,'()0f x ≥恒成立,无极值,舍去由表可知:2()=(2)(42)3f x f a a e --=-+=极大值解得:2432a e =-< 当2a >时,2a -<-由表可知:22()=()()3a f x f a a a a e --=-+=极大值,即3a ae -=,所以:=3a a e令()3(2)ag a e a a =->,则'2()31310ag a e e =->-> 所以()y g a =在2+∞(,)上单调递增,又2(2)320g e =-> 所以函数()y g a =在2+∞(,)上无零点,即方程=3aa e 无解 综上所述:存在实数a ,使得函数()f x 的极大值为3,此时243a e =- 七.求最值例7. 已知函数2()ln (0,1)xf x a x x a a a =+->≠,若存在]1,1[,21-∈x x ,使得12()()e 1f x f x -≥-(其中e 是自然对数的底数),求实数a 的取值范围.解:因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可 又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()min 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++, 令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a +-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ 变式:已知函数()ln()(0)x af x e x a a -=-+>在区间0+∞(,)上的最小值为1,求实数a 的值. 解:1()=x af x ex a -'-+,令()()g x f x '=,则21()=0(x ag x e x a -'+>+) 所以()y g x =在区间0+∞(,)单调递增,所以存在唯一的00x ∈+∞(,),使得0001()0x a g x e x a -=-=+,即001=x a e x a -+ 所以当0(0,)x x ∈时,()()0g x f x '=<,()y f x =单调递减当0()x x ∈+∞,时,()()0g x f x '=>,()y f x =单调递增 所以0min 00()()ln()x af x f x ex a -==-+,由001=x aex a-+得:00=ln()x a x a --+所以0min 00001()()ln()=x af x f x ex a x a x a-==-++-+001=()2222x a a x aa a++-+≥=- 当且仅当001=x a x a++即0=1x a +,min 0()()22f x f x a ==- 由22=1a -得12a =,此时01=2x ,满足条件,所以12a = 八.解不等式例8. 函数2)0())((=∈f R x x f ,,对任意1)()('>+∈x f x f R x ,,解不等式:1)(+>x x e x f e解:令()()xxg x e f x e =-,则()()()(()()1)xxxxg x e f x e f x e e f x f x '''=+-=+- 因为对任意1)()('>+∈x f x f R x ,,所以()0g x '>, 所以()y g x =为R 上的单调递增函数,又(0)(0)11g f =-=所以当1)(+>xxe xf e 即()1xxe f x e ->,所以()(0)g x g >,所以0x > 即不等式:1)(+>xxe xf e 的解集为0+∞(,) 变式:已知定义在R 上的可导函数()yf x 满足'()1f x ,若(12)()13f m f m m ,求m 的取值范围.解:令()()g x f x x =-,则()()1g x f x ''=-,因为'()1f x所以()()10g x f x ''=-<,所以()()g x f x x =-为R 上递减函数 由(12)()13f m f m m ,得:(12)()f m m f m m (1-2)>即(12)()g m g m ->,所以12m m ->,即13m < 九.函数零点个数(方程根的个数)例9. 已知2()2ln()f x x a x x =+--在0x =处取得极值.若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围. 解: '2()21f x x x a =--+,因为2()2ln()f x x a x x =+--在0x =处取得极值 所以'2(0)1=0f a=-,即2a =,检验知2a =符合题意. 令2()()2ln(2)[1,1]g x f x b x x x b x =+=+--+∈-,'52()22()21(11)x x g x x x +=--=--≤≤ 所以()=(0)2ln 2g x g b =+极大值因为方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根所以(1)0(0)0(1)0g g g -≤⎧⎪>⎨⎪≤⎩,即02ln 202ln 320b b b ≤⎧⎪+>⎨⎪-+≤⎩解得:2ln 222ln3b -<≤-所以实数b 的取值范围是:2ln 222ln 3]--(, 变式:已知函数()y f x 是R 上的可导函数,当0x时,有'()()0f x f x x,判断函数13()()F x xf x x的零点个数 解:当0x时,有'()()f x f x x,即'()()xf x f x x令()()g x xf x =,则'()()()g x xf x f x所以当0x >时,'()()()0g x xf x f x ,函数()y g x =在0+∞(,)单调递增 且()g(0)=0g x >, 所以当0x >时,13()()0F x xf x x恒成立,函数()y F x 无零点当0x <时,'()()()0g x xf x f x ,函数()y g x =在0∞(-,)单调递减 且()g(0)=0g x >恒成立所以13()()F x xf x x在0∞(-,)上为单调递减函数 且当0x →时,()0xf x ,所以13()0F x x当x →-∞时,10x,所以()()0F x xf x所以13()()F x xf x x 在0∞(-,)上有唯一零点 综上所述:13()()F x xf x x在0∞∞(-,)(0,+)上有唯一零点 十.探究函数图像例10.设函数在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图像可能为下列图像的 .解:由()y f x =的图像可判断出:()f x 在(,0)-∞递减,在(0)+∞,上先增后减再增所以在(,0)-∞上()0f x '<,在(0)+∞,上先有()0f x '>,后有()0f x '<,再有()0f x '>. 所以图(4)符合. 变式:已知函数ln(2)()x f x x=,若关于x 的不等式2()()0f x af x +>只有两个整数解,求实数a 的取值范围.解:21ln(2)()=x f x x -',令()=0f x '得2ex = 所以当02ex <<时,()0,()f x f x '>单调递增当2ex >时,()0,()f x f x '<单调递减由当12x <时,()0f x <,当12x >时,()0f x >作出()f x 的大致函数图像如图所示: 因为2()()0f x af x +>(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意;(2)若0a >,则()()0f x a f x <->或,由图像可知,()0f x >,有无穷多整数解(舍)(1) (2)(4)(3)若0a <则()0()f x f x a <>-或,由图像可知,()0f x <无整数解,所以()f x a >-有两个整数解,因为(1)(2)ln 2f f ==,且()f x 在(,)2e +∞上单调递减 所以()f x a >-的两个整数解为:1,2x x == 又ln 6(3)3f =,所以ln 6ln 23a ≤-<,所以ln 6ln 23a -<≤-。

相关文档
最新文档