电工材料及应用J
合集下载
电器常用材料

10
用于制造强度不高的焊接件、冷冲压件、锻件和渗碳零件如螺栓、垫圈、隔板、外壳
等
塑性、韧性、焊接性能和冷冲压性能良好,但强度较低,用于制造受力不大、韧性要
15
求高的零件和渗碳件,紧固件和冲模锻件以及不经热处理的低负荷零件
20
45 Mn
60 Mn 弹簧钢65
Mn
冷变形塑性高,一般供弯、压延、弯边和锤拱等加工,电弧焊和接触焊的焊接性能好, 气焊时有厚度小、外形要求严格或形状复杂的制件上易发生裂纹。切削加工性冷拔或 正火状态较退火状态好。一般用于制造受力不大而韧性要求的零件 强度和耐磨性较高,用于制造抗拉强度要求较高的机件如万向圈轴、曲轴、连杆、制 动杠杆
备注
如DR510 如DW470、DW360、DW270
(不含碳,导磁性好)如仪表的电流补偿片是用 DT4E,部分小型断路器铁芯,塑壳产品灭弧罩
6.变形钢及某些特殊性能的合金牌号表示法
产品类别
普通碳素 钢
优质碳素 钢
碳素工具 钢
电工用硅 钢
电工用纯 铁
合金钢
特殊性能 合金
牌号表示方法
一般用途普通碳素钢分甲类、乙类、特类钢,分别用“A”、“B”、“C”表示。沸 腾钢、半镇静钢应在牌号尾部加符号“F”、“b”(镇静钢不标符号)。例如:A3、 A3F、B2、B2F、C3、C3F等 采用阿拉伯数字表示平均含碳量,沸腾钢等表示如上,较高含锰量钢在阿拉伯 数字后标出锰元素符号“Mn”;高级优质碳素钢在牌号尾部加符号“A”;专门 用途的钢采用阿拉伯数字等表示。例如:08F、45、20A、70 Mn
电压线圈骨架、 电表表盖及交流 继电器塑料件
(S)共聚物
聚氯乙烯
价廉;硬质、软质可通过配方调节;耐腐蚀性较好;有较高的强度; JKL、CDJD标牌
2-1电工材料

1.3.2
熔体材料
熔体材料(保险丝)装在熔断器内,
当设备短路、过载,电流超过熔断 值时,经过一定时间自动熔断,保护设备。短路电流越大、熔断时间 越短。 1、常用熔体材料及参数: 常用低熔点材料:银Ag、铅Pb、锡Sn、铋Bi、镉Cd,或其合金。 额定电流:溶体能够长期正常工作不熔断的电流。 熔断电流:电流超过熔断电流时,经过一定时间自动熔断。通用铅锡 合金熔断丝的熔断电流是额定电流的1.3~2倍。 2、熔断材料的选用: (1)阻性负载(电热器):熔丝额定电流为负荷额定电流的1.3~2倍。 (2)感性负载(电动机):熔丝额定电流为负荷额定电流的3倍。 (3)电焊机负载:熔丝额定电流为焊机功率(kW)数的4~6倍。
同轴电缆 扁平电缆 光缆
市话电缆
网线电缆(超五类电缆)
1.3
1.3.1
特殊导电材料
电热材料 用于制造加热设备中的发热元件, 可作为电阻接到电路中, 把电能转变 为热能, 使加热设备的温度升高。 1.对电热材料的基本要求: (1) 电阻率高,功率大。 (2) 在高温时具有足够的机械强度和良好的抗氧化性能。 (3) 具有足够的耐热性,以保证在高温下不变形; (4) 高温下的化学稳定性, 不与炉内气氛发生化学反应等。 (5) 热膨胀系数小,热胀冷缩小。 2.电热材料分类:
第一部分: 导电材料
1.1
导体材料概述
1.导电材料:一般是指专门用于传导电流的材料。 导电材料主要用于构建电网和各类电工产品中电能传输。 2.导电材料材质:主要有金属、合金和某些非金属。 3. 导电材料分类:电线电缆、电阻电热材料、触点材料、电刷制品和其
他导电材料等。
4.导电材料的主要技术要求:
1.型号与命名 电线电缆产品的命名有以下原则:
电气工程常用材料及其应用

2、橡皮绝缘导线
3、塑料绝缘导线
二、电缆
电缆是一种多芯导线,电缆的基本结构是 由缆芯、绝缘层、保护层三部分组成。
根据材质有:铜芯、铝芯
根据用途有:电力电缆、控制电缆、通信 电缆等。
根据绝缘分:油浸纸绝缘、塑料绝缘 根据线芯分:单芯、双芯、多芯
1、电力电缆
预制分支电缆
日复一日的努力只为成就美好的明天 。07:49:4907:49:4907:49Sunday, December 27, 2020
安全放在第一位,防微杜渐。20.12.2720.12.2707:49:4907:49:49December 27, 2020
加强自身建设,增强个人的休养。2020年12月27日 上午7时 49分20.12.2720.12.27
同轴电缆SYV-75-5
SYV代表视频线,75代表阻抗为75欧姆,-5代表 线材的粗细
SYV 75-5-1(A、B、C) S: 射频 Y:聚乙烯绝 缘 V:聚氯乙烯护套 A:64编 B:96编 C:128 编 75:75欧姆 5:线径为5MM 1:代表单芯
三、硬母线 由金属管或金属型材组成并用支柱绝缘子支撑的母
2.橡皮:由橡胶硫化处理而制成的,分硬质 橡皮和软质橡皮。
二、电瓷
电瓷是应用于电力系统中主要起支持和绝缘作用 的部件,有时兼做其它电气部件的容器。因此, 对其机械性能、电气性能、耐环境性能(冷热、 抗污秽、老化等)有较高的要求。
广义而言,电瓷涵盖了各种电工用陶瓷制品,包 括绝缘用陶瓷、半导体陶瓷等等。本规划所述电 瓷仅指以铝矾土、高岭土、长石等天然矿物为主 要原料经高温烧制而 成的一类应用于电力工业系 统的瓷绝缘子,包括各种线路绝缘子和电站电器 用绝缘子,以及其它带电体隔离或支持用的绝缘 部件。
电工材料PPT课件

讯电缆五大类。 电线与电缆:一般将芯数少、直径小、结构简单的电传输线称为电线。
其他的称为电缆。 分为通用电线电缆和专用电线电缆两大类。
1.2.2 电缆的结构、材料
电缆:一般为多芯、有护套的绝缘导线束。 多芯电缆结构:从内到外:导体-绝缘层-内护层-衬层-铠装层-外护层。
9
油田子女工《电工电》培缆训结—构电工工具及材料
1.1 导体材料概述
1.导电材料:一般是指专门用于传导电流的材料。 导电材料主要用于构建电网和各类电工产品中电能传输。 2.导电材料材质:主要有金属、合金和某些非金属。 3.导电材料分类:电线电缆、电阻电热材料、触点材料、电刷制品和其 他导电材料等。
5
油田子女工《电工》培训—电工工具及材料
4.导电材料的主要技术要求: 电阻率小(降低输电损耗); 机械强度高(牢固可靠); 导热性能好(利于散热); 密度较小(材料重量低); 热膨胀系数小(适应不同温度环境); 易加工、易焊接(便于施工); 耐腐蚀、不氧化(使用寿命长)等。
2)型号编制方法: 材质+外形(圆形省略)+硬度+镀层 材质:G-钢;L-铝;T-铜;H-合金;X-锡。 外形:B-扁形;D-带型; 硬度:Y-硬;R-软 例:TR-软圆铜线;TBY-硬铜扁线;TRX-镀锡软圆铜线等。 规格表示:圆线用截面直径(或截面积)表示;扁形以厚b*a宽表示。 例:TR型线,标称直径1.03mm;标称面积3.5mm2;TBY型线,2*4mm
1.2.4 电磁线 电磁线是专用于电-磁能互换场合的有绝缘层的导线。一般用于电机、 变压器及电工仪表中的线圈绕组。 常用电磁线的导电线芯有圆线和扁线两种, 一般采用铜线。 常用电磁线有漆包线和绕包线两类。 1. 漆包线 漆包线的绝缘层是漆膜(Q-绝缘漆;QQ-缩醛、QZ-聚酯、QA-聚氨酯、 QH-环氧)。广泛应用于中小型电机及微电机、 干式变压器和其他电 工产品中。
其他的称为电缆。 分为通用电线电缆和专用电线电缆两大类。
1.2.2 电缆的结构、材料
电缆:一般为多芯、有护套的绝缘导线束。 多芯电缆结构:从内到外:导体-绝缘层-内护层-衬层-铠装层-外护层。
9
油田子女工《电工电》培缆训结—构电工工具及材料
1.1 导体材料概述
1.导电材料:一般是指专门用于传导电流的材料。 导电材料主要用于构建电网和各类电工产品中电能传输。 2.导电材料材质:主要有金属、合金和某些非金属。 3.导电材料分类:电线电缆、电阻电热材料、触点材料、电刷制品和其 他导电材料等。
5
油田子女工《电工》培训—电工工具及材料
4.导电材料的主要技术要求: 电阻率小(降低输电损耗); 机械强度高(牢固可靠); 导热性能好(利于散热); 密度较小(材料重量低); 热膨胀系数小(适应不同温度环境); 易加工、易焊接(便于施工); 耐腐蚀、不氧化(使用寿命长)等。
2)型号编制方法: 材质+外形(圆形省略)+硬度+镀层 材质:G-钢;L-铝;T-铜;H-合金;X-锡。 外形:B-扁形;D-带型; 硬度:Y-硬;R-软 例:TR-软圆铜线;TBY-硬铜扁线;TRX-镀锡软圆铜线等。 规格表示:圆线用截面直径(或截面积)表示;扁形以厚b*a宽表示。 例:TR型线,标称直径1.03mm;标称面积3.5mm2;TBY型线,2*4mm
1.2.4 电磁线 电磁线是专用于电-磁能互换场合的有绝缘层的导线。一般用于电机、 变压器及电工仪表中的线圈绕组。 常用电磁线的导电线芯有圆线和扁线两种, 一般采用铜线。 常用电磁线有漆包线和绕包线两类。 1. 漆包线 漆包线的绝缘层是漆膜(Q-绝缘漆;QQ-缩醛、QZ-聚酯、QA-聚氨酯、 QH-环氧)。广泛应用于中小型电机及微电机、 干式变压器和其他电 工产品中。
第八章 电气工程常用材料

(二)绝缘导线 具有绝缘包层(单层或数层)的电线称为 绝缘导线。绝缘导线按线芯材料分为铜芯 雨 铝j害;按线芯股数分为单股和多股;按 结构分为单芯、双芯、多芯等;按绝缘材 料分为梗 皮绝缘导线和塑料绝缘导线等。绝缘导 线文字符号含义见表8—3。
绝缘导线的规格 绝缘导线的规格为(mm。):O.012、O.03、 O.06、O.】2、O.20、O.30、O.40、 O.50 、 1.0、1.5、2.5、4、6、10、16、 25、35、50、70、95、120、】50、】85、240、 300、400 、500、600、700等。 2橡皮绝缘导线 橡皮绝缘导线主要用于室内外敷设。长期工 作温度不得超过+60℃,额定电压≤ , 250V的橡皮绝缘导线用于照明线路。常用 橡皮绝缘导线的型号及主要用途见表8—4。 照明线路,可见表8 -5。 常用塑料绝缘导线的型号和主要用途
三)拉紧绝缘子和瓷管 1.拉紧绝缘子 扭紧绝缘子主要用于电杆拉线的对地绝缘 2.瓷管 瓷管在导线穿过墙壁、楼板以及导线交叉 敷设叫起保护管作用。瓷管分为直瓷管、弯 头 瓷管和包头瓷管三种,长度有152mm和 305mm两种,内径有9、15、19、2j、38mm 五种。
三、其他绝缘材料 (一)电工漆和电工胶 1.电工漆 电工漆主要分为浸渍漆和覆盖漆。浸渍漆 主要用束浸渍电气设备的线圈和绝缘零部件, 图8 9高压悬式绝缘子 其外形如图8—10所示 l刳810拧紧绝缘于 填充间隙和气孔,以提高绝缘性能和机械强 度。覆盖漆主要用来涂{l;ll经浸渍处理过的 线圈 和绝缘零部件,形成绝缘保护层,肚防机械 损伤和气体、油类、化学药品等的侵蚀
二、电瓷 电瓷足用各种硅酸盐或氧化物的混合 物制成的,其性质稳定、机械强度高、绝 缘性能好、耐热性能好。主要用于制作各 种绝缘子、绝缘奁管,灯座,开关、插座、 熔断器底座等的零部件。 (一)低压绝缘子 1低压针式绝缘子 低压绝缘子用于绝缘和固定1 kV及以 下的电气线路。低压针式绝缘子的钢脚形 静料 烈8 -3低压针式绝缘于
《电工材料》基本知识课件

(2)电磁线 电磁线是用于电能与磁能相互转换的有绝缘层的导线。
种 类 型 号 实物材料示例 用 途 Q、QQ、QA、QH、 QZ 、 QXY 、 QY 、 QAN 主要用于制造中小型电 动机变压器的线圈
漆包线
绕包线
Z、ZL、ZB、ZLB、 SBEC、 SBECB、 SE、 SQ、SQZ
用于制造油浸式变压器 的线圈、大中型电动机绕 组及发电机线圈;与漆包 线相比,其绝缘层较厚, 电性能更优,故常用于大 中型耐高温的设备
二、绝缘材料(电介质)
绝缘材料的主要作用是隔离带电的导电 体或不同电位的导电体,使电流按设定 的方向流动。在有些场合绝缘材料还起 着机械支撑、导体防护、散热、灭弧等 作用。因此绝缘材料应具有较高的绝缘 电阻和耐压强度,较好的耐热性和导热 性,机械强度高而且耐潮,方便加工等 特点。
(一)常用绝缘材料的分类和耐热等级
五倍
四倍
三倍
二倍半
二倍
“10下五”是指截面在10以下,载流量都是截面数值的五倍。 “100上二”(读百上二)是指截面100以上的载流量是截面数 值的二倍。 截面为25与35是四倍和三倍的分界处。这就是口诀“25、35, 四三界”。 截面70、95则为二点五倍。 从上面的排列可以看出:除10以下及100以上之外,中间的导线 截面是每两种规格属同一种倍数。
F H
C
155 180
>180
用耐热性好的有机胶剂粘合或浸渍、涂覆过的云母、石棉、 玻璃纤维,如云母带、层压玻璃布板等 用有机硅树脂粘合或浸渍、涂覆过的云母、石棉、玻璃纤维 及其组合物,如硅有机漆、复合薄膜等
不采用任何有机粘合剂及浸渍剂的无机物,如云母、石棉、 石英、玻璃、陶瓷及聚四氟乙烯塑料等
《电工材料》课件

性。
半导体材料的应用
半导体材料广泛应用于集成电路 、晶体管、太阳能电池等电子器 件中,是实现电子信号传输和控
制的重要基础。
04
CHAPTER
电工材料的机械性能
硬度
硬度是电工材料抵抗被压入或 刻划的能力,是衡量材料软硬
程度的指标。
硬度的测量方法有多种,如洛 氏硬度、布氏硬度和维氏硬度
等。
硬度与电工材料的导电性能和 电气绝缘性能有一定的关系。 一般来说,硬度较高的电工材 料,其导电性能和电气绝缘性 能相对较差。
详细描述
磁导率是电工材料重要的物理性能之一,它 决定了材料对磁场的导磁能力。磁导率高的 材料能够更好地引导磁场,减少磁场泄漏和 能量损失。在电机和变压器等电气设备中, 磁导率高的材料可以提高设备的效率和工作 稳定性。
03
CHAPTER
电工材料的电气性能
绝缘材料
绝缘材料
绝缘材料是阻止电流通过的材料 ,主要用于隔离和保护电路。
磁性材料的特性
磁性材料应具有良好的磁导率、磁感 应强度和机械性能等特点,以确保电 磁器件的性能和稳定性。
半导体材料
半导体材料
半导体材料是导电性能介于导体 和绝缘体之间的材料,主要用于
制造电子器件。
半导体材料的特性
半导体材料应具有高电阻率、高 迁移率和特殊的能带结构等特点 ,以确保电子器件的性能和稳定
展。
THANKS
谢谢Biblioteka 02CHAPTER
电工材料的物理性能
电导率
总结词
电导率是衡量材料导电性能的重要参数,数值越高表示导电 性能越好。
详细描述
电导率是电工材料最重要的物理性能之一,它表示材料传导 电流的能力。电导率越大,材料的导电性能越好,能够更有 效地传输电能。在电力系统中,电导率高的材料可以减少能 量损失,提高电力传输效率。
半导体材料的应用
半导体材料广泛应用于集成电路 、晶体管、太阳能电池等电子器 件中,是实现电子信号传输和控
制的重要基础。
04
CHAPTER
电工材料的机械性能
硬度
硬度是电工材料抵抗被压入或 刻划的能力,是衡量材料软硬
程度的指标。
硬度的测量方法有多种,如洛 氏硬度、布氏硬度和维氏硬度
等。
硬度与电工材料的导电性能和 电气绝缘性能有一定的关系。 一般来说,硬度较高的电工材 料,其导电性能和电气绝缘性 能相对较差。
详细描述
磁导率是电工材料重要的物理性能之一,它 决定了材料对磁场的导磁能力。磁导率高的 材料能够更好地引导磁场,减少磁场泄漏和 能量损失。在电机和变压器等电气设备中, 磁导率高的材料可以提高设备的效率和工作 稳定性。
03
CHAPTER
电工材料的电气性能
绝缘材料
绝缘材料
绝缘材料是阻止电流通过的材料 ,主要用于隔离和保护电路。
磁性材料的特性
磁性材料应具有良好的磁导率、磁感 应强度和机械性能等特点,以确保电 磁器件的性能和稳定性。
半导体材料
半导体材料
半导体材料是导电性能介于导体 和绝缘体之间的材料,主要用于
制造电子器件。
半导体材料的特性
半导体材料应具有高电阻率、高 迁移率和特殊的能带结构等特点 ,以确保电子器件的性能和稳定
展。
THANKS
谢谢Biblioteka 02CHAPTER
电工材料的物理性能
电导率
总结词
电导率是衡量材料导电性能的重要参数,数值越高表示导电 性能越好。
详细描述
电导率是电工材料最重要的物理性能之一,它表示材料传导 电流的能力。电导率越大,材料的导电性能越好,能够更有 效地传输电能。在电力系统中,电导率高的材料可以减少能 量损失,提高电力传输效率。
常用电工材料及设备

第1章操作系统概述
1.1操作系统的概念 1.2操作系统的发展 1.3操作系统的功能 1.4操作系统的特征 1.5操作系统的逻辑结构 1.6常用操作系统介绍 1.7操作系统的几种观点
1.1操作系统的概念
1.1.1 计算机系统
计算机系统就是按照人的要求接收和存储 信息,自动进行数据处理和计算,并输出 结果信息的机器系统。它是一个相当复杂 的系统,即使是目前非常普及的个人计算 机也是如此。计算机系统拥有丰富的硬件、 软件资源,操作系统要对这些资源进行管 理。一个计算机系统由硬件(子)系统和 软件(子)系统组成。其中,硬件系统是 借助电、磁、光、机械等原理构成的各种 物理部件的有机结合,它构成了系下一统页本身返回
4)击穿强度。当施加于绝缘材料两端的交流电场强度高于 某一临界值后,其电流剧增,绝缘材料完全失去其绝缘性能, 这种现象称为击穿。其临界电场强度称为击穿强度 ,单位 为kV/cm 或kV/mm。
5)相对介电常数。绝缘材料两端面之间相当于一电容器, 其电容量为C,其值与假定其间为真空时电容量C 0之比,称 为相对介电系数 。
1.1操作系统的概念
现代计算机不再简单地被认为是一种普通 的电子设备,它是一种进行计算或者控制 那些可以表示为数字或者逻辑形式的操作 的设备。近年来,大型计算机系统的模型 呈现为层次式结构,即将一个操作系统分 为若干层次。图1-1所示是一般的计算机 系统的层次结构。从层次结构中可以看出, 最外层是各种用户,最底层是硬件系统。 人与硬件系统的接口是软件系统,软件系 统大致可以分为系统软件和应用软件。系 统软件如操作系统、编辑上软一件页、多下一种页语言返回
(4)输入设备:是向计算机输入数据和信 息的设备,是计算机与用上户一或页其他下一设页备通返回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以NaCl为例,在外电场E 作用下,正、负离子相对 自己原来位置发生△r大小 位移,在△r不大时,离子 达到平衡的条件是电场作 用力与离子的恢复力相等, 即
qE k r
(2)离子位移极化的特点:
a)形成极化所需时间很短,约为10-13s。在频率不太 高时,可以认为ε与频率无关; b) 属弹性极化,能量损耗很小。 c) 离子位移极化受两个相反因素的影响:温度升高时 离子间的结合力降低,使极化程度增加;但离子的密 度随温度升高而减小,使极化程度降低。通常,前一 种因素影响较大,故ε一般具有正的温度系数,即随 温度升高,出现极化程度增强趋势的特征。
Chap 5 电介质与绝缘材料
绝缘材料是指电导率较低(一般在10-9~10-10 s/m之
间),用来限制电流使其按一定途径流动的材料(如在电机, 变压器,电器,电缆中的绝缘);另外,还有利用其”介电”特 性建立电场以贮存电能的材料(如电容器).
电介质是指能在电场中极化的材料.而电介质多数是优
良的绝缘材料,故两者经常通用. 电介质一般是绝缘体。但广义的电介质还包括半绝缘 体和某些处于特殊状态下的半导体(如载流子耗尽状态下 的半导体)
3、偶极子转向极化:极性电介质中,存在具有固有 偶极矩μ0的偶极子。无外电场时,偶极子排列混乱, 使∑μi=0;加外电场时,偶极转向,成定向排列,从 而使电介质极化.
(1)偶极子极化率:具有固有电偶极矩μ0的偶极子的转向极 化率为 2
d 0 / 3kT
(2)偶极子极化的特点: a) 极化是非弹性的,消耗的电场能在复原时不可能收回。
5、松弛极化
当材料中存在着弱联系电子、离子和偶极子等松弛质点 时,热运动使这些松弛质点分布混乱,而电场力图使这些质 点按电场规律分布,最后在一定温度下,电场的作用占主导, 发生极化。这种极化具有统计性质,叫作热松驰极化。
q l
电偶极矩的单位为C.m(库仑.米).在分子物理中, 常用德拜(D)为单位,1D等于10-18cgs(静电单位),相 当于3.33×10-28C.cm。H2O的电偶极矩为1.85D,HCl 的电偶极矩为1.08D.
2、极化强度:单位体积内的电偶极矩总和称为极化 强度,用P表示
P
V
(库/米2)
3、电介质的极化率χ和相对介电常数ε
在电介质中,由电磁学理论有 D 0 E P 0 E 0 E
(1 ) 0 E 0 E
其中
1
因此,在描述物质的介电性质时,使用相对介电常 数ε和宏观极化率χ在物理上等价的。
二、电极化的微观机构
由物质的组成可以知道,物质的宏观电极化是组 成物质的微观粒子在外电场作用下发生微观电极化 的结果,通常,微观粒子在外电场作用下而产生的 电矩与场强存在如下关系:
E
式中α称为微观极化率。粒子的微观极化率可能来自 多种原因,一般情况包括电子云位移极化(其极化 率用αe表示)、离子位移极化(其极化率用αi表示)、 偶极子转向极化(其极化率用αd表示)等
(2)电子云位移极化的特点:
a)形成极化所需时间极短(因电子质量极小),约为10-15s,
在一般频率范围内,可ቤተ መጻሕፍቲ ባይዱ认为ε与频率无关;
b) 具有弹性,当外电场去掉时,作用中心又马上会重合 而整个呈现非极性,故电子式极化没有能量损耗。 c)温度对电子式极化影响不大。
2、离子位移极化:离子晶体中,无电场作用时,离 子处在正常格点位置并对外保持电中性,但在电场作 用下,正、负离子产生相对位移,破坏了原先呈电中 性分布的状态,电荷重新分布,相当于从中性分子转 变为偶极子产生离子位移极化. 离子位移极化主要存 在于离子化合物材料中,如云母、陶瓷材料等。 (1)离子位移极化率:
(1)电子云位移极化率:理论计算值取决于所采用 的粒子模型,由点状核球状负电壳体模型或圆周轨 道模型(玻尔模型)计算出的电子极化率为:
e 4 0r 3
由量子力学计算给出的电子极化率为 e (9/ 2) 4 0r 3
在数量级上上述各种情况均相同,其值都在10-40F· m2, 与实验结果相吻合。
1、电子云位移极化:没有受电场作用时,组成电介质 的分子或原子所带正负电荷中心重合,对外呈中性。 受电场作用时,正、负电荷中心产生相对位移(电子云 发生了变化而使正、负电荷中心分离的物理过程),中 性分子则转化为偶极子,这种过程就是电子云位移极 化。电子云位移极化存在于一切气体、液体及固体介 质中。
材料的介电性能是电介质的主要特征,它以正、 负电荷重心不重合的电极化方式传递、存储或记录 电的作用和效应。电极化中的电荷主要指那些束缚 在原子、分子、晶格、缺陷位置或局部区域内的束 缚电荷。
各种束缚电荷在不同频率的交变电场作用下表 现出不同的电极化行为,并进行决定着电介质材料 的各种性能。
本章介绍电介质与绝缘材料的基本概念和性能, 并揭示电介质材料宏观介电性能的一些微观机制。
b) 形成极化所需时间较长,约为10-10~10-2s,故其ε与电源 频率有较大的关系,频率很高时,偶极子来不及转动,因而 其ε减小。 c) 温度对极性介质的ε有很大的影响。
4、空间电荷极化:空间电荷极化常常发生在不均匀介质
中。在电场作用下,不均匀介质内部的正负间隙离子分别向 负、正极移动,引起电介质内各点离子密度的变化,出现了 电偶极距。这种极化叫作空间电荷极化。在电极附近积聚的 离子电荷就是空间电荷。 实际上晶界,相界,晶格畸变,杂质等缺陷区都可成为自由 电荷运动的障碍,在这些障碍处,自由电荷积聚,也形成空 间电荷极化 空间电荷极化的特点: 空间电荷极化随温度升高而下降。因为温度升高,离子运 动加剧,离子扩散容易,因而空间电荷减少。 空间电荷的建立需要较长的时间,大约几秒到数十分钟, 甚至数十小时,因此空间电荷极化只对直流和低频下的介 电性质有影响。
§0 电介质分类
电介质按其分子中正负电荷的分布状况不同可分为:
中性电介质 ☺ 偶极电介质 ☺ 离子型电介质
☺
§1 介质极化的基本概念
一、定义及有关物理量
1、电偶极矩:由大小相等、符号相反、彼此相距为l 的两点电荷(+q、-q)所组成的束缚系统,称为偶极子, 偶极子的大小和方向常用电偶极矩μ来表示(方向由负 电荷指向正电荷)
qE k r
(2)离子位移极化的特点:
a)形成极化所需时间很短,约为10-13s。在频率不太 高时,可以认为ε与频率无关; b) 属弹性极化,能量损耗很小。 c) 离子位移极化受两个相反因素的影响:温度升高时 离子间的结合力降低,使极化程度增加;但离子的密 度随温度升高而减小,使极化程度降低。通常,前一 种因素影响较大,故ε一般具有正的温度系数,即随 温度升高,出现极化程度增强趋势的特征。
Chap 5 电介质与绝缘材料
绝缘材料是指电导率较低(一般在10-9~10-10 s/m之
间),用来限制电流使其按一定途径流动的材料(如在电机, 变压器,电器,电缆中的绝缘);另外,还有利用其”介电”特 性建立电场以贮存电能的材料(如电容器).
电介质是指能在电场中极化的材料.而电介质多数是优
良的绝缘材料,故两者经常通用. 电介质一般是绝缘体。但广义的电介质还包括半绝缘 体和某些处于特殊状态下的半导体(如载流子耗尽状态下 的半导体)
3、偶极子转向极化:极性电介质中,存在具有固有 偶极矩μ0的偶极子。无外电场时,偶极子排列混乱, 使∑μi=0;加外电场时,偶极转向,成定向排列,从 而使电介质极化.
(1)偶极子极化率:具有固有电偶极矩μ0的偶极子的转向极 化率为 2
d 0 / 3kT
(2)偶极子极化的特点: a) 极化是非弹性的,消耗的电场能在复原时不可能收回。
5、松弛极化
当材料中存在着弱联系电子、离子和偶极子等松弛质点 时,热运动使这些松弛质点分布混乱,而电场力图使这些质 点按电场规律分布,最后在一定温度下,电场的作用占主导, 发生极化。这种极化具有统计性质,叫作热松驰极化。
q l
电偶极矩的单位为C.m(库仑.米).在分子物理中, 常用德拜(D)为单位,1D等于10-18cgs(静电单位),相 当于3.33×10-28C.cm。H2O的电偶极矩为1.85D,HCl 的电偶极矩为1.08D.
2、极化强度:单位体积内的电偶极矩总和称为极化 强度,用P表示
P
V
(库/米2)
3、电介质的极化率χ和相对介电常数ε
在电介质中,由电磁学理论有 D 0 E P 0 E 0 E
(1 ) 0 E 0 E
其中
1
因此,在描述物质的介电性质时,使用相对介电常 数ε和宏观极化率χ在物理上等价的。
二、电极化的微观机构
由物质的组成可以知道,物质的宏观电极化是组 成物质的微观粒子在外电场作用下发生微观电极化 的结果,通常,微观粒子在外电场作用下而产生的 电矩与场强存在如下关系:
E
式中α称为微观极化率。粒子的微观极化率可能来自 多种原因,一般情况包括电子云位移极化(其极化 率用αe表示)、离子位移极化(其极化率用αi表示)、 偶极子转向极化(其极化率用αd表示)等
(2)电子云位移极化的特点:
a)形成极化所需时间极短(因电子质量极小),约为10-15s,
在一般频率范围内,可ቤተ መጻሕፍቲ ባይዱ认为ε与频率无关;
b) 具有弹性,当外电场去掉时,作用中心又马上会重合 而整个呈现非极性,故电子式极化没有能量损耗。 c)温度对电子式极化影响不大。
2、离子位移极化:离子晶体中,无电场作用时,离 子处在正常格点位置并对外保持电中性,但在电场作 用下,正、负离子产生相对位移,破坏了原先呈电中 性分布的状态,电荷重新分布,相当于从中性分子转 变为偶极子产生离子位移极化. 离子位移极化主要存 在于离子化合物材料中,如云母、陶瓷材料等。 (1)离子位移极化率:
(1)电子云位移极化率:理论计算值取决于所采用 的粒子模型,由点状核球状负电壳体模型或圆周轨 道模型(玻尔模型)计算出的电子极化率为:
e 4 0r 3
由量子力学计算给出的电子极化率为 e (9/ 2) 4 0r 3
在数量级上上述各种情况均相同,其值都在10-40F· m2, 与实验结果相吻合。
1、电子云位移极化:没有受电场作用时,组成电介质 的分子或原子所带正负电荷中心重合,对外呈中性。 受电场作用时,正、负电荷中心产生相对位移(电子云 发生了变化而使正、负电荷中心分离的物理过程),中 性分子则转化为偶极子,这种过程就是电子云位移极 化。电子云位移极化存在于一切气体、液体及固体介 质中。
材料的介电性能是电介质的主要特征,它以正、 负电荷重心不重合的电极化方式传递、存储或记录 电的作用和效应。电极化中的电荷主要指那些束缚 在原子、分子、晶格、缺陷位置或局部区域内的束 缚电荷。
各种束缚电荷在不同频率的交变电场作用下表 现出不同的电极化行为,并进行决定着电介质材料 的各种性能。
本章介绍电介质与绝缘材料的基本概念和性能, 并揭示电介质材料宏观介电性能的一些微观机制。
b) 形成极化所需时间较长,约为10-10~10-2s,故其ε与电源 频率有较大的关系,频率很高时,偶极子来不及转动,因而 其ε减小。 c) 温度对极性介质的ε有很大的影响。
4、空间电荷极化:空间电荷极化常常发生在不均匀介质
中。在电场作用下,不均匀介质内部的正负间隙离子分别向 负、正极移动,引起电介质内各点离子密度的变化,出现了 电偶极距。这种极化叫作空间电荷极化。在电极附近积聚的 离子电荷就是空间电荷。 实际上晶界,相界,晶格畸变,杂质等缺陷区都可成为自由 电荷运动的障碍,在这些障碍处,自由电荷积聚,也形成空 间电荷极化 空间电荷极化的特点: 空间电荷极化随温度升高而下降。因为温度升高,离子运 动加剧,离子扩散容易,因而空间电荷减少。 空间电荷的建立需要较长的时间,大约几秒到数十分钟, 甚至数十小时,因此空间电荷极化只对直流和低频下的介 电性质有影响。
§0 电介质分类
电介质按其分子中正负电荷的分布状况不同可分为:
中性电介质 ☺ 偶极电介质 ☺ 离子型电介质
☺
§1 介质极化的基本概念
一、定义及有关物理量
1、电偶极矩:由大小相等、符号相反、彼此相距为l 的两点电荷(+q、-q)所组成的束缚系统,称为偶极子, 偶极子的大小和方向常用电偶极矩μ来表示(方向由负 电荷指向正电荷)