序列相关的检验和修正

合集下载

序列相关性

序列相关性
yt 1 2 Pt 1 ut
5.滞后效应 在经济中,因变量受到自身或另一解释变量的前几期值影响的现象称为 滞后效应。在一个消费支出对收入的时间序列回归中,人们常常发现当前时 期的消费支出除了依赖于其他变量外,还依赖于前期的消有效 因为,在有效性证明中利用了 E(NN’)=2I 即同方差性和互相独立性条件。而且,在大样本情况下,参数估计量 虽然具有一致性,但仍然不具有渐近有效性。 2、变量的显著性检验失去意义 在变量的显著性检验中,统计量是建立在参数方差正确估计基础之 上的,这只有当随机误差项具有同方差性和互相独立性时才能成立。如果存 在序列相关,估计的参数方差 S ˆ ,出现偏误(偏大或偏小) ,t 检验就失去
~ e ~ e t t 1 t

~ e ~ ~ e t 1 t 1 2 et 2 t
3
, 。 。 。
醉客天涯之计量经济学
如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。 回归检验法的优点是: (1)能够确定序列相关的形式 (2)适用于任何类型序列相关性问题的检验。 3、杜宾-瓦森(Durbin-Watson)检验法(最常用) (1)方法使用条件: ①解释变量 X 非随机; ②随机误差项 i 为一阶自回归形式: i=i-1+i ③回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式: Yi=0+1X1i+kXki+Yi-1+i ④回归含有截距项 ⑤误差项被假定为正态分布 (2)D.W.统计量: 杜宾和瓦森针对原假设:H0: =0, 即不存在一阶自回归,构如下造统计量:
D.W .
~ (e
t 2
n
t
~ )2 e t 1
2 t

序列相关

序列相关
王中昭制作
§4.2 序列相关
违反五项基本假 定第三点,即违反 了随机扰动项之间 相互独立的假定, 称为序列相关。
王昭制作
●学习内容:
• • • • • 一、序列相关定义及其类型 二、实际经济问题中的序列相关性 三、序列相关性的后果 四、序列相关性的检验 五、序列相关性的修正
王中昭制作
一、序列相关定义及其类型
● 5、由随机扰动项本身特性所决定
• 在许多情况下,真实的随机扰动项的各 项值是相关的,例如:旱涝、地震、战争、 罢工等纯随机因素所产生的影响将会延续 一段时期,从而导致随机扰动项序列相关。 • 因为被解释变量与随机误差项具有相同 的分布(只有数学期望不同而已)。 • 可以证明:如果因变量观测值之间如果 存在相关性,则随机扰动项之间也就存在 相关性。
王中昭制作
2、回归检验法
ˆt 为被解释变量,以各种可能的相 • 以e 2 ˆt 1, e ˆt 2 , e ˆt 1 等作为解释变量 关量,如 e 建立各种方程:
ˆt e ˆt 1 t , e t 2,3,...,n ˆt 1e ˆt 1 2e ˆt 2 t , e t 3,4,...... ,n
资料来源: 《中国统计年鉴》 (1995、2000、2002) 。
• 最好是把M和GDP化为同货币单。首先作散点图。
王中昭制作
M与GDP的散点图,从图中可知道,两 者近似直线关系。
王中昭制作
估计结果如下:
• 下面进行序列相关性检验
王中昭制作
法一:图解法,在求出模型后,再输入时间变量t, t=1,2,3,……24。 再作et与et-1的散点图或et与t的散点图。 其中 et= yty^t=resid, 在此题中,et存在正的序列相关。

什么是序列相关性如何进行序列相关性的检验与处理

什么是序列相关性如何进行序列相关性的检验与处理

什么是序列相关性如何进行序列相关性的检验与处理序列相关性是指一系列数据中存在的相关性或依赖关系。

它可以帮助我们了解数据的趋势、周期性以及对未来数据的预测。

在统计学中,序列相关性的检验和处理是非常重要的,可以帮助我们提取有用的信息和建立可靠的模型。

本文将介绍序列相关性的定义、如何进行序列相关性的检验以及处理方法。

一、序列相关性的定义序列相关性是指时间序列数据中的观察值之间的相关性或依赖关系。

当一个时间序列的观察值和它之前或之后的观察值之间存在关联时,就可以说这个时间序列是相关的。

序列相关性表明序列中的数据点之间存在某种模式或趋势,这对于分析和预测时间序列数据具有重要意义。

二、序列相关性的检验为了检验时间序列数据是否存在相关性,我们可以使用常用的统计方法,例如自相关函数(ACF)和偏自相关函数(PACF)。

自相关函数是衡量一个时间序列和其滞后版本之间相关性的统计指标。

它可以帮助我们确定序列中的周期性模式。

在自相关函数图中,横轴表示滞后阶数,纵轴表示相关系数。

如果自相关函数在某个滞后阶数上超过了置信区间,那么可以认为有相关性存在。

偏自相关函数是衡量一个时间序列和其滞后版本之间相关性的统计指标,消除了其他滞后版本的影响。

在偏自相关函数图中,横轴表示滞后阶数,纵轴表示相关系数。

如果偏自相关函数在某个滞后阶数上超过了置信区间,那么可以认为有相关性存在。

另外,我们还可以使用单位根检验(ADF检验)来检验序列是否平稳。

平稳序列的相关性更容易进行建模和预测。

如果序列通过了单位根检验,那么就可以认为序列是平稳的。

三、序列相关性的处理如果时间序列数据存在相关性,那么我们可以采取一些方法进行处理,以消除或减小相关性的影响。

首先,可以进行差分操作。

差分是指将时间序列的每个观察值与其滞后版本之间的差异进行计算。

差分后的序列通常更容易建模,因为它们消除了相关性。

如果还存在差分后的序列中的相关性,可以继续进行更高阶的差分操作。

修正序列相关的方法

修正序列相关的方法

修正序列相关的方法
修正序列相关问题的方法有多种,以下是一些常用的方法:
1. 广义最小二乘法:该方法通过对原模型加权,使之变成一个新的不存在异方差性的模型,然后采用普通最小二乘法估计其参数。

2. 广义差分法:通过广义差分变换消除序列相关问题,然后再进行回归分析。

3. 序列相关稳健估计法:该方法利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令进行重复执行,在每次执行这组指令时,都从变量的原值推出它的一个新值。

4. 图示法:通过绘制散点图或相关图来直观地展示序列相关性,从而发现问题并进行修正。

5. 回归检验法:通过回归方程的残差进行序列相关性检验,如果存在序列相关性,则需要进行修正。

6. 杜宾-瓦特森检验法:该方法用于检验模型是否存在序列相关性,如果存在,则需要采取相应的修正措施。

7. 拉格朗日乘数检验法:通过检验模型的残差是否存在序列相关性来确定是否存在误设定的时间序列模型。

以上方法仅供参考,具体使用哪种方法需要结合数据和模型的特点进行选择。

6.2 序列相关性的后果和检验

6.2 序列相关性的后果和检验
n
d
et
t 1 n t 2 n t 1 2 et et 1 t 2 t 2 t 2 2 e t t 1 n n
2

2 et 2 2 et et 1
t 2 2 e t t 1
n
2(1
e e
t 2 n t 1
t t 1
2 e t
ˆ) ) 2(1
© 电子科大经管学院
8
第六讲 序列相关性
序列相关的检验
d 统计量的检验
由于 d 统计量依赖于残差,而残差又依赖于X,故无法 推导出d 统计量的准确分布 Durbin-Watson根据样本容量n和待估参数个数k,在给 定的显著性水平下,给出了 d 统计量的上、下两个临界 值dU和dL
序列相关的检验
布劳殊-戈弗雷(BG)检验
又称为LM检验,克服了DW检验的缺陷,适合于高阶 序列相关以及模型中存在滞后因变量的情形,更具有 一般性 基本思想: 针对回归模型 Yt 0 1 X1t ... k X kt t
假设干扰项存在p 阶序列相关 检验原假设
第六讲序列相关性德宾沃森durbinwatson检验利用方程的残差构成统计量推断误差项是否存在一阶序列相关基本假定回归模型包含截距项序列相关是一阶序列相关回归模型不能把滞后被解释变量作为解释变量第六讲序列相关性检验统计量称为d统计量该统计量仅依赖于残差一般回归软件都会报告该统计量无论是横截面数据还是时间序列数据统计量的检验由于d统计量依赖于残差而残差又依赖于x故无法推导出d统计量的准确分布durbinwatson根据样本容量n和待估参数个数k在给定的显著性水平下给出了d统计量的上下两个临界值du和dl第六讲序列相关性电子科大经管学院10统计量的检验序列相关的判别规则不能拒绝电子科大经管学院11检验序列正相关拒绝原假设不能拒绝原假设电子科大经管学院12检验序列相关拒绝原假设不能拒绝原假设拒绝原假设电子科大经管学院13dw检验的缺陷统计量落在两个不确定区域时无法判断是否存在序列相关当滞后因变量作为解释变量时检验无效只能检验一阶序列相关不适用于高阶序列相关若误差项不是iid正态分布d检验也不可靠第六讲序列相关性电子科大经管学院14布劳殊戈弗雷bg检验又称为lm检验克服了dw检验的缺陷适合于高阶序列相关以及模型中存在滞后因变量的情形更具有一般性基本思想

计量经济学序列相关性实验分析

计量经济学序列相关性实验分析

重庆科技学院学生实验报告一,实验目的和要求熟练掌握序列相关行的含义,原因,后果,检验方法,修正方法。

二、实验内容和原理内容:自相关性检验原理:首先采用普通最小二乘法估计模型,以求得随机干扰项的“近似估计量”,然后通过分析这些“近似估计量”之间的相关性以达到判断随机干扰项是否具有序列相关性的目的。

三、主要仪器设备电脑一台;EVIEW50 软件一套;MATHTYFPE8 软件一套;MICROSOFXCE12007 软件一套;四、实验操作方法和步骤一、估计回归方程二、进行序列相关性检验三、序列相关的补救五、实验记录与处理(数据、图表、计算等)(具体过程见下页)六、实验结果及分析(具体分析见下页)说明:此部分的内容和格式各学院可根据实验课程和实验项目的具体需要,自行设计和确定相关内容和栏目,但表头格式应统一;对于设计性实验则只要求说明实验的目的要求、提出可供实验的基本条件和注意事项,实验方案和步骤的设置、仪器的安排等可由学生自己设计。

五、实验记录与处理(数据、图表、计算等)一、估计回归方程工业增加值主要由全社会固定资产投资决定。

为了考察全社会固定资产投资对工业增加值的影响,可使用如下模型:丫二0 i Xi ;其中,X表示全社会固定资产投资,丫表示工业增加值。

下表列出了中国1998-2000的全社会固定资产投资X与工业增加值丫的统计数据。

Dependent Variable: Y Method: Least Squares Date: 12/22/09 Time; 08:53Sample: 1SS0 2CU0Included observatiors: 21Variable Coefficient Std. Error t-Statistic Prob.C6E3.0114298 1673 2240392 □ .0372X 1.101861 0 CI1S344 .0SS3O 0 oooc R-squared 0.994936 Mean dependent var 13744 09Adjusted R-squared 0.394669 S D. dependenl var 13029.80S.E. of regression 951.33S8 Akaike info criterion 16.64401Sum squared resid 17195864Schwarz criterion 1674343Lug likelihood -172.7621F-statistic3732.750Durbin-Watson slat 1.282353 FrcbfF-statistic)0 000000由此实验结果可知模型估计结果为:Y=668.0114+1.181861X(2.24039)(61.0963)R2 =0.994936,R 2 =0.994669,SE=951.3388, D.W.=1.282353。

序列相关性

序列相关性

2
4-dU
4-dL
# D.W.检验统计量的说明
DW检验表明:当D.W.值在2左右时,模型不存在一阶自相关
证明:展开D.W.统计量:
D.W .
~ e
t 2
n
2
t
~ e
t 2 n
n
2 t 1
~~ 2 et et 1
t 2
n
(*)
~ et 2
t 1
D.W . 2(1
(三)杜宾-瓦森检验法(DW检验)
D-W检验是杜宾(J.Durbin)和瓦森(G.S. Watson)于 1951年提出的一种检验序列自相关的方法

该方法只适用于检验一阶自相关
(1)解释变量X非随机;
假 定 条 件
(2)随机误差项t为一阶自回归形式: t = t-1 + t
(3)回归模型中不应含有滞后因变量作为解释变量,即不应
因此:vt=3X3t + t,
如果X3确实影响Y,则出现序列相关。
这是横截面数据也可能存在序列相关性的重要原因
4、数据的处理
在实际经济问题中,有些数据是通过已知数据生成的。因 此,新 生成的数据与原数据间就有了内在的联系,表现出序列相关性。 例如:

季度数据来自月度数据的简单平均,这种平均的计算减弱了每月

检验时需要事先确定准备检验的阶数P,实际检验中,可从1阶、2
阶、…逐次向更高阶检验。

检验结果显著时,可以说明存在序列相关,但是并不一定代表序列 相关的阶数一定能够达到所检验的阶数。
◦ 低阶序列相关的存在往往会导致高阶序列相关检验的显著性 ◦ 具体阶数的判断,需要结合辅助回归中自相关系数的显著性

计量经济学试题计量经济学中的序列相关性与解决方法

计量经济学试题计量经济学中的序列相关性与解决方法

计量经济学试题计量经济学中的序列相关性与解决方法计量经济学试题: 计量经济学中的序列相关性与解决方法序列相关性是计量经济学中重要的概念之一,它描述了时间序列数据之间的相关程度。

在许多经济学研究中,序列相关性可能会导致问题,如伪回归和自相关误差。

为了解决这些问题,研究人员采用了一些方法来处理序列相关性。

本文将介绍序列相关性的定义、影响和解决方法。

一、序列相关性的定义序列相关性是指一组时间序列数据之间存在的相关关系。

它反映了一个变量的当前值与过去值的相关程度。

序列相关性可以判断变量之间是否存在依赖关系,以及时间趋势的演变和预测。

在计量经济学中,序列相关性通常使用自相关函数(acf)和偏自相关函数(pacf)来度量。

自相关函数衡量了序列与其自身在不同滞后期的相关性,而偏自相关函数则控制了其他滞后期的效应。

二、序列相关性的影响序列相关性对计量经济分析的结果具有重要影响。

当存在序列相关性时,经济学模型的估计结果可能会产生偏误。

这是因为序列相关性违反了线性回归模型的基本假设,导致参数估计失真。

此外,当序列相关性存在时,标准误差和t统计量的计算也会出现问题。

标准误差的计算通常基于误差项的无关性假设,而序列相关性违反了这一假设,导致标准误差被低估。

因此,对参数的显著性检验将失去准确性。

三、解决序列相关性的方法为了解决序列相关性的问题,计量经济学提出了许多方法和技术。

下面介绍几种常用的解决方法。

1. 差分法(Differencing Method)差分法是通过对时间序列数据进行差分,消除序列相关性的方法。

差分法可以消除序列的线性趋势,使数据变得稳定。

这种方法利用变量的差分来消除序列的相关性,使得模型的估计结果更可靠。

2. 自相关修正法(Autoregressive Model)自相关修正法是通过引入滞后变量来建模序列相关性。

自相关修正模型考虑变量的滞后值与当前值之间的关系,以控制序列相关性的影响。

常见的自相关修正模型包括自回归移动平均模型(ARMA)和自回归条件异方差模型(ARCH)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

序列相关的检验及修正例题:中国居民总量消费函数 数据:年份 GDP CONS CPI TAX GDPC X Y1978 3605.6 1759.1 46.21 519.28 7802.6 6678.9 3806.8 1979 4092.6 2011.5 47.07 537.82 8694.7 7552.1 4273.4 1980 4592.9 2331.2 50.62 571.70 9073.3 7943.9 4605.3 1981 5008.8 2627.9 51.90 629.89 9650.9 8437.2 5063.4 1982 5590.0 2902.9 52.95 700.02 10557.1 9235.1 5482.3 1983 6216.2 3231.1 54.00 775.59 11511.5 10075.2 5983.5 1984 7362.7 3742.0 55.47 947.35 13273.3 11565.4 6746.0 1985 9076.7 4687.4 60.65 2040.79 14965.7 11600.8 7728.6 1986 10508.5 5302.1 64.57 2090.37 16274.6 13037.2 8211.4 1987 12277.4 6126.1 69.30 2140.36 17716.3 14627.8 8840.0 1988 15388.6 7868.1 82.30 2390.47 18698.2 15793.6 9560.3 1989 17311.3 8812.6 97.00 2727.40 17846.7 15034.9 9085.2 1990 19347.8 9450.9 100.00 2821.86 19347.8 16525.9 9450.9 1991 22577.4 10730.6 103.42 2990.17 21830.8 18939.5 10375.7 1992 27565.2 13000.1 110.03 3296.91 25052.4 22056.1 11815.1 1993 36938.1 16412.1 126.20 4255.30 29269.5 25897.6 13004.8 1994 50217.4 21844.2 156.65 5126.88 32057.1 28784.2 13944.6 1995 63216.9 28369.7 183.41 6038.04 34467.5 31175.4 15467.9 1996 74163.6 33955.9 198.66 6909.82 37331.9 33853.7 17092.5 1997 81658.5 36921.5 204.21 8234.04 39987.5 35955.4 18080.2 1998 86531.6 39229.3 202.59 9262.80 42712.7 38140.5 19363.9 1999 91125.0 41920.4 199.72 10682.58 45626.4 40277.6 20989.6 2000 98749.0 45854.6 200.55 12581.51 49239.1 42965.6 22864.4 2001 108972.4 49213.2 201.94 15301.38 53962.8 46385.6 24370.2 2002 120350.3 52571.3 200.32 17636.45 60079.0 51274.9 26243.7 2003 136398.8 56834.4 202.73 20017.31 67281.0 57407.1 28034.5 2004 160280.4 63833.5 210.63 24165.68 76095.7 64622.7 30306.0 2005 188692.1 71217.5 214.42 28778.54 88001.2 74579.6 33214.0 2006 221170.5 80120.5 217.65 34809.72 101617.5 85624.1 36811.61、 建立回归模型,模型的OLS 估计 t t t X Y μββ++=10 (1)录入数据打开EViews6,点“File ”“New ”“Workfile ”选择“Dated-regular frequency”,在Frequency 后选择“Annual”,在Start data后输入1978,在End data 后输入2006,点击“ok”。

在命令行输入:DATA X Y,回车将数据复制粘贴到Group中的表格中:(2)估计回归方程在命令行输入命令:LS Y C X,回车或者在主菜单中点“Quick”“Estimate Equation”,在Specification中输入 Y C X,点“确定”。

得到如下输出:写出估计结果:X Y4375.028.2091ˆ+= (6.243) (47.059)2R =0.9880 =2R 0.9875 F=2214.537 D.W.=0.2772、 序列相关的检验 (1) 图示检验法 作残差序列的时序图:保存残差虚列: GENR E=RESID 作图: PLOT E从图上可以看出,模型的最小二乘残差开始连续几期小于0,接着连续几期都大于0,这种模式的残差意味着模型可能存在正的序列相关性。

做t e ~和1~-t e 的关系图: SCAT E(-1) E-1,600-1,200-800-40004008001,2001,6002,0002,400-4,000-2,00002,0004,000EE (-1)从上面的散点图可以看出,t e ~和1~-t e 之间可以拟合一个线性模型: t e ~=tt e ερ+-1~ 且回归直线的斜率为正(>0),表明模型存在正的序列相关性。

(2)DW 检验由OLS 估计的结果可知:D.W.=0.277。

查DW 分布的临界值表,k=2,n=29时,L d =1.34,U d =1.48,显然0<0.277<L d ,因此模型存在一阶正的自相关。

(3)回归检验法拟合模型:t e ~=tt e ερ+-1~,并运用OLS 估计模型:LS E E(-1) 得到如下结果:写出回归结果:1~949.0ˆ~-=t t e e (8.148)回归系数的t 统计量为8.148,伴随概率P=0.0000<=0.05,表明原模型存在一阶序列相关。

拟合模型:t e ~=t t t e e ερρ++--2211~~,并运用OLS 估计模型:LS E E(-1) E(-2)得到如下结果:写出回归结果:21~864.0~659.1ˆ~---=t t t e e e (10.895) (-5.567)回归系数和的t 统计量分别为10.895、-5.567,相应的伴随概率P=0.0000<=0.05,表明原模型存在二阶序列相关。

拟合模型:t e ~=112233t t t t e e e ρρρε---+++,并运用OLS 估计模型:LS E E(-1) E(-2) E(-3),回车,得到如下结果:写出回归结果:123ˆ 1.4950.4740.286t t t t e e e e ---=-- (7.280) (-1.277) (-1.182)回归系数的t 统计量为7.280,相应的伴随概率P1=0.0000<=0.05,表明显著不为零,但和的t 统计量分别为-1.277、-1.182,相应的伴随概率P2=0.2144,P3=0.2491,均大于=0.05,表明原模型不存在三阶序列相关。

综上,原模型有二阶序列相关。

(4)LM 检验首先采用OLS 估计模型,在弹出的Equation 窗口,点View Residual Tests Serial correlation LM Test…,弹出下面的对话框:点“OK ”。

得到下面的输出:从上面的输出可知:LM=23.65686,Prob.Chi-Square(2)=0.0000,小于=0.05,且辅助回归中RESID(-1)和RESID(-2)的系数均显著不为0(对应t统计量的P值均小于0.05),说明模型具有2节序列相关。

在Equation窗口,点View Residual Tests Serial correlation LM Test…,在弹出的对话框里将滞后阶数改为3:点“OK”。

得到下面的输出:这时,LM=23.96054,Prob.Chi-Square(2)=0.0000,小于=0.05,但辅助回归中RESID(-2)和RESID(-3)的系数不显著(对应t统计量的P值均大于0.05),说明模型仅存在2阶序列相关,不具有3阶的序列相关。

3、序列相关的修正(1)广义差分法已知模型具有2阶序列相关,在命令行输入命令:LS Y C X AR(1) AR(2) 回车得到下面的输出:写出修正后的模型:=130348.8+0.2796X+1.3902AR(1)-0.3922AR(2)(0.049) (4.309) (6.526) (-1.681)=0.9988 =0.9987 F=6536.97 D.W=1.9514(2)序列相关稳健估计法在主菜单中点“Quick”“Estimate Equation”,在Specification中输入 Y C X,然后点击“Options”,在弹出的对话框里选择“Heteroskedasticity consistent coefficient”——“Newey—West”,点“确定”。

得到如下输出:写出估计结果:=2091.282+0.4375X(4.238) (22.294)=0.988 =0.988 F=2214.54 D.W=0.277(注:可编辑下载,若有不当之处,请指正,谢谢!)。

相关文档
最新文档