高中物理人教版选修3-2教案设计 5.1《交变电流》
2024-2025学年高中物理第五章交变电流1交变电流(4)教案新人教版选修3-2

- 巩固学生在课堂上学到的交变电流知识点和测量技能。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
教学资源拓展
1. 拓展资源
(1)科普文章:提供一篇关于交变电流在生活中的应用的科普文章,让学生了解交变电流在实际生活中的重要性。
- 采用生动的图标和颜色,使板书更加吸引学生的注意力。
- 引入一些与交变电流相关的趣味小故事或实际应用案例,激发学生的学习兴趣。
- 设计一些互动环节,如提问、小组讨论等,鼓励学生积极参与课堂活动。
③ 板书设计应符合教学实际,与课本内容相符。
- 板书内容应与课本保持一致,确保学生能够将板书与课本知识相结合。
- 讲授法:教师通过详细讲解,帮助学生理解交变电流的核心知识点。
- 实践活动法:教师设计实践活动,让学生在实践中掌握交变电流的测量方法。
- 合作学习法:学生通过小组讨论等活动,培养团队合作意识和沟通能力。
作用与目的:
- 帮助学生深入理解交变电流的核心知识点,掌握交变电流的测量方法。
- 通过实践活动,培养学生的动手能力和解决问题的能力。
2. 设计具体的教学活动
- 实验观察:安排学生观察交变电流实验,引导学生注意观察电流表、电压表的读数变化,以及线圈的运动情况。
- 小组讨论:将学生分成小组,让他们讨论交流电测量方法、实际电路分析等话题,鼓励学生提出问题和观点,促进学生之间的互动。
- 角色扮演:让学生扮演电流、电压等角色,通过角色扮演的方式,帮助学生更好地理解交变电流的特性和行为。
f = ω / (2π)
2. 例题二:分析交变电流的特性
题目:已知交流电的电压为U,频率为f,求电流的有效值I'。
高中物理选修3-2人教版学案设计 5.1《交变电流》

交变电流诱学·导入·点拨材料:1831年法拉第发现了电磁感应现象,为人类进入电气化时代打开了大门。
今天无论是生产还是生活等各方面都离不开电。
我们日常生活中的用电器数不胜数,比如电灯、电话、电视机、空调、冰箱、洗衣机、电磁炉、微波炉等等这些家用电器所使用的都是交流电。
问题:由电池产生的电流,是大小和方向保持不变的直流电,我现实生活中所使用的交流电是如何从发电厂产生的呢?交流电和直流电还有哪些相同和不同的性质呢?导入点拨:由生活中所使用的交流电联系到发电厂是如何产生交变电流的,那么这种电流和必修中所学的稳恒电流有一定的区别和联系。
知识·巧学·升华一、交变电流1.直流电:方向不随时间做周期性变化的电流。
简称:直流符号:DC2.交变电流:大小和方向均随时间做周期性变化的电流。
简称:交流符号:AC3.正弦交流电:按正弦规律变化的交变电流叫正弦交变电流。
要点提示方向随时间做周期性变化是交流电的最主要特征,也是交变电流和直流电的根本区别。
交变电流的典型特征是电流方向变化,其大小可能不变,如矩形交变电流的方向变化但大小不变,是交变电流。
4.电流的分类:按大小和方向的变化规律,可将电流作如下的分类:恒定电流大小方向均恒定直流非恒定电流仅方向恒定正弦交变电流按正弦规律变化的交变电流交流非正弦交变电流不按正弦规律变化的交变电流方向随时间做周期性变化是交流电的最重要特征。
恒定电流仅仅是直流中的一种;同样,交变电流也并不都是正弦交变电流,正弦交变电流的特殊规律不能适用所有交流电。
二、交变电流的产生1.交变电流产生的实验探究如图甲所示,利用手摇式发电机模型探究交变电流的产生过程。
手摇式发电机和灯泡电流计连接构成闭合回路。
发电机的原理:线圈abcd处在磁场中,线圈的ab边和cd边连在金属滑环上;用导体做的两个电刷分别压在两个滑环上,线圈在转动时可以通过滑环和电刷保持与外电路连接,如图乙。
新课标人教版3-2选修三5.1《交变电流》优秀教案2(重点资料).doc

5.1、交变电流一.确定目标:1.知识与技能交流电的定义,产生的原理、图象和三角函数表述。
2.过程与方法电磁感应规律的应用及深化,数学能力的提升。
3.情感、态度与价值观进一步走向应用,走向实践。
二.基础自学:阅读课本,思考下列问题。
1、交变电流:方向随时间做周期性变化的电流为交变电流.正弦电流、锯齿波电流、方波电流都一定属于交变电流吗?回忆恒定电流,脉动直流。
2、交变电流的产生:矩形线圈在匀强磁场中绕垂直于磁感线的轴匀速转动时产生正弦交变电流.若线圈绕平行于磁感线的轴转动,则不产生感应电动势.矩形线圈在匀强磁场中匀速转动时,将经过两个特殊位置,其特点分别是:(1)中性面与匀强磁场磁感线垂直的平面叫中性面.线圈平面处于跟中性面重合的位置时;(a)线圈各边都不切割磁感线,即感应电流等于零;(b)磁感线垂直于该时刻的线圈平面,所以磁通量最大,磁通量的变化率为零.(c)交变电流的方向在中性面的两侧是相反的.(2)线圈平面处于跟中性面垂直的位置时,线圈平面平行于磁感线,磁通量为零,磁通量的变化率最大,感应电动势、感应电流均最大,电流方向不变.3、交变电流的变化规律:如图5-1-1所示为矩形线圈在匀强磁场中以ω匀速转动的四个过程:当以线圈通过中性面为计时起点时,交变电流的函数表达式:e=E m sin ωt,其中E m=2NBLv=NBωS;i=I m sinωt,其中I m=E m/R。
当以线圈通过中性面对为计时起点时,交变电流的函数表达式:e=E m sinωt,其中E m=2NBLv=NBωS;i=I m sinωt,其中I m=E m/R。
图5-1-2所示为以线圈通过中性面时为计时起点的交变电流的e-t和i-t图象:4、可以写以线圈通过中性面为计时起点时线圈磁通量随时间变化的函数式,思考φ的变化率随时间如何变化?5、正弦交变电流:随时间按正弦规律变化的交变电流叫做正弦交变电流.正弦交变电流的图象是正弦函数曲线.只有线圈在匀强磁场中绕垂直于磁感线的轴匀速转动时才能产生正(余)弦交变电流.四.合作探究、巩固检测:1、矩形线圈在匀强磁场中匀速转动,在线圈平面经过中性面瞬间:()A.线圈平面与磁感线平行B.通过线圈的磁通量最大;C.线圈中的感应电动势最大;D.线圈中感应电动势的方向突变。
2019-2020学年度人教版选修3-2 5.1交变电流 教案(3)

教材分析新授课时,每节课注重本节知识的突破,而对交变电流整块知识的整体把握不强。
本节复习课就是要从整体上把握交变电流的产生描述以及输送和用户端的使用。
物理这一学科是与现实生活结合较紧密的一科。
本章更是如此,因此在教学过程中应尽量结合生产生活实际,把本章知识的复习和电能的产生、输送和利用结合起来,以现实生产生活为背景,以电能的产生、输送、使用为主线,让学生把枯燥的知识和生活的应用结合起来,形成观察思考生活中的物理原理的习惯。
教学方法讲解法教具多媒体课件教学活动本章知识网络一、交变电流的产生1、产生:闭合矩形线圈在匀强磁场中,绕垂直于磁感线的轴线做匀角速转动时,闭合线圈中就有交流电产生.(从经过中性面开始计时)e=E m sinωt;Em=NBSωi=I m sinωt;u=U m sinωt.2.中性面:与磁场方向垂直的平面.特点:①线圈通过中性面时,穿过线圈的磁通量最大,但磁通量的变化率为零,感应电动势为零;②线圈平面每次转过中性面时,线圈中感应电流方向改变一次,线圈转动一周两次通过中性面,故一周里线圈中电流方向改变两次 .3.交变电流的图象变化规律:(t=0时,线圈在中性面位置)如下表.二、描述正弦交流电的几个物理量(周期,频率,峰值,有效值,平均值)1、交流电的周期和频率:转动,角速度为ω,求线圈从图示位置转过180度时间内交变电压的平均值。
若线圈总电阻为R,通过线圈的电荷量是多少?三、感抗和容抗1.感抗表示电感对交变电流的阻碍作用。
特点:“通直流,阻交流”、“通低频,阻高频”2.容抗表示电容对交变电流的阻碍作用。
特点:“通交流,隔直流”、“通高频,阻低频”例:如图所示,当交流电源的电压(有效值)U=220V、频率f=50Hz时,三只灯A、B、C的亮度相同(L无直流电阻)。
(1)将交流电源的频率变为f=100Hz,则()(2)将电源改为U=220V的直流电源,则()A.A灯比原来亮; B.B灯比原来亮C.C灯和原来一样亮; D.C灯比原来亮四、变压器原理和远距离输电1. 变压器原理(1)变压器的构造: 变压器是由闭合铁芯和绕在铁芯上的两个线圈组成的.一个线圈跟电源连接,叫原线圈(也叫初级线圈);另一个线圈跟负载连接,叫副线圈(也叫次级线圈).两个线圈都是用绝缘导线绕制成的,铁芯由涂有绝缘漆的硅钢片叠合而成.(2).变压器的变压比:U1/U2 =n 1/n2U1/n1 = U2/n2= U3/n3=…=k理想变压器原副线圈的端电压跟匝数成正比.当n2>n1时,U2>U1,变压器使电压升高,这种变压器叫做升压变压器.当n2<n1时,U2<U1,变压器使电压降低,这种变压器叫做降压变压器.思考题:理想变压器原、副线圈的匝数比为1∶10,当原线圈接在6V的蓄电池两端以后,则副线圈的输出电压为 【 】A .60VB .V 260C .V 2/60D .以上答案都不对 (3). 变压器的变流比:理想变压器的输入的电功率I 1U 1等于输出的电功率I 2U 2, 即 I 1U 1=I 2U 2.由U 1 /U 2= n 1/n 2 ∴ I1/ I2 = n2/n1可见,变压器工作时,原线圈和副线圈中的电流跟它们的匝数成反比. 注意:上式只对仅有一个副线圈时适用.若有两个及以上副线圈时,必须由输入的电功率 等于输出的电功率计算.变压器的高压线圈匝数多而通过的电流小,可用较细的导线绕制. 低压线圈匝数少而通过的电流大,应用较粗的导线绕制. 典例1:图(甲)、(乙)两电路中,当a 、b 两端与e 、f 两端分别加上220V 的交流电压时,测得c 、d 间与g 、h 间的电压均为110V 。
物理51《交变电流》教案(新人教版选修3-2)

高考资源网5.1 交变电流教学目标〔一〕知识与技能1.使学生理解交变电流的产生原理,知道什么是中性面。
2.掌握交变电流的变化规律及表示方法。
3.理解交变电流的瞬时值和最大值及中性面的准确含义。
〔二〕过程与方法1.掌握描述物理量的三种根本方法〔文字法、公式法、图象法〕。
2.培养学生观察能力,空间想象能力以及将立体图转化为平面图形的能力。
3.培养学生运用数学知识解决物理问题的能力。
〔三〕情感、态度与价值观通过实验观察,激发学习兴趣,培养良好的学习习惯,体会运用数学知识解决物理问题的重要性教学重点、难点交变电流产生的物理过程的分析。
难点:交变电流的变化规律及应用。
教学方法演示法、分析法、归纳法。
教具手摇单相发电机、小灯泡、示波器、多媒体教学课件、示教用大的电流表课型新授课课时方案1课时教学过程〔一〕引入新课出示单相交流发电机,引导学生首先观察它的主要构造。
演示:将手摇发电机模型与小灯泡组成闭合电路。
当线框快速转动时,观察到什么现象〔二〕进行新课1、交变电流的产生为什么矩形线圈在匀强磁场中匀速转动时线圈里能产生交变电流多媒体课件打出以下图。
当abcd 线圈在磁场中绕OO ′轴转动时,哪些边切割磁感线 ab 与cd 。
当ab 边向右、cd 边向左运动时,线圈中感应电流的方向 沿着a →b →c →d →a 方向流动的。
当ab 边向左、cd 边向右运动时,线圈中感应电流的方向如何感应电流是沿着d →c →b →a →d 方向流动的。
线圈平面与磁感线平行时,ab 边与cd 边线速度方向都跟磁感线方向垂直,即两边都垂直切割磁感线,此时产生感应电动势最大。
线圈转到什么位置时,产生的感应电动势最小当线圈平面跟磁感线垂直时,ab 边和cd 边线速度方向都跟磁感线平行,即不切割磁感线,此时感应电动势为零。
利用多媒体课件,屏幕上打出中性面概念:〔1〕中性面——线框平面与磁感线垂直的位置。
〔2〕线圈处于中性面位置时,穿过线圈Φ最大,但t ΔΔ =0。
最新-高中物理《交变电流》教案3 新人教版选修3-2 精品

教学课题:交变电流一.教学目标【知识和技能】1. 理解交变电流的周期、频率含义,掌握它们相互间关系,知道我国生产和生活用电的周期(频率)的大小.2、理解交变电流的最大值和有效值的意义,知道它们之间的关系,会应用正弦式交变电流有效值公式进行有关计算.3、能利用有效值定义计算某些交变电流的有效值【过程和方法】1、培养学生阅读、理解及自学能力.2、培养学生将知识进行类比、迁移的能力.3、使学生理解如何建立新的物理概念而培养学生处理解决新问题能力.4、培养学生应用数学工具处理解决物理问题的能力.5、训练学生由特殊到一般的归纳、演绎思维能力.6、培养学生的实际动手操作能力.【情感、态度、价值观】1、由用电器铭牌,可介绍我国近几年的经济腾飞,激发学生爱国精神和为建设祖国发奋学习的精神.2、让学生体会对称美.二.教学重点、难点重点:交流电的有效值、最大值、频率、周期的理解难点: 1、交变电流有效值概念既是重点又是难点,通过计算特殊形式的交变电流的有效值来体会和掌握它的定义。
2、交变电流瞬时值确定使学生感到困难,通过例题分析使学生学会借助数学工具处理解决物理问题的能力。
三.教学仪器投影仪、交流发电机模型、演示电流表四.教学方法启发式综合教学法五.教学过程引入一、知识回顾(一)、交变电流:大小和方向都随时间作周期性变化的电流叫做交变电流,简称交流.如图所示(b)、(c)、(e)所示电流都属于交流,其中按正弦规律变化的交流叫正弦交流.如图(b)所示.而(a)、(d)为直流,其中(a)为恒定电流.(二)、正弦交流的产生及变化规律.1、产生:当线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动时,线圈中产生的交流是随时间按正弦规律变化的.即正弦交流.2、中性面:匀速旋转的线圈,位于跟磁感线垂直的平面叫做中性面.这一位置穿过线圈的磁通量最大,但各边都未切割磁感线,或者说这时线圈的磁通量变化率为零,线圈中无感应电动势.3、规律:(1)函数表达式: 匝面积为 的线圈以角速度 转动,从中性面开始计时,则 .用 表示峰值 ,则 在纯电阻电路中, 电流:t Sin I i m ω=. 电压:t Sin m ωεε= .(2)图象表示:新课1、表征交变电流大小物理量①瞬时值:对应某一时刻的交流的值,用小写e 、i 字母表示.②峰值:即最大的瞬时值用大写E m 、I m 字母表示.注意:线圈在匀强磁场中绕垂直于磁感线方向的轴匀速转动时,所产生感应电动势的峰值为 ωεnBS m =,即仅由匝数 ,线圈面积 ,磁感强度 和角速度 四个量决定.与轴的具体位置,线圈的形状及线圈是否闭合都是无关的. ③有效值:ⅰ、意义:描述交流电做功或热效应的物理量ⅱ、定义:跟交流热效应相等的恒定电流的值叫做交流的有效值. ⅲ、正弦交流的有效值与峰值之间的关系是 ; .注意:正弦交流的有效值和峰值之间具有 ; 的关系,非正弦(或余弦)交流无此关系,但可按有效值的定义进行推导,如对于正负半周最大值相等的方波电流,其热效应和与其最大值相等的恒定电流是相同的,因而其有效值即等于其最大值.即 .ⅳ、交流用电器的额定电压和额定电流指的是有效值;交流电流表和交流电压表的读数是有效值.对于交流电若没有特殊说明的均指有效值.ⅴ、在求交流电的功、功率或电热时必须用交流电的有效值. ④峰值、有效值、平均值在应用上的区别.峰值是交流变化中的某一瞬时值,对纯电阻电路来说,没有什么应用意义.若对含电容电路,在判断电容器是否会被击穿时,则需考虑交流的峰值是否超过电容器的耐压值. 交流的有效值是按热效应来定义的,对于一个确定的交流来说,其有效值是一定的.而平均值是由公式 确定的,其值大小由某段时间磁通量的变化量来决定,在不同的时间段里是不相同的.如对正弦交流,其正半周或负半周的平均电动势大小为:ωπBS E 2=,而一周期内的平均电动势却为零.在计算交流通过电阻产生的热功率时,只能用有效值,而不能用平均值.在计算通过导体的电量时,只能用平均值,而不能用有效值.在实际应用中,交流电器铭牌上标明的额定电压或额定电流都是指有效值,交流电流表和交流电压表指示的电流、电压也是有效值,解题中,若题示不加特别说明,提到的电流、电压、电动势都是指有效值.2、表征交变电流变化快慢的物理量①周期 :电流完成一次周期性变化所用的时间.单位:s. ②频率 :一秒内完成周期性变化的次数.单位:HZ .③角频率 :就是线圈在匀强磁场中转动的角速度.单位:rad/s.④、角速度、频率和周期的关系:fT 12==ωπ3.交流电的有效值计算21Q Q =例题与练习【例1】 一交流电路中的电流变化规律为i=Imsin ωt .已知在【分析】 电流表的示数表示的是电流的有效值.即即电流表示数为10A .【例2】 一交变电流电压表达式为u=20sin314tV ,则这个交流电压的峰值Um=____,有效值U=____,周期T=____,频率____.画出它的图象. 【分析】 把已知的交流电压和标准式相对照即得. 【解】 已知电压u=20sin314t ,这个交流电压的u-t 图像如图所示.【例3】如图表示一交变电流的电流随时间而变化的图像.此交流电流的有效值是【】【分析】使此交变电流通过电阻R,在一个周期内产生的热量为设另一直流电I,通过同样的电阻在同样时间(T=0.18s)内产生的热量则为:根据有效值的定义,由Q直=Q交,即这个直流电流强度,就称为此交变电流的有效值.答B.【例4】在两个阻值相同的电阻上分别通以如图所示的正弦交变电流和方形波电流,它们的峰值和周期都相同,则两电阻在相同时间内产生的热量之比为【】A.1∶1 B.1∶2 C.2∶1 D.2∶3【分析】正弦交变电流的有效值为它流经电阻R在时间t内产生的热量为方形波电流经过电阻R在时间t内产生的热量为【答】 B.【说明】计算热量时必须用有效值.【例5】把U0=10V的直流电压加在阻值为R的电阻上,其发热功率交流的峰值为【】【分析】设这个交流的有效值为U,由题意知【答】 A.【说明】(1)计算热功率(或热量)必须用有效值;(2)不能认为两者发热功率相同,即得出交流的有效值为10V.必须注意这里的两个电阻阻值不同,因此需从定义式(热量相等或热功率相等)得出.小结作业六.教学反思:。
最新人教版高中物理选修3-2第五章《交变电流》教学设计

教学设计1交变电流本节分析交变电流是生活和生产中最常见的电流,交变电流的产生和变化规律是本章知识的重点,是变压器和远距离输电的基础,又是上一章电磁感应和楞次定律的延续和发展,具有承上启下的作用.本节内容的特点之一:通过演示实验和探究实验,使学生参与到探究物理规律的过程,体验学物理的乐趣;本节内容的特点之二:演示实验多,再加上学生的探究实验,故容量大,时间紧,需仔细安排,做到时间分配合理,条理清晰,重点突出.学情分析学生对“直流电”这一部分知识有一定的基础,但是对“交变电流”的认识仅局限于生活中的常见电器.学生已经学习了电磁感应,理解了导体切割磁感线会产生电动势.在此基础上学习交变电流,亦符合学生的认知规律.但“交变电流”是新的概念,鉴于学生的接受能力不同,讲解时还需详细,加强引导.应该采用多媒体教学的手段,以便更直观、更立体地让学生接受.K教学目标●知识与技能(1)使学生理解交变电流的产生原理,知道什么是中性面.(2)掌握交变电流的变化规律及表示方法.(3)理解交变电流的瞬时值和峰值及中性面的准确含义.●过程与方法(1)掌握描述物理量的三种基本方法(文字法、公式法、图象法).(2)培养学生的观察能力、空间想象能力以及将立体图转化为平面图形的能力.(3)培养学生运用数学知识解决物理问题的能力.●情感、态度与价值观通过实验观察,激发学习兴趣,培养良好的学习习惯,体会运用数学知识解决物理问题的重要性.教学重难点1.交变电流产生的物理过程分析.2.交变电流的变化规律及应用.教学准备手摇发电机、小灯泡、示教电流表、电压传感器(或电流传感器)、学生电源、多媒体课件等.教学设计(一)●(设计者:曲开菊第七届全国中小学互动课堂教学实践观摩活动一等奖)教学过程设计(或电流)的波形是什么形状?表示电压电压(或电流)的波形与余弦函数图象的形状相同,图甲:磁场方向与线圈平面垂直,通过线圈的磁通量最大.圈的各边都不切割磁感线,线圈中无感应电流.(图1)图乙:磁场的方向与线圈平面平行,通过线圈的磁通量为零,两条边垂直切割磁感线,线圈中的感应电流最大,电流方向如图图1 图2图丙:磁场方向与线圈平面垂直,通过线圈的磁通量最大.圈的各边都不切割磁感线,线圈中无感应电流.(图3)图丁:磁场的方向与线圈平面平行,通过线圈的磁通量为零,图3 图4【小组讨论】感应电流在什么位置改变方向?线圈转动一周,改变几次方向?AD=BC=d,则线圈的面积的线速度v与B的夹角为【归纳总结】1.按正弦规律变化的交变电流叫做正弦式交变电流,简称正弦式.2.正弦式交变电流的变化规律:e=E max sin ωt,u=U max sinsin ωt.其中,E max、U max、I max为峰值,e、u、i为瞬时值.max【反馈练习】发电机产生的按正弦规律变化的电动势最大值为E max=311 V板书设计1交变电流一、交变电流1.交变电流:方向随时间周期性变化的电流叫做交变电流2.直流:方向不随时间变化的电流叫做直流3.恒定电流:大小和方向都不随时间变化的电流4.交变电流经过电子电路的处理,也能变成直流二、交变电流的产生1.线圈在与中性面垂直的位置(B∥S),感应电流最大2.线圈在中性面位置(B⊥S),感应电流为零,方向发生变化3.线圈转动一周,感应电流方向改变两次三、交变电流的变化规律1.按正弦规律变化的交变电流叫做正弦式交变电流2.e=E max sin ωt,u=U max sin ωt,i=I max sin ωt.其中,E max、U max、I max为峰值,e、u、i 为瞬时值教学反思1.本节课首先利用演示实验,引导学生区分交流与直流的不同之处,即交变电流的特殊之处.对于交变电流的产生,采取由感性到理性,由定性到定量,逐步深入的方法.为了便于学生理解和掌握,让学生通过观察发电机的示意图,画出线圈通过四个特殊位置时的正视图,分析感应电动势和感应电流方向的变化,使学生熟练掌握线圈转动一周感应电动势和感应电流的变化.2.本节内容出现了许多新名词,如交变电流、正弦式电流、中性面、瞬时值、峰值(以及下一节的有效值)等等.通过公式推导过程、交变电流的图象的描绘等,让学生明白这些名词的准确含义,特别是对中性面的理解.教学设计(二)●(设计者:韩丽娜山东省创新大赛一等奖)教学过程设计一、引入新课【演示实验】把两个发光颜色不同的发光二极管并联,注意使两者正负极的方向不同,然后连接到教学用发电机的两端.转动手柄,两个磁极之间的线圈转动.观察发光二极管的发光情况.提出问题:实验现象说明了什么?思路点拨:观察到的实验现象是两个发光二极管交替发光.手摇发电机的手柄带动发电机的线圈转动,线圈在磁场中的磁通量变化情况不同,产生的感应电流的大小、方向发生变化,由于发光二极管并联在一起,但是正负极的方向不同,导致它们不会同时发光.我们把这种方向随时间做周期性变化的电流称为交变电流,简称交流.现代生产和生活中大都使用交变电流.今天我们学习交变电流的产生和变化规律.二、新课教学(一)交变电流【自主学习】引导学生阅读课本P31“交变电流”的内容,学习交变电流的相关知识.1.交变电流:方向随时间周期性变化的电流叫做交变电流.2.直流:方向不随时间变化的电流.3.恒定电流:大小和方向都不随时间变化的电流.4.交变电流经过电子电路的处理,也能变成直流.【演示实验】用示波器演示直流和交变电流随时间变化的图象.【反馈练习】在如图所示的几种电流随时间变化的图象中,属于直流电的是________,属于交变电流的是__________.答案:1、23、4、5、6(二)交变电流的产生【课件展示】利用多媒体课件展示交流发电机的示意图,并设置以下问题.(1)在线圈转动过程中,哪些边会产生感应电动势?(2)线圈由甲转到乙的过程中,AB边中电流向哪个方向流动?线圈由丙转到丁的过程中,AB边中电流向哪个方向流动?(3)当线圈转到什么位置时线圈中没有电流,转到什么位置时线圈中的电流最大?(4)大致画出通过电流表的电流随时间变化的曲线,从E流向F的电流记为正,反之为负.在横坐标上标出线圈到达甲、乙、丙、丁几个位置时对应的时刻.答案点拨:(1)在线圈转动过程中,AB和CD边切割磁感线,产生感应电动势.(2)线圈由甲转到乙的过程中,AB边中电流由B向A流动;线圈由丙转到丁的过程中,AB边中电流由A向B流动.(3)当线圈转到与磁场的方向垂直的位置时,线圈中没有电流;当线圈转到与磁场的方向平行时,线圈中的电流最大.(4)【归纳总结】1.中性面:线框平面与磁感线垂直的位置.2.线圈处于中性面位置时,穿过线圈的磁通量最大,但感应电流为零.3.线圈经过中性面时,线圈中的电流方向改变,线圈转一周,感应电流方向改变两次.【反馈练习】矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动,下列说法中正确的是() A.在中性面时,通过线圈的磁通量最大B.在中性面时,感应电动势为零C.穿过线圈的磁通量为零时,感应电动势也为零D.线圈每通过中性面一次,电流方向改变一次答案:ABD(三)交变电流的变化规律【课件展示】如图所示,矩形线圈ABCD在匀强磁场中,AB边的长度为l,BC边的长度为d,线圈的阻值为R,以AB边所在的直线为轴,以一定的角速度ω从该位置开始匀速转动.问题:(1)CD边的线速度多大?(2)如图所示,经过时间t,CD边的线速度与磁感线的夹角θ=ωt,线圈中的感应电流的大小和方向如何?(3)如图所示,经过时间t,CD边的线速度与磁感线的夹角为θ=ωt-π,线圈中的感应电流的大小和方向如何?答案点拨:(1)当线圈ABCD 以AB 边所在的直线为轴匀速转动时,CD 边的线速度v =ωd .(2)此时的感应电动势E =Bl v sin θ=Blωd sin ωt ,线圈中的感应电流I =E R =Bldωsin ωt R,感应电流方向为由D 到C .(3)此时的感应电动势E =Bl v sin θ=-Blωd sin ωt ,线圈中的感应电流I =E R=-Bldωsin ωt R,感应电流方向为由C 到D . 公式推导:线圈在与中性面垂直的位置感应电动势最大E max =BSω.所以,线圈的感应电动势e =E max sin ωt .线圈中的电流为i =e R =E max Rsin ωt =I max sin ωt .CD 边切割磁感线为等效电源,CD 两端的电压u =U max sin ωt .【课件展示】利用多媒体展示几种常见的交变电流的波形.【归纳总结】1.按正弦规律变化的交变电流叫做正弦式交变电流,简称正弦式电流.2.正弦式交变电流的变化规律:e =E max sin ωt ,u =U max sin ωt ,i =I max sin ωt .其中,E max 、U max 、I max 为峰值,e 、u 、i 为瞬时值.【反馈练习】如图所示,ab 边长为20 cm ,ad 边长为10 cm 的矩形线圈,匝数N =10,磁场的磁感应强度B =0.2 T ,线圈转速n =100 r/s.求:(1)该线圈产生的感应电动势的最大值;(2)若从中性面计时,则经过1600s时线圈电动势的瞬时值.答案:(1)8π(2)43π三、课堂小结引导学生自主总结本节课的收获,然后小组内交流、补充.四、布置作业问题与练习:3、4、5.板书设计1交变电流一、交变电流1.交变电流:方向随时间周期性变化的电流叫做交变电流2.直流:方向不随时间变化的电流3.恒定电流:大小和方向都不随时间变化的电流4.交变电流经过电子电路的处理,也能变成直流二、交变电流的产生1.中性面:线框平面与磁感线垂直的位置2.线圈处于中性面位置时,穿过线圈的磁通量最大,但感应电流为零3.线圈经过中性面时,线圈中的电流方向改变,线圈转一周,感应电流方向改变两次三、交变电流的变化规律1.按正弦规律变化的交变电流叫做正弦式交变电流,简称正弦式电流2.正弦式交变电流的变化规律:e=E max sin ωt,u=U max sin ωt,i=I max sin ωt.其中,E max、U max、I max为峰值,e、u、i为瞬时值教学反思1.本节课借助演示实验引入交流、直流的概念,通过电压传感器(或电流传感器)展现两种电流变化的不同情况,通过图象对比,先了解什么是交变电流,然后再学习交变电流是怎样产生的,有利于学生在感性认识的基础上再做理性分析,达到了降低教学难度的效果.2.对于交变电流的产生和变化规律,本节课采取由感性认识到理性认识,由定性到定量,逐步深入的讲述方法.为了便于学生理解和掌握,利用了模型和多媒体动画配合讲解.通过有梯度的问题链的方式引导学生分析线圈转动过程中电动势的变化,逐步深入,降低了学习难度.3.本节课学生通过对物理规律的定性、定量的推导,体验了探究发现的乐趣,提高了探究物理规律的能力,体会到了运用数学知识解决物理问题的重要性.备课资料●交变电流与直流电“大战”19世纪末,在爱迪生的推动下,直流电已经有了相当广泛的应用.不过在实际应用中,直流电存在着很大缺点:不仅需要大量的铜线,而且不能远距离输电,每平方英里,就需要一个单独的发电机供电,很不经济.出生于克罗地亚的发明家特斯拉考虑采用交变电流来代替直流电.交变电流系统使用高电压、小电流供电,然后利用变压器调节电流、电压,来适应用户需要.它的突出优点是可以用细导线实现远距离送电.但是,这种既经济又科学的方案一提出,立即遭到爱迪生的强烈反对.出于竞争的需要,爱迪生声称采用交变电流比直流电危险得多.为了证明交变电流的安全性,特斯拉特地制作了一个“特斯拉线圈”,它是由一个感应线圈、两个大电容器和一个初级线圈仅几圈的互感器组成的,这种装置可以产生频率很高的高压电.不过这种高压电的电流极小,对人体不会产生显著的生理效应.特斯拉在一次记者招待会上,让交变电流从“特斯拉线圈”通过自己的身体,点亮了电灯,甚至还熔化了电线.在场的记者个个目瞪口呆,取得了极大的宣传效果.特斯拉的胜利,加速了交变电流的推广应用.特斯拉与爱迪生之间的矛盾是如此之深,以致当他知道自己将与爱迪生一起分享1912年的诺贝尔物理学奖时,他表示不接受授奖.最后,这一年度的诺贝尔物理学奖便转发给了瑞典物理学家达伦.。
2019-2020学年度人教版选修3-2 5.1交变电流 教案(9)

5.1交变电流一、任务分析1.教材分析:交流电是生产生活常用的电流,交流电是电磁感应的延伸和提高,而正弦式电流又是最简单和最基本的。
正弦式电流产生的原理是基于电磁感应的基本规律,所以本章是前一章的延续和发展,是电磁感应理论的具体应用。
另一方面,本节知识是全章的理论基础,由于交变电流与直流不同,因此它对各种元件的作用也不同。
正因为交变电流的特殊性,才有了变压器及其及广泛的应用。
所以,本节内容有承上启下的作用,教学重点是要运用电磁感应的基本知识,配合相应的演示实验,分析交变电流的产生过程,认识交变电流的特点及其规律。
2.学情分析:学生学完了电磁感应知识,对恒定电流有一定的认识,掌握了求解动生电动势的方法和作图中降维作图的能力。
但对交变电流不够了解和认识,使学生对交流电产生的物理图景的存在障碍。
利用示波器实验、交流发电机、计算机模拟,尽可能使学生形象、直观地掌握交流电.二、三维目标1.知道和技能(1)掌握交流电的概念、掌握交变电流的产生过程即变化规律。
(2)知道交流电的数学表达式(3)认识交流电的图像并会简单应用。
2.过程和方法(1)提高实验观察、操作能力和正确分析实验现象的能力。
(2)熟悉练习模拟课堂教学中运用现代信息技术的能力。
3.情感、态度和价值观培养合作、探究与分享科学规律的习惯。
培养学生数理结合的能力爱好。
三、重难点分析教学重点:波的叠加现象和波的干涉现象。
教学难点:对干涉现象的理解。
四、教学设计思路和教学流程1.教学设计思想“交变电流”是高中物理选修3-2第五章第一节教学内容,是学习的重点和难点。
本节课贯彻“问题化教学策略”的教学理念,以解决“交流电的产生过程”为核心,使整个教学过程能按照现象→问题→探索→规律→解释现象这样的程序进行。
本节课以“交流电的产生过程”这一演示实验贯穿始终。
用传感器实验引入,通过传感器展示恒定电流与交变电流变化的不同,从而形成良好的学习动机;激发学生探究的欲望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交变电流
教学目标
1. 知识与技能
(1)使学生理解交变电流的产生原理,知道什么是中性面.
(2)掌握交变电流的变化规律及表示方法.
(3)理解交变电流的瞬时值和峰值及中性面的准确含义.
2. 过程与方法
(1)掌握描述物理量的三种基本方法(文字法、公式法、图象法).
(2)培养学生的观察能力、空间想象能力以及将立体图转化为平面图形的能力.
(3)培养学生运用数学知识解决物理问题的能力.
3. 情感、态度与价值观
通过实验观察,激发学习兴趣,培养良好的学习习惯,体会运用数学知识解决物理问题的重要性.
教学重难点
1.交变电流产生的物理过程分析.
2.交变电流的变化规律及应用.
教学准备
手摇发电机、小灯泡、示教电流表、电压传感器(或电流传感器)、学生电源、多媒体课件等.
引入新课
【演示实验】
把两个发光颜色不同的发光二极管并联,注意使两者正负极的方向不同,然后连接到教学用发电机的两端.转动手柄,两个磁极之间的线圈转动.观察发光二极管的发光情况.提出问题:实验现象说明了什么?
思路点拨:观察到的实验现象是两个发光二极管交替发光.手摇发电机的手柄带动发电机的线圈转动,线圈在磁场中的磁通量变化情况不同,产生的感应电流的大小、方向发生变化,由于发光二极管并联在一起,但是正负极的方向不同,导致它们不会同时发光.我们把这种方向随时间做周期性变化的电流称为交变电流,简称交流.现代生产和生活中大都使用交变电流.今天我们学习交变电流的产生和变化规律.
新课教学
(一)交变电流
【自主学习】
引导学生阅读课本P31“交变电流”的内容,学习交变电流的相关知识.
1.交变电流:方向随时间周期性变化的电流叫做交变电流.
2.直流:方向不随时间变化的电流.
3.恒定电流:大小和方向都不随时间变化的电流.
4.交变电流经过电子电路的处理,也能变成直流.
【演示实验】
用示波器演示直流和交变电流随时间变化的图象.
【反馈练习】
在如图所示的几种电流随时间变化的图象中,属于直流电的是________,属于交变电流的是__________.
答案:1、23、4、5、6
(二)交变电流的产生
【课件展示】
利用多媒体课件展示交流发电机的示意图,并设置以下问题.
(1)在线圈转动过程中,哪些边会产生感应电动势?
(2)线圈由甲转到乙的过程中,AB边中电流向哪个方向流动?线圈由丙转到丁的过程中,AB边中电流向哪个方向流动?
(3)当线圈转到什么位置时线圈中没有电流,转到什么位置时线圈中的电流最大?
(4)大致画出通过电流表的电流随时间变化的曲线,从E流向F的电流记为正,反之为负.在横坐标上标出线圈到达甲、乙、丙、丁几个位置时对应的时刻.
答案点拨:
(1)在线圈转动过程中,AB和CD边切割磁感线,产生感应电动势.
(2)线圈由甲转到乙的过程中,AB边中电流由B向A流动;线圈由丙转到丁的过程中,AB边中电流由A向B流动.
(3)当线圈转到与磁场的方向垂直的位置时,线圈中没有电流;当线圈转到与磁场的方向平行时,线圈中的电流最大.
(4)
【归纳总结】
1.中性面:线框平面与磁感线垂直的位置.
2.线圈处于中性面位置时,穿过线圈的磁通量最大,但感应电流为零.
3.线圈经过中性面时,线圈中的电流方向改变,线圈转一周,感应电流方向改变两次.
【反馈练习】
矩形线圈在匀强磁场中绕垂直于磁场方向的轴匀速转动,下列说法中正确的是()
A.在中性面时,通过线圈的磁通量最大
B .在中性面时,感应电动势为零
C .穿过线圈的磁通量为零时,感应电动势也为零
D .线圈每通过中性面一次,电流方向改变一次 答案:ABD
(三)交变电流的变化规律 【课件展示】
如图所示,矩形线圈ABCD 在匀强磁场中,AB 边的长度为l ,BC 边的长度为d ,线圈的阻值为R ,以AB 边所在的直线为轴,以一定的角速度ω从该位置开始匀速转动.
问题:
(1)CD 边的线速度多大?
(2)如图所示,经过时间t ,CD 边的线速度与磁感线的夹角θ=ωt ,线圈中的感应电流的大小和方向如何?
(3)如图所示,经过时间t ,CD 边的线速度与磁感线的夹角为θ=ωt -π,线圈中的感应电流的大小和方向如何?
答案点拨:
(1)当线圈ABCD 以AB 边所在的直线为轴匀速转动时,CD 边的线速度v =ωd . (2)此时的感应电动势E =Blv sin θ=Blωd sin ωt ,线圈中的感应电流I =E R =Bldωsin ωt
R ,
感应电流方向为由D 到C .
(3)此时的感应电动势E =Blv sin θ=-Blωd sin ωt ,线圈中的感应电流I =E
R =-
Bldωsin ωt
R
,感应电流方向为由C 到D .
公式推导:
线圈在与中性面垂直的位置感应电动势最大E max =BSω.所以,线圈的感应电动势e =E max sin ωt .线圈中的电流为i =e R =E max
R sin ωt =I max sin ωt .CD 边切割磁感线为等效电源,CD
两端的电压u =U max sin ωt .
【课件展示】
利用多媒体展示几种常见的交变电流的波形.
【归纳总结】
1.按正弦规律变化的交变电流叫做正弦式交变电流,简称正弦式电流.
2.正弦式交变电流的变化规律:e =E max sin ωt ,u =U max sin ωt ,i =I max sin ωt .其中,E max 、U max 、I max 为峰值,e 、u 、i 为瞬时值.
【反馈练习】
如图所示,ab 边长为20 cm ,ad 边长为10 cm 的矩形线圈,匝数N =10,磁场的磁感应强度B =0.2 T ,线圈转速n =100 r/s.求:
(1)该线圈产生的感应电动势的最大值; (2)若从中性面计时,则经过1
600
s 时线圈电动势的瞬时值. 答案:(1)8π (2)43π 课堂小结
引导学生自主总结本节课的收获,然后小组内交流、补充. 板书设计
1 交变电流
一、交变电流
1.交变电流:方向随时间周期性变化的电流叫做交变电流.
2.直流:方向不随时间变化的电流.
3.恒定电流:大小和方向都不随时间变化的电流.
4.交变电流经过电子电路的处理,也能变成直流.
二、交变电流的产生
1.中性面:线框平面与磁感线垂直的位置.
2.线圈处于中性面位置时,穿过线圈的磁通量最大,但感应电流为零.
3.线圈经过中性面时,线圈中的电流方向改变,线圈转一周,感应电流方向改变两次.
三、交变电流的变化规律
1.按正弦规律变化的交变电流叫做正弦式交变电流,简称正弦式电流.
2.正弦式交变电流的变化规律:e=E max sin ωt,u=U max sin ωt,i=I max sin ωt.其中,E max、U max、I max为峰值,e、u、i为瞬时值.。