萃取实验

合集下载

化学实验报告_萃取

化学实验报告_萃取

一、实验目的1. 理解萃取原理及其在化学分离中的应用;2. 掌握萃取实验的基本操作方法;3. 熟悉实验仪器的使用。

二、实验原理萃取是一种利用物质在不同溶剂中的溶解度差异,将混合物中的某一组分从一种溶剂转移到另一种溶剂中的方法。

萃取实验的原理是:在一定条件下,混合物中的组分在两种互不相溶的溶剂中具有不同的溶解度,使得某一组分可以从一种溶剂转移到另一种溶剂中,从而实现分离。

三、实验仪器与试剂1. 仪器:分液漏斗、烧杯、玻璃棒、滴定管、移液管、滤纸、铁架台等;2. 试剂:氯仿、苯、四氯化碳、乙醇、乙酸乙酯、正己烷、碘、溴、溴化铁等。

四、实验步骤1. 准备实验试剂和仪器,确保实验环境的清洁和安全;2. 将氯仿、苯、四氯化碳、乙醇、乙酸乙酯、正己烷等试剂分别加入分液漏斗中,每个分液漏斗中加入5mL;3. 将碘和溴化铁溶液分别加入两个烧杯中,待溶液混合均匀;4. 将碘和溴化铁溶液分别加入两个分液漏斗中,每个分液漏斗中加入10mL;5. 将分液漏斗充分振荡,使两种溶剂充分混合;6. 静置分层,待两种溶剂分离;7. 将下层有机溶剂取出,放入烧杯中;8. 将烧杯中的有机溶剂加入滴定管中,用移液管取出一定量的有机溶剂,放入另一个烧杯中;9. 在另一个烧杯中加入适量的水,充分振荡,使有机溶剂中的碘和溴化铁充分溶解;10. 将溶液过滤,得到纯净的碘和溴化铁溶液;11. 对比实验前后碘和溴化铁溶液的颜色变化,分析萃取效果。

五、实验结果与分析1. 实验过程中,观察到碘和溴化铁溶液在氯仿、苯、四氯化碳、乙醇、乙酸乙酯、正己烷等溶剂中均发生了萃取现象,说明萃取实验成功;2. 通过对比实验前后碘和溴化铁溶液的颜色变化,发现氯仿、苯、四氯化碳等溶剂对碘和溴化铁的萃取效果较好;3. 在实验过程中,观察到乙醇和乙酸乙酯对碘和溴化铁的萃取效果较差,可能是由于这两种溶剂与水互溶,导致萃取效果不佳。

六、实验结论1. 萃取实验成功,证明了萃取原理在化学分离中的应用;2. 氯仿、苯、四氯化碳等溶剂对碘和溴化铁的萃取效果较好,乙醇和乙酸乙酯的萃取效果较差;3. 在实际应用中,应根据需要分离的组分选择合适的萃取剂和溶剂。

实验报告萃取

实验报告萃取

一、实验目的1. 了解萃取的基本原理和操作方法;2. 掌握萃取在不同体系中的应用;3. 熟悉萃取实验的操作步骤和安全注意事项。

二、实验原理萃取是一种利用两种不相溶的液体(通常是水和有机溶剂)之间的分配系数差异,将混合物中的某一组分从一种液体转移到另一种液体的过程。

萃取剂的选择、萃取剂与混合物的接触时间、萃取温度等因素都会影响萃取效率。

三、实验仪器与试剂1. 仪器:分液漏斗、烧杯、锥形瓶、量筒、滴定管、酒精灯、磁力搅拌器、电子天平;2. 试剂:氯仿、苯、乙醇、正己烷、碘化钾溶液、硫酸溶液、盐酸溶液、硫酸铜溶液、无水硫酸钠。

四、实验步骤1. 准备实验试剂:取一定量的碘化钾溶液和硫酸铜溶液,混合均匀;2. 加入萃取剂:向混合溶液中加入氯仿,充分振荡,静置;3. 分液:将混合溶液倒入分液漏斗中,静置分层;4. 收集有机层:打开分液漏斗下端的活塞,将有机层收集于烧杯中;5. 脱水:向有机层中加入无水硫酸钠,充分振荡,静置;6. 收集有机层:将脱水后的有机层收集于锥形瓶中;7. 测定有机层中碘化钾的质量:用滴定管滴加硫酸溶液,用淀粉溶液作指示剂,滴定至蓝色消失,记录消耗的硫酸溶液体积;8. 计算萃取效率:根据消耗的硫酸溶液体积,计算有机层中碘化钾的质量,并与原始溶液中的碘化钾质量比较,计算萃取效率。

五、实验结果与分析1. 实验结果:根据滴定结果,有机层中碘化钾的质量为1.5g,原始溶液中碘化钾的质量为2.0g;2. 萃取效率:萃取效率为75%。

六、实验讨论1. 萃取剂的选择:在本实验中,氯仿作为萃取剂,具有良好的萃取性能。

在实际应用中,应根据被萃取物质的性质和溶剂的极性选择合适的萃取剂;2. 萃取时间的控制:萃取时间的长短会影响萃取效率。

在本实验中,经过一定时间的振荡和静置,即可达到较好的萃取效果;3. 萃取温度的影响:温度对萃取效率有一定影响。

在本实验中,室温条件下即可达到较好的萃取效果,无需加热。

七、实验结论1. 本实验成功实现了碘化钾在氯仿中的萃取;2. 通过调整萃取剂、萃取时间和温度等条件,可以优化萃取效果;3. 萃取实验在化学、化工等领域具有广泛的应用价值。

萃取的实验报告数据

萃取的实验报告数据

1. 了解萃取实验的基本原理和方法;2. 掌握萃取实验的实验步骤和操作技巧;3. 通过实验验证萃取实验的可行性。

二、实验原理萃取是一种利用不同物质在两种互不相溶的溶剂中的溶解度差异,通过液-液接触,使其中一种物质从一种溶剂转移到另一种溶剂中的方法。

本实验采用有机溶剂萃取水溶液中的有机物。

三、实验仪器与试剂1. 仪器:分液漏斗、烧杯、移液管、锥形瓶、电子天平、恒温水浴锅等。

2. 试剂:有机溶剂(如乙酸乙酯)、水溶液(如含有机物的水溶液)、硝酸、盐酸、氢氧化钠等。

四、实验步骤1. 准备实验器材,确保实验环境安全。

2. 称取一定量的有机溶剂和含有机物的水溶液,分别置于锥形瓶中。

3. 将锥形瓶放入恒温水浴锅中,加热至一定温度(如60℃)。

4. 打开分液漏斗,将有机溶剂缓慢加入锥形瓶中,同时不断摇动锥形瓶,使有机溶剂与水溶液充分混合。

5. 混合一段时间后,静置锥形瓶,待有机溶剂和水溶液分层。

6. 打开分液漏斗下端阀门,将下层水溶液放出,收集上层有机溶剂。

7. 将收集到的有机溶剂转移至另一锥形瓶中,加入一定量的硝酸,使有机溶剂中的有机物转化为硝酸盐。

8. 将锥形瓶放入恒温水浴锅中,加热至一定温度(如60℃)。

9. 加入一定量的氢氧化钠,使硝酸盐转化为相应的有机物。

10. 观察有机物是否从有机溶剂中析出,如析出,则萃取实验成功。

1. 有机溶剂:乙酸乙酯,25.0mL;2. 含有机物的水溶液:50.0mL;3. 加热温度:60℃;4. 混合时间:30min;5. 分层时间:15min;6. 水溶液放出量:25.0mL;7. 有机溶剂放出量:25.0mL;8. 硝酸加入量:5.0mL;9. 氢氧化钠加入量:5.0mL;10. 有机物析出量:0.5g。

六、实验结果与分析1. 实验结果表明,萃取实验成功地将有机物从水溶液中分离出来。

2. 通过加热、摇动、静置等操作,使有机溶剂与水溶液充分混合,有利于有机物的萃取。

3. 实验过程中,有机溶剂和水溶液分层明显,有利于有机物的分离。

萃取的的实验报告

萃取的的实验报告

实验名称:萃取实验实验目的:1. 学习萃取原理和方法。

2. 掌握萃取实验的基本操作。

3. 了解萃取在化学分析中的应用。

实验原理:萃取是一种利用物质在不同溶剂中的溶解度差异,将混合物中的某一组分分离出来的方法。

萃取剂的选择应符合以下条件:1. 萃取剂与原溶剂不互溶。

2. 被萃取物质在萃取剂中的溶解度大于在原溶剂中的溶解度。

3. 萃取剂与被萃取物质不发生化学反应。

实验仪器与试剂:1. 仪器:分液漏斗、烧杯、玻璃棒、锥形瓶、铁架台、滴定管等。

2. 试剂:氯仿、苯、碘、硫酸、盐酸、氢氧化钠等。

实验步骤:1. 准备氯仿和苯作为萃取剂,分别置于分液漏斗中。

2. 在烧杯中加入一定量的碘溶液,并加入少量硫酸,充分振荡使碘溶解。

3. 将碘溶液倒入分液漏斗中,加入氯仿和苯,充分振荡,使碘在氯仿和苯中萃取。

4. 静置分层,观察有机层和水层的颜色变化。

5. 将有机层通过滴定管转移到锥形瓶中,加入少量氢氧化钠溶液,充分振荡,使碘与氢氧化钠反应生成碘化钠。

6. 将反应后的溶液再次静置分层,观察有机层和水层的颜色变化。

7. 将有机层通过滴定管转移到另一个锥形瓶中,加入少量盐酸,充分振荡,使碘化钠与盐酸反应生成碘。

8. 将反应后的溶液再次静置分层,观察有机层和水层的颜色变化。

9. 记录实验数据,计算萃取率。

实验结果:1. 在氯仿和苯中,碘的萃取率为85%。

2. 在氢氧化钠和盐酸中,碘的萃取率为95%。

实验分析:1. 通过实验可知,萃取是一种有效的分离方法,可以将混合物中的某一组分分离出来。

2. 萃取剂的选择对萃取效果有重要影响,应选择合适的萃取剂。

3. 在实验过程中,要注意控制实验条件,如振荡时间、静置时间等,以保证实验结果的准确性。

实验结论:1. 萃取是一种有效的分离方法,可用于化学分析中。

2. 在萃取实验中,选择合适的萃取剂和实验条件对萃取效果有重要影响。

3. 通过本次实验,掌握了萃取实验的基本操作,了解了萃取在化学分析中的应用。

液_液萃取实验报告(3篇)

液_液萃取实验报告(3篇)

第1篇一、实验目的1. 理解液液萃取的基本原理和过程。

2. 掌握分液漏斗的使用方法和操作技巧。

3. 通过实验验证萃取分离的效率。

4. 学习如何通过萃取分离混合物中的特定成分。

二、实验原理液液萃取是利用物质在不同溶剂中的溶解度差异,通过混合、振荡、静置分层和分液等步骤,将混合物中的某一组分从另一组分中分离出来的方法。

其基本原理是:溶质在互不相溶的溶剂中具有不同的溶解度,溶质会从溶解度小的溶剂转移到溶解度大的溶剂中,从而实现分离。

三、实验仪器和药品仪器:- 分液漏斗(梨形)- 铁架台(带铁圈)- 烧杯- 振荡器- 秒表药品:- 混合溶液(含有待萃取的溶质)- 萃取剂(与混合溶液不互溶的溶剂)- 水或无水乙醇(用于洗涤)四、实验步骤1. 准备工作:- 检查分液漏斗是否漏水,确保密封性良好。

- 准备好混合溶液和萃取剂。

2. 加入溶液:- 将混合溶液倒入分液漏斗中,注意不要超过漏斗容积的2/3。

- 向分液漏斗中加入适量的萃取剂。

3. 振荡混合:- 盖好分液漏斗的玻璃塞,轻轻振荡,使混合溶液和萃取剂充分混合。

- 振荡过程中,注意观察两相液体的混合情况,确保充分接触。

4. 静置分层:- 将分液漏斗放置在铁架台上,静置一段时间,等待两相液体分层。

- 观察分层情况,确认两相液体已完全分层。

5. 分液:- 打开分液漏斗下端的活塞,使下层液体(通常为萃取剂层)缓慢流出至烧杯中。

- 待下层液体流尽后,关闭活塞,打开上端玻璃塞,将上层液体(通常为混合溶液层)倒入另一个烧杯中。

6. 洗涤:- 向分液漏斗中加入少量水或无水乙醇,重复振荡、静置分层和分液的步骤,以去除萃取剂层中的残留溶质。

7. 回收萃取剂:- 将萃取剂层倒入烧杯中,加热蒸发,回收萃取剂。

五、实验现象1. 振荡混合过程中,混合溶液和萃取剂充分接触,形成乳白色混合物。

2. 静置分层后,上层液体(混合溶液层)通常颜色较浅,下层液体(萃取剂层)通常颜色较深。

3. 分液过程中,下层液体(萃取剂层)和上层液体(混合溶液层)分离清晰。

萃取实验报告总结

萃取实验报告总结

引言:萃取实验是化学实验中常见的一种分离技术,通过溶剂的选择性溶解性来分离和纯化混合物中的化合物。

本文旨在总结萃取实验的相关内容及实验数据,以及对实验结果进行分析和讨论。

概述:萃取实验是通过溶剂的选择性溶解性来分离和纯化混合物中的化合物。

其原理是利用不同物质在不同溶剂中的溶解度差异,将目标化合物从溶液中分离出来。

正文内容:一、实验目的1.确定目标化合物的溶解度2.优化萃取条件,提高目标化合物的纯度和回收率3.探究其他因素对萃取效果的影响二、实验材料和方法1.实验材料:目标化合物、溶剂、分离漏斗、滴定管等。

2.实验方法:萃取的一般步骤包括溶解混合物、加入溶剂、摇匀混合、分离并收集两相液。

三、实验结果及数据分析1.实验结果:记录萃取实验中目标化合物的纯度和回收率。

2.数据分析:根据实验数据,计算目标化合物的回收率和纯度,并与理论值进行比较,评价实验的可靠性和准确性。

四、实验中遇到的问题及解决方法1.溶剂选择:根据化合物的特性选择合适的萃取溶剂,确保目标化合物能够高效地被提取。

2.操作技巧:注意操作过程中的细节,如摇动力度、分离漏斗使用方法等,以避免实验结果的误差。

五、实验的改进和展望1.改进方法:通过对比不同溶剂和不同条件下的萃取效果,优化实验方案,提高目标化合物的回收率和纯度。

2.展望:进一步探索萃取实验在不同化合物分离中的应用,追求更高效、更环保的分离技术。

文末总结:通过萃取实验我们可以有效地分离混合物中的目标化合物,提高其纯度和回收率。

在实验中,合理选择溶剂、掌握好操作技巧是保证实验成功的重要因素。

同时,我们还可以通过不断优化实验方案和探索新的分离技术来提高实验效果。

希望通过本文的总结,能够对萃取实验有更深入的了解,并促进相关研究的发展。

引言概述:萃取实验是化学实验中常用的一种分离纯化技术,通过溶剂的选用和适当的操作条件,将化合物从混合物中分离出来。

本文将对萃取实验进行总结和分析。

我们将介绍萃取实验的原理和目的,然后详细描述实验过程,包括实验条件的选择、溶剂体系的构建、操作步骤等。

萃取实验_精品文档

萃取实验_精品文档

萃取实验一、实验目的研究萃取方法在化学分离中的应用,并学习掌握萃取实验的基本原理和操作技巧。

二、实验原理在化学分离中,萃取是一种常用的分离技术。

它利用两种或多种不同溶剂之间的互溶性差异,将目标物质从混合物或溶液中分离出来。

萃取涉及物质在两个不同相(通常是水相和有机相)之间的分配,通过调整pH值、温度和溶剂的选择,可以实现对目标物质的选择性提取。

萃取的过程包括萃取、分配和从相中分离目标物质等步骤。

三、实验步骤1.准备实验所需材料和设备。

2.安全注意事项:戴上实验手套和护目镜,实验操作需严格遵守实验室安全规定。

3.准备混合物或待萃取的溶液。

4.准备两种不同相的溶剂,并确保它们与待萃取物质有良好的互溶性。

5.将待萃取溶液与溶剂混合,充分摇匀。

6.静置待溶液分层,使两相分层分明。

7.将下层(有机相)或上层(水相)分取出来。

8.重复萃取步骤,直到需萃取物质被充分提取。

9.将萃取物质的有机相转移至干燥皿中,用旋转蒸发仪去除有机溶剂。

10.得到纯净的目标物质。

四、实验注意事项1.实验过程中需要注意个人安全,佩戴实验手套和护目镜。

2.实验操作需遵守实验室规定和操作规程。

3.选择合适的溶剂,确保其与待萃取物质有互溶性。

4.注意摇匀待萃取溶液,确保充分的混合。

5.静置待萃取物质使其分层方便分离。

6.重复萃取步骤可以提高目标物质的提取率。

7.注意旋转蒸发仪的使用,确保有机溶剂的安全去除。

8.实验完成后,及时清理实验台和设备。

五、实验结果与分析根据不同的实验目的,实验结果会有所不同。

萃取实验可以成功地将待萃取的溶液中的目标物质从混合物中分离出来。

通过分析纯净的目标物质,可以得到定量或定性的实验结果。

对于定量实验,可以通过比色法、滴定法等对目标物质进行定量分析。

对于定性实验,则可以通过比较目标物质的性质与参考物质的性质进行鉴定。

六、实验总结萃取实验是一种常用的分离技术,在化学分离中具有重要的应用价值。

通过本实验的操作,我学习到了萃取实验的基本原理和操作技巧。

萃取实验感悟心得体会(3篇)

萃取实验感悟心得体会(3篇)

第1篇一、引言萃取实验是化学实验中的一种基本操作,它通过选择合适的萃取剂,将混合物中的目标物质从一种相转移到另一种相中,从而达到分离的目的。

在大学化学实验课程中,萃取实验是一项重要的实践操作,通过这一实验,我对化学实验有了更深刻的认识,以下是我对萃取实验的一些感悟和心得体会。

二、实验目的与原理1. 实验目的通过萃取实验,学习并掌握萃取的基本原理和方法,提高对物质分离纯化的实际操作能力,培养严谨的科学态度和团队协作精神。

2. 实验原理萃取是一种利用物质在不同溶剂中溶解度差异,将混合物中的目标物质从一种相转移到另一种相中的方法。

通常,萃取剂的选择要满足以下条件:萃取剂与原溶剂不互溶,萃取剂与目标物质有较大的溶解度差异,萃取剂与原溶剂及目标物质不发生化学反应。

三、实验过程与操作1. 实验步骤(1)准备萃取剂:根据实验要求,选择合适的萃取剂。

(2)混合溶液:将待分离的混合物与萃取剂按一定比例混合。

(3)震荡:将混合溶液放入分液漏斗中,震荡使其充分接触,直至两相分层。

(4)分液:打开分液漏斗的活塞,让下层溶液流出,收集上层溶液。

(5)重复萃取:将收集到的上层溶液再次与萃取剂混合,重复上述操作,提高目标物质的提取率。

2. 操作要点(1)分液漏斗的使用:在使用分液漏斗时,注意调节活塞,确保液体顺利流出。

(2)震荡:震荡时,应确保混合溶液充分接触,但避免震荡过度,造成乳化现象。

(3)分液:分液时,应先让下层溶液流出,再收集上层溶液,以避免两相混合。

四、实验结果与分析1. 实验结果通过萃取实验,成功分离出目标物质,提高了目标物质的纯度。

2. 结果分析(1)萃取剂的选择:选择合适的萃取剂是萃取实验成功的关键。

本实验中,根据目标物质的性质,选择了一种溶解度差异较大的萃取剂,从而提高了目标物质的提取率。

(2)操作技巧:在实验过程中,严格按照操作步骤进行,注意细节,如分液漏斗的使用、震荡等,以保证实验结果的准确性。

五、感悟与心得体会1. 实验技能的提升通过萃取实验,我对萃取原理和操作有了更深入的了解,提高了自己的实验技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液液萃取塔的操作
一、实验目的
(1)了解液液萃取设备的结构和特点;
(2)掌握液液萃取塔的操作;
(3)掌握传质单元高度的测定方法,并分析外加能量对液液萃取塔传质单元高度和通量的影响。

二、基本原理
1.液液萃取设备的特点
液液相传质和气液相传质均属于相间传质过程。

因此这两类传质过程具有相似之处,但也有相当差
别。

在液液系统中,两相间的重度差较小,界面张力也不大,所以从过程进行的流体力学条件看,在液液相的接触过程中,能用于强化过程的惯性力不大,同时已分散的两相,分层分离能力也不高。

因此,对于气液接触效率较高的设备,用于液液接触就显得效率不高。

为了提高液液相传质设备的效率,常常补给能量,如搅拌、脉动、振动等。

为使两相逆流和两相分离,需要分层段,以保证有足够的停留时间,让分散的液相凝聚,实现两相的分离。

2.液液萃取塔的操作
(1)分散相的选择
在萃取设备中,为了使两相密切接触,其中一相充满设备中的主要空间,并呈连续流动,称为连续相;另一相以液滴的形式,分散在连续相中,称为分散相。

哪一相作为分散相对设备的操作性能、传质效果有显著的影响。

分散相的选择可通过小试或中试确定,也可根据以下几方面综合考虑:
1)为了增加相际接触面积,一般将流量大的一相作为分散相;但如果两相的流量相差很大,并且所选用的萃取设备具有较大的轴向混合现象,此时应将流量小的一相作为分散相,以减小轴向混合。

2)应充分考虑界面张力变化对传质面积的影响,对于dx d
>0的系统,即系统的界面张力随溶质浓度增加而增加的系统;当溶质从液滴向连续相传递时,液滴的稳定性较差,容易破碎,而液膜的稳定性较好,液滴不易合并,所以形成的液滴平均直径较小,相际接触表面较大,当溶质从连续相向液滴传递时,情况刚好相反。

在设计液液传质设备时,根据系统性质正确选择作为分散相的液体,可在同样条件下获得较大的相际传质表面积,强化传质过程。

3)对于某些萃取设备,如填料塔和筛板塔等,连续相优先润湿填料或筛板是相当重要的。

此时,宜将不易润湿填料或筛板的一相作为分散相。

4)分散相液滴在连续相中的沉降速度,与连续相的粘度有很大关系。

为了减小塔径,提高二相分离的效果,应将粘度大的一相作为分散相。

5)此外,从成本、安全考虑,应将成本高的,易燃、易爆物料作为分散相.
(2)液滴的分散
为了使其中一相作为分散相,必须将其分散为液滴的形式。

一相液体的分散,亦即液滴的形成,必须使液滴有一个适当的大小。

因为液滴的尺寸不仅关系到相际接触面积,而且影响传质系数和塔的流通量。

较小的液滴,固然相际接触面积较大,有利于传质;但是过小的液滴,其内循环消失,液滴的行为趋于固体球,传质系数下降,对传质不利。

所以,液滴尺寸对传质的影响必须同时考虑这两方面的因素。

此外,萃取塔内连续相所允许的极限速度(泛点速度)与液滴的运动速度有关。

而液滴的运动速度与液滴的尺寸有关。

一般较大的液滴,其泛点速度较高,萃取塔允许有较大的流通量;相反,较小的液滴,其泛点速度较低,萃取塔允许的流通量也较低。

液滴的分散可以通过以下几个途径实现:
A 借助喷嘴或孔板,如喷洒塔和筛孔塔。

B 借助塔内的填料,如填料塔。

C 借助外加能量,如转盘塔,振动塔,脉动塔,离心萃取器等。

液滴的尺寸除与物性有关外,主要决定于外加能量的大小。

(3)萃取塔的操作
萃取塔在开车时,应首先将连续相注满塔中,然后开启分散相,分散相必须经凝聚后才能自塔内排出。

因此当轻相作为分散相时,应使分散相不断在塔顶分层段凝聚,当两相界面维持适当高度后,再开启分散相出口阀门,并依靠重相出口的π形管自动调节
界面高度。

当重相作为分散相时,则分散相不断在塔底的分层段凝聚,两相界面应维持在塔底分层段的某一位置上。

3.液液相传质设备内的传质
与精馏,吸收过程类似,由于过程的复杂性,萃取过程也被分解为理论级和级效率,或传质单元数和传质单元高度。

对于转盘塔,振动塔这类微分接触的萃取塔,一般采用传质单元数和传质单元高度来处理。

传质单元数表示过程分离难易的程度
对于稀溶液,传质单元数可近似用下式表示 ⎰-=1
2*x x OR x x dx N
式中 OR N 以萃余相为基准的总传质单元数;
x 萃余相中溶质的浓度,
*x 与相应萃取相浓度成平衡的萃余相中溶
质的浓度,
21,x x 分别表示两相进塔和出塔的萃余相浓度。

传质单元高度表示设备传质性能的好坏,可由下式表示 OR OR N H
H =
式中 OR H 以萃余相为基准的传质单元高度; H 萃取塔的有效接触高度。

已知塔高H 和传质单元数OR N ,可由上式取得OR H 的数值。

OR H 反映萃取设备传质性能的好坏,OR H 越大,设备效率越低。

影响萃取设备传质性能OR H 的因素很多,主要有设备结构因素,两相物性因素,操作因素以及外加能量的形式和大小。

4.外加能量的问题
液液传质设备引入外界能量促进液体分散,改善两相流动条件,这些均有利于传质,从而提高萃取效率,降低萃取过程的传质单元高度,但应该注意,过度的外加能量将大大增加设备内的轴向混合,减小过程的推动力。

此外过度分散的液滴,滴内将消失内循环。

这些均是外加能量带来的不利因素。

权衡利弊两方面的因素,外界能量应适度,对于某一具体萃取过程,一般应通过实验寻找合适的能量输入量。

往复振动筛板塔外加能量大小的标志是振幅与振动频率的乘积。

5.液泛
在连续逆流萃取操作中,萃取塔的通量(又称负
荷)取决于连续相容许的线速度,其上限为最小的分散相液滴处于相对静止状态时的连续相流率。

这时塔刚处于液泛点(即为液泛速度)。

在实验操作中,连续相的流速应在液泛速度以下。

为此需要有可靠的液泛数据,一般这是在中试设备中用实际物料做实验测得的。

三、实验内容
以水萃取煤油中的苯甲酸为萃取物系,选用萃取剂与原料液之比为l:l。

(1)以煤油为分散相,水为连续相,进行萃取过程的操作。

(2)测定不同频率或不同振幅下的萃取效率(传质单元高度)。

(3)在最佳效率或振幅下,测定本实验装置的最大通量或液泛速度。

四、实验装置
本实验装置中的主体设备为振动式萃取塔。

振动式萃取塔,又称往复振动筛板塔,是一种效率比较高的液液萃取设备,其上下两端各有一沉降室。

为使每相在沉降室中停留一定时间,通常作成扩大形状。

在萃取区有一系列的筛板固定在中心轴上,中心轴由塔顶处的曲柄连杆机构驱动,以一定的频率和振幅带动筛板作上下往覆运动。

当筛板向上运动时,筛板上侧的液体通过筛孔向下喷射;当筛板向下运动时,筛板下侧的液体通过筛孔向上喷射。

使两相液体处于高度湍动状态,并使液体不断分散并推动液体上下运动,直至在分层分离段中沉降。

振动塔具有以下几个特点:1)传质阻力小,相际接触界面大,萃取效率较高;2)在单位塔截面上通过的物料速度高,生产能力较大;3)应用曲柄连杆机构,筛板固定在刚性轴上,操作方便,结构可靠。

五、实验操作原则及分析方法
1.操作原则
(1)应先在塔中灌满连续相--水,然后开启分散相--煤油,待分散相在塔顶凝聚一定厚度的液层后,通过连续相的出口π形管,调节两相的界面于一定的高度。

(2)振动筛板塔的振幅可通过曲柄连杆机构调节(实验前一般已调节固定好),振动频率可通过对电机电压的调节来改变。

电机电压的调节应从小到
大缓慢进行,以免对设备造成可能的损坏。

(3)在一定频率和振幅下,当通过塔的两相流量增大时,塔内分散相的滞留量也不断增加,液泛时滞留量可达到最大值。

此时可观察到分散相不断合并最终导致转相,并在塔内出现第二界面。

正常操作中应避免发生液泛。

2.分析方法
(1)样品是通过化学滴定方法进行分析。

取25ml 样品于三角烧杯中,加入适量去离子水和酚酞指示剂,在不断摇动的同时滴入OH N a 并计量直至等当点。

样品中苯甲酸的重量百分数可由下式求得:
样品V V N w OH
N OH n a a ⋅⋅⋅=800122%
式中,样品V 为所取样品量(25ml );
O H
N a V 为消耗的OH N a 量(ml ); OH N a N 为预先配制的OH N a 的当量浓度(mol )。

(2) OR H 的计算方法
OR H = H /OR N
式中, H 为萃取段的高度,本装置 H = 0.9 m ; 在稀溶液条件下,
m r
f OR w w w N ∆-≅(m r f w w w ∆,,依次为油相进、出口样品的重量百分含量,以及
与平衡值有关的对数平均值。

以重量百分数为准的相平衡常数m = 2.2 )。

相关文档
最新文档