高中三角函数测试题及答案

合集下载

高中数学三角函数专项(含答案)

高中数学三角函数专项(含答案)

高中数学三角函数专项(含答案)一、填空题1.已知函数()1sin sin 34f x x x π⎛⎫=⋅+- ⎪⎝⎭定义域为[](),m n m n <,值域为11,24⎡⎤-⎢⎥⎣⎦,则n m-的最小值是________.2.如图,在ABC 中,1cos 3BAC ∠=-,2AC =,D 是边BC 上的点,且2BD DC =,AD DC =,则AB 等于______.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,1a =,34A π=,若b c λ+有最大值,则实数λ的取值范围是_____.4.已知正方体1111ABCD A B C D -,点E 是AB 中点,点F 为1CC 的中点,点P 为棱1DD 上一点,且满足//AP 平面1D EF ,则直线AP 与EF 所成角的余弦值为_______. 5.在锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos b a a C -=,则ac的取值范围是______.6.通信卫星与经济、军事等密切关联,它在地球静止轨道上运行,地球静止轨道位于地球赤道所在平面,轨道高度为km h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球(球心为O ,半径为km r ),地球上一点A 的纬度是指OA 与赤道平面所成角的度数,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个仰角为θ的地面接收天线(仰角是天线对准卫星时,天线与水平面的夹角),若点A 的纬度为北纬30,则tan 3θ________.7.意大利著名画家、数学家、物理学家达芬奇在他创作《抱银貂的女子》时思考过这样一个问题:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的悬链线问题,连接重庆和湖南的世界第一悬索桥——矮寨大桥就采用了这种方式设计.经过计算,悬链线的函数方程为()e e cos 2x xh x -+=,并称其为双曲余弦函数.若()()cos sin cos cos sin cos h h m θθθθ+≥-对0,2πθ⎡⎤∀∈⎢⎥⎣⎦恒成立,则实数m 的取值范围为______.8.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.9.已知正四棱柱1111ABCD A B C D -中,2AB =,13AA =若M 是侧面11BCC B 内的动点,且AM MC ⊥,则1A M 的最小值为__________.10.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相邻交点....A ,B ,C 满足2AB BC =,则实数m =______. 二、单选题11.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B )D .f (sin A )≥f (cos B )12.已知向量a ,b 夹角为3π,向量c 满足1b c -=且 a b a c b c ++=,则下列说法正确的是( ) A .2b c +<B .2a b +>C .1b <D .1a >13.已知,a b Z ∈,满足)98sin 50sin 50a b -︒︒=,则a b +的值为( )A .1B .2C .3D .414.在ABC 中,,E F 分别是,AC AB 的中点,且32AB AC =,若BEt CF <恒成立,则t 的最小值为( ) A .34B .78C .1D .5415.已知函数2log ,0,(),0,x x f x x x >⎧=⎨-≤⎩函数()g x 满足以下三点条件:①定义域为R ;②对任意x ∈R ,有()()2g x g x π+=;③当[0,]x π∈时,()sin g x x =.则函数()()y f x g x =-在区间[4,4]ππ-上零点的个数为( ) A .6 B .7 C .8 D .916.在ABC 中,BAC ∠的平分线交BC 于点,2,6D BD DC BC ==,则ABC ∆的面积的最大值为( ) A .6B .62C .12D .12217.已知直线1y x =+上有两点1122(,),(,)A a b B a b ,且12a a >.已知1122,,,a b a b 满足12122||a a b b +22221122a b a b =+⋅+,若||23AB =,则这样的点A 个数为( )A .1B .2C .3D .418.已知函数2()sin f x x x =⋅各项均不相等的数列{}n x 满足||(1,2,3,,)2i x i n π≤=.令*1212()([()()()())]n n F n x x x f x f x f x n N =+++⋅+++∈.给出下列三个命题:(1)存在不少于3项的数列{},n x 使得()0F n =;(2)若数列{}n x 的通项公式为*1()()2n n x n N =-∈,则(2)0F k >对k *∈N 恒成立;(3)若数列{}n x 是等差数列,则()0F n ≥对n *∈N 恒成立,其中真命题的序号是( )A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)19.设函数()3sinxf x mπ=,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞20.△ABC 中,BD 是AC 边上的高,A=4π,cosB=-55,则BD AC =( )A .14B .12C .23D .34三、解答题21.(1)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,R 表示ABC ∆的外接圆半径. ①如图,在以O 圆心、半径为2的圆O 中,BC 和BA 是圆O 的弦,其中2BC =,45ABC ∠=︒,求弦AB 的长;②在ABC ∆中,若C ∠是钝角,求证:2224a b R +<;(2)给定三个正实数a 、b 、R ,其中b a ≤,问:a 、b 、R 满足怎样的关系时,以a 、b 为边长,R 为外接圆半径的ABC ∆不存在、存在一个或存在两个(全等的三角形算作同一个)?在ABC ∆存在的情况下,用a 、b 、R 表示c .22.如图,一幅壁画的最高点A 处离地面4米,最低点B 处离地面2米.正对壁画的是一条坡度为1:2的甬道(坡度指斜坡与水平面所成角α的正切值),若从离斜坡地面1.5米的C 处观赏它.(1)若C 对墙的投影(即过C 作AB 的垂线垂足为投影)恰在线段AB (包括端点)上,求点C 离墙的水平距离的范围;(2)在(1)的条件下,当点C 离墙的水平距离为多少时,视角θ(ACB ∠)最大? 23.如图所示,我市某居民小区拟在边长为1百米的正方形地块ABCD 上划出一个三角形地块APQ 种植草坪,两个三角形地块PAB 与QAD 种植花卉,一个三角形地块CPQ 设计成水景喷泉,四周铺设小路供居民平时休闲散步,点P 在边BC 上,点Q 在边CD 上,记PAB α∠=.(1)当4PAQ π∠=时,求花卉种植面积S 关于α的函数表达式,并求S 的最小值;(2)考虑到小区道路的整体规划,要求PB DQ PQ +=,请探究PAQ ∠是否为定值,若是,求出此定值,若不是,请说明理由. 24.在直角ABC ∆中,2BAC π∠=,延长CB 至点D ,使得2CB BD =,连接AD .(1)若AC AD =,求CAD ∠的值; (2)求角D 的最大值.25.已知向量(1,0)a =,(sin 2,1)b x =--,(2sin ,1)c x =+,(1,)d k =(,)x k R ∈. (1)若[,]x ππ∈-,且()//a b c +,求x 的值; (2)对于()11,m x y =,()22,n x y =,定义12211(,)2S m n x y x y =-.解不等式1(,)2S b c >; (3)若存在x ∈R ,使得()()a b c d +⊥+,求k 的取值范围.26.已知函数2211()cos sin cos sin 22f x x x x x =+-.(1)求()f x 的单调递增区间;(2)求()f x 在区间,82ππ⎡⎤-⎢⎥⎣⎦的最大值和最小值.27.已知函数()()sin 0,2f x t x t πωϕϕ⎛⎫=+>< ⎪⎝⎭,()f x 的部分图像如图所示,点()0,3N ,,02M π⎛⎫- ⎪⎝⎭,,4P t π⎛⎫⎪⎝⎭都在()f x 的图象上.(1)求()f x 的解析式;(2)当,2x ππ⎡⎤∈-⎢⎥⎣⎦时,()33f x m --≤恒成立,求m 的取值范围.28.已知函数()cos s (3co )f x x x x =-. (1)求()f x 的最小正周期及对称中心;(2)若将函数()y f x =的图象向左平移m 个单位所得图象关于y 轴对称,求m 的最小正值.29.已知函数()2cos (sin cos )f x x x x =+,x ∈R . (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间ππ,44⎡⎤-⎢⎥⎣⎦上的最小值和最大值,并求出取得最值时的x 的值.30.已知两个不共线的向量a ,b 满足3)a =,(cos ,sin )b =θθ,R θ∈. (1)若//a b ,求角θ的值;(2)若2a b -与7a b -垂直,求||a b +的值;(3)当0,2π⎡⎤θ∈⎢⎥⎣⎦时,存在两个不同的θ使得|3|||a b ma =成立,求正数m 的取值范围.【参考答案】一、填空题1.3π2.33.2⎝45.⎝⎭6.2rr h-+7.1⎡⎤⎣⎦8.742ω<<或91322ω<≤.910.1或2##2或1二、单选题 11.D 12.A 13.B 14.B 15.A 16.C 17.D 18.D 19.C 20.A 三、解答题21.(1)②证明见解析,(2)见解析. 【解析】 【分析】(1)①由正弦定理知2sin sin sin AB b aR C B A===,根据题目中所给的条件可求出AB 的长;②若C ∠是钝角,则其余弦值小于零,由余弦定理得2222(2)a b c R +<<,即可证出结果;(2)根据图形进行分类讨论判断三角形的形状与两边,a b 的关系,以及与直径的大小的比较,分三类讨论即可. 【详解】(1)①解:因为1sin 22a A R ==,角A 为锐角,所以30A =︒ 因为45ABC ∠=︒,所以105C =︒由正弦定理得,2sin1054sin 75AB R =︒=︒②证明:因为C ∠是钝角,所以cos 0C <,且cos 1C ≠-所以222cos 02a b c C ab +-=<,所以2222(2)a b c R +<<, 即2224a b R +<(2)当2a R >或2a b R ==时,ABC ∆不存在当2a R b a =⎧⎨<⎩时,90A =︒,ABC ∆存在且只有一个所以c =当2a R b a <⎧⎨=⎩时,A B ∠=∠且都是锐角,sin sin 2a A B R ==时,ABC ∆存在且只有一个所以2sin c R C ==当2b a R <<时,B 总是锐角,A ∠可以是钝角,可以是锐角 所以ABC ∆存在两个当90A ∠<︒时,c =当90A ∠>︒时, c =【点睛】此题考查三角形中的几何计算,综合考查了三角形形状的判断然,三角形的外接圆等知识,综合性强,属于难题.22.(1)点C 离墙的水平距离的范围为:1~5m m ;(2)当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【解析】 【分析】(1)如图所示:设(02),BF x x CF y =≤≤=,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;(2)利用两角和的正切公式、结合正切的定义,求出tan θ的表达式,利用换元法、基本不等式进行求解即可.【详解】(1)如图所示:设(02),BF x x CF y =≤≤=,显然有1tan tan 2FGD α∠==,因此有 2(2)tan DFFG x FGD==+∠,由//GE DF ,可得: 1.52(2)22(2)CE CG x y DF GF x x +-=⇒=++,化简得:21y x =+,因为02x ≤≤,所以15y ≤≤,即点C 离墙的水平距离的范围为: 1~5m m ;(2)222tan tan 2tan tan()21tan tan 21x xBCF ACF y y yBCF ACF x x BCF ACF y x x y yθ-+∠+∠=∠+∠===--∠⋅∠-+-⋅,因为21y x =+,所以有12y x -=,代入上式化简得: 2222228tan 11522()5622y y y y y x x y y yθ===---+-⋅++-,因为15y ≤≤,所以有55562564y y y y+-≥⋅=(当且仅当55y y =时取等号,即1y =时,取等号),因此有0tan 2θ<≤,因此当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【点睛】本题考查两角和的正切公式的应用,考查了基本不等式的应用,考查了平行线成比例定理,考查了数学建模能力,考查了数学运算能力. 23.(1)212S sin πα=⎛⎫++ ⎪⎝⎭花卉种植面积0,4πα⎡⎤∈⎢⎥⎣⎦];最小值为)1000021 (2)PAQ ∠是定值,且4PAQ π∠=.【解析】 【分析】(1)根据三角函数定义及4PAQ π∠=,表示出,PB DQ ,进而求得,ABP ADQ S S ∆∆.即可用α表示出S 花卉种植面积,(2)设PAB QAD CP x CQ y αβ∠=∠===,,,,利用正切的和角公式求得()tan αβ+,由PB DQ PQ +=求得,x y 的等量关系.进而求得()tan αβ+的值,即可求得PAQ ∠的值. 【详解】(1)∵边长为1百米的正方形ABCD 中,PAB α∠=,4PAQ π∠=,∴100tan PB α=,100tan 100tan 244DQ πππαα⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,∴ABP ADQ S S S ∆∆+=花卉种植面积 1122AB BP AD DQ =⋅+⋅ 11100100tan 100100tan 224παα⎛⎫=⨯⨯+⨯⨯- ⎪⎝⎭()5000cos sin cos ααα==+⎝⎭,其中0,4πα⎡⎤∈⎢⎥⎣⎦∴当sin 214πα⎛⎫+= ⎪⎝⎭时,即8πα=时,S)100001=.(2)设PAB QAD CP x CQ y αβ∠=∠===,,,, 则100100BP x DQ y =-=-,, 在ABP ∆中,100tan 100x α-=,在ADQ ∆中,100tan 100yβ-=, ∴()()()20000100tan tan tan 1tan tan 100x y x y xyαβαβαβ-+++==-⋅+-,∵PB DQ PQ +=,∴100100x y -+-=100200xyx y +=+, ∴()20000100100100002002tan 1100001001002200xy xyxy xy xy αβ⎛⎫-⨯+-⎪⎝⎭+===⎛⎫-⨯+- ⎪⎝⎭, ∴4παβ+=,∴PAQ ∠是定值,且4PAQ π∠=.【点睛】本题考查了三角函数定义,三角形面积求法,正弦函数的图像与性质应用,正切和角公式的应用,属于中档题. 24.(1)23CAD π∠=;(2)6π.【解析】 【分析】(1)在ABD ∆中,由正弦定理得,sin sin BD ABDα=,再结合在直角ABC ∆中,sin AB BC C =,然后求解即可;(2)由正弦定理及两角和的余弦可得()2tan tan cos 2sin 22D D αααϕ=+=+,然后结合三角函数的有界性求解即可. 【详解】解:(1)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,sin AB BC C =,所以sin sin sin BD BC CDα=, 因为AC AD =,所以C D =, 又因为2CB BD =,所以1sin 2α=,所以6πα=,所以23CAD π∠=;(2)设BAD ∠=α, 在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,()cos cos AB BC ABC BC D α=∠=+, 所以()()cos cos cos sin sin sin sin sin BC D BC D D BD D Dαααα+-==, 因为2CB BD =,所以2sin 2sin cos cos 2sin sin D D D ααα=-, 即22sin cos sin 2tan 12sin 2cos 2D ααααα==+-,即()2tan tan cos 2sin 22D D αααϕ=++,1≤及0,2D π⎛⎫∈ ⎪⎝⎭,解得0tan D <≤ 所以角D 的最大值为6π. 【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题. 25.(1)6π-或56π-(2)5,,66x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭(3)[]5,1k ∈--【解析】 【分析】(1)由题()sin 1,1a b x +=--,由()//a b c +可得()sin 12sin x x -=-+,进而求解即可; (2)由题意得到()()()1,sin 22sin sin 2S b c x x x =-++=,进而求解即可; (3)由()()a b c d +⊥+可得()()0a b c d +⋅+=,整理可得k 关于x 的函数,进而求解即可 【详解】(1)由题,()sin 1,1a b x +=--,因为()//a b c +,所以()sin 12sin x x -=-+,则1sin 2x =-,因为[,]x ππ∈-,所以6x π=-或65x π=-(2)由题,()()()1,sin 22sin sin 2S b c x x x =-++=, 因为1(,)2S b c >,所以1sin 2x >, 当[]0,x π∈时,566x ππ<<, 因为sin y x =是以π为最小正周期的周期函数, 所以5,,66x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭(3)由(1)()sin 1,1a b x +=--,由题,()3sin ,1c d x k +=++, 若()()a b c d +⊥+,则()()()()()sin 13sin 10a b c d x x k +⋅+=-+-+=, 则()22sin 2sin 4sin 15k x x x =+-=+-, 因为[]sin 1,1x ∈-,所以[]5,1k ∈-- 【点睛】本题考查共线向量的坐标表示,考查垂直向量的坐标表示,考查解三角函数的不等式26.(1)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈;(2)()max f x =,()min 12f x =- 【解析】 【分析】(1)直接利用三角函数的恒等变换,把三角函数变形成正弦型函数.进一步求出函数的单调区间.(2)直接利用三角函数的定义域求出函数的最值. 【详解】 解:(1)2211()cos sin cos sin 22f x x x x x =+-11()cos 2sin 222f x x x ∴=+42 ⎪⎝⎭令222242k x k πππππ-+≤+≤+,()k Z ∈解得388k x k ππππ-+≤≤+,()k Z ∈ 即函数的单调递增区间为3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,()k Z ∈(2)由(1)知n ()24f x x π⎛⎫=+ ⎪⎝⎭ ,82x ππ⎡⎤∈-⎢⎥⎣⎦ 520,44x ππ⎡⎤∴+∈⎢⎥⎣⎦所以当242x ππ+=,即8x π=时,()max f x =当5244x ππ+=,即2x π=时,()min 12f x =- 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的单调性的应用,利用函数的定义域求三角函数的值域.属于基础型.27.(1)()22sin 33x f x π⎛⎫=+ ⎪⎝⎭;(2)[]1,0-【解析】 【分析】(1)由三角函数图像,求出,,t ωϕ即可;(2)求出函数()f x m -的值域,再列不等式组32m m +≥⎧⎪⎨≤⎪⎩.【详解】解:(1)由()f x 的图象可知34424T πππ⎛⎫=--= ⎪⎝⎭,则3T π=, 因为23T ππω==,0>ω,所以23ω=,故()2sin 3t x f x ϕ⎛⎫=+ ⎪⎝⎭.因为,02M π⎛⎫- ⎪⎝⎭在函数()f x 的图象上,所以sin 023f t ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 所以()3k k Z πϕπ-+=∈,即()3k k Z πϕπ=+∈,因为2πϕ<,所以3πϕ=.因为点(N 在函数()f x 的图象上,所以()0sin 3f t π==解得2t =,33⎝⎭(2)因为,2x ππ⎡⎤∈-⎢⎥⎣⎦,所以22,3333x πππ⎡⎤+∈-⎢⎥⎣⎦,所以2sin 33x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,则()2f x ≤.因为()33f x m -≤-≤,所以()3m f x m ≤+, 所以32m m +≥⎧⎪⎨⎪⎩10m -≤≤.故m 的取值范围为[]1,0-. 【点睛】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题. 28.(1)π,1,()2122k k Z ππ⎛⎫+-∈⎪⎝⎭;(2)3π 【解析】 【分析】(1)直接利用三角函数关系式的变换,把函数的关系式变形成正弦型函数,进一步求出函数的周期和对称中心.(2)利用(1)的关系式,利用整体思想的应用对函数的关系式进行平移变换和对称性的应用求出最小值. 【详解】(1)因为2()cos cos )cos cos f x x x x x x x =-=-1cos 212sin 2262x x x π+⎛⎫=-=-- ⎪⎝⎭, 所以最小正周期为22T ππ==, 由正弦函数的对称中心知26x k ππ-=,解得212k x ππ=+,k Z ∈, 所以对称中心为1,()2122k k Z ππ⎛⎫+-∈⎪⎝⎭; (2)()y f x =的图象向左平移m 个单位所得解析式是1sin 2262y x m π⎛⎫=+-- ⎪⎝⎭,因为其图象关于y 轴对称, 所以262m k πππ-=+,k Z ∈,解得23k m ππ=+,k Z ∈, 所以m 的最小正值是3π. 【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.29.(1)π;(2)()()min max ππ,0,,148x f x x f x =-===.【解析】(1) 函数()f x 解析式去括号后利用二倍角的正弦、余弦公式化简,整理后再利用两角和与差的正弦函数公式化为一个角的正弦函数,找出w 的值,代入周期公式即可求出最小正周期;(2)根据x 的范围求出这个角的范围,利用正弦函数的值域即可确定出()f x 的值域,进而求出()f x 的最小值与最大值.. 【详解】(1)()()π2cos sin cos sin2cos21214f x x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,因此,函数()f x 的最小正周期πT =. (2) 因为ππ44x -≤≤ 所以ππ3π2444x -≤+≤,sin 24x π⎡⎤⎛⎫∴+∈⎢⎥ ⎪⎝⎭⎣⎦,即()1f x ⎡⎤∈⎣⎦, 所以当244x ππ+=-,即4x π=-时,()min 0f x =,当242x ππ+=,即8x π=时,()max 1f x =.所以4x π=-时,()min 0f x =,8x π=时,()max 1f x .【点睛】此题考查了两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,正弦函数的定义域与值域,熟练掌握公式是解本题的关键,是中档题.30.(1),3k k Z πθθπ⎧⎫=+∈⎨⎬⎩⎭|(23)⎣⎭【解析】 【分析】(1)由题得tan θ=2)先求出1a b ⋅=,再利用向量的模的公式求出||7a b +=;(3)等价于2476m πθ⎛⎫+=- ⎪⎝⎭在0,2π⎡⎤θ∈⎢⎥⎣⎦有两解,结合三角函数分析得解. 【详解】(1)由题得sin 0,tan θθθ=∴=所以角θ的集合为,3k k Z πθθπ⎧⎫=+∈⎨⎬⎩⎭| . (2)由条件知2a =, 1b =,又2a b -与7a b -垂直,所以()()2781570a b a b a b -⋅-=-⋅+=,所以1a b ⋅=. 所以222||||2||4217a b a a b b +=+⋅+=++=,故||7a b +=.(3)由3a b ma +=,得223a b ma +=,即2222233a a b b m a +⋅+=,即2434b m +⋅+=,)27cos 4m θθ+=,所以2476m πθ⎛⎫+=- ⎪⎝⎭.由0,2π⎡⎤θ∈⎢⎥⎣⎦得2,663πππθ⎡⎤+∈⎢⎥⎣⎦,又θ要有两解,结合三角函数图象可得,2647m ≤-<2134m ≤<又因为0m >m ≤<即m 的范围⎣⎭. 【点睛】本题主要考查向量平行垂直的坐标表示,考查向量的模的计算,考查三角函数图像和性质的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.。

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2.“θ≠”是“cos θ≠”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】因为“cos θ=”是“θ=”的必要不充分条件,所以“θ≠”是“cos θ≠”的必要不充分条件,选B.3.已知函数,则一定在函数图象上的点是()A.B.C.D.【答案】C.【解析】根据的解析式,求出,判断函数的奇偶性,由函数的奇偶性去判断四个选项是否在图象上..为奇函数,在图象上.故选C.【考点】函数的奇偶性.4.函数y=的定义域是.【答案】{x|kπ-<x≤kπ+,k∈Z}【解析】由1-tanx≥0,即tanx≤1,结合正切函数图象可得,kπ-<x≤kπ+,k∈Z,故函数的定义域是{x|kπ-<x≤kπ+,k∈Z}.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.已知的三个内角所对的边分别为,且,则角的大小为 .【答案】【解析】根据正弦定理:,,即:,,【考点】1、正弦定理;2、两角和与差的三角函数公式.7.已知函数上有两个零点,则的值为()A.B.C.D.【答案】D【解析】,由于,故,由于函数在区间上有两个零点,所以,所以,所以,故选D.【考点】1.三角函数的图象;2.三角函数的对称性8.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.9.已知函数时有极大值,且为奇函数,则的一组可能值依次为( )A.B.C.D.【答案】D【解析】,因为当时有极大值,所以=0,解得当k=0时,;因为=为奇函数,所以,当k=0时,,故选D.【考点】1.求函数的导数及其导数的性质;2.三角函数的性质.10.已知函数的最大值为4,最小值为0,最小正周期为,直线是其图像的一条对称轴,则下列各式中符合条件的解析式是()A.B.C.D.【答案】D【解析】由题意可得,则据此可知答案选D.【考点】函数的图像与性质.11.中,角所对的边分别为且.(Ⅰ)求角的大小;(Ⅱ)若向量,向量,,,求的值.【答案】(Ⅰ);(Ⅱ);【解析】(Ⅰ)主要利用三角形中内角和定理、三角恒等变换来求;(Ⅱ)通过余弦定理、解方程组可求;试题解析:(Ⅰ)∵∴,∴,∴或∴(II)∵∴,即①又,∴,即②由①②可得,∴又∴,∴【考点】解三角形中内角和定理以及余弦定理的使用、三角恒等变换等知识点,考查学生的计算能力.12.在中,角的对边分别为向量,,且.(1)求的值;(2)若,,求角的大小及向量在方向上的投影.【答案】(1);(2),向量在方向上的投影.【解析】(1)由向量数量积坐标形式列式,可求得的值,再利用平方关系可求得的值;(2)先利用正弦定理可求得的值,再利用大边对大角可求得角的大小.由投影的定义可求得向量在方向上的投影.试题解析:(1)由,得, 1分, 2分.. 3分.4分(2)由正弦定理,有, 5分.6分,, 7分. 8分由余弦定理,有, 9分或(舍去). 10分故向量在方向上的投影为 11分. 12分【考点】1、向量数量积、投影;2、三角恒等变换;3、解三角形.13.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系14.函数的最小正周期为.【答案】【解析】根据题意,由于即为其周期,故答案为【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.设角的终边在第一象限,函数的定义域为,且,当时,有,则使等式成立的的集合为.【答案】【解析】令得:,令得:,由得:,又角的终边在第一象限,所以因而的集合为.【考点】抽象函数赋值法2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.若点在函数的图象上,则的值为 .【答案】.【解析】由题意知,解得,所以.【考点】1.幂函数;2.三角函数求值4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.已知向量,设函数.(1)求函数在上的单调递增区间;(2)在中,,,分别是角,,的对边,为锐角,若,,的面积为,求边的长.【答案】(1)函数在上的单调递增区间为,;(2)边的长为.【解析】(1)根据平面向量的数量积,应用和差倍半的三角函数公式,将化简为.通过研究的单调减区间得到函数在上的单调递增区间为,.(2)根据两角和的正弦公式,求得,利用三角形的面积,解得,结合,由余弦定理得从而得解.试题解析:(1)由题意得3分令,解得:,,,或所以函数在上的单调递增区间为, 6分(2)由得:化简得:又因为,解得: 9分由题意知:,解得,又,所以故所求边的长为. 12分【考点】平面向量的数量积,和差倍半的三角函数,三角函数的图像和性质,正弦定理、余弦定理的应用.6.函数的最小正周期为,若其图象向右平移个单位后关于y轴对称,则()A.B.C.D.【答案】B【解析】由题意可知:,得,函数关于对称,所以,,又因为,解得,故选B.【考点】的图像和性质7.已知函数的最小正周期为,将的图像向左平移个单位长度,所得图像关于轴对称,则的一个值是()A.B.C.D.【答案】D【解析】函数的最小正周期为,所以从而.将各选项代入验证可知选【考点】1、三角函数的周期;2、函数图象的变换8.若函数的一个对称中心是,则的最小值为()A.B.C.D.【答案】B【解析】由于正切函数的对称中心坐标为,且函数的一个对称中心是,所以,因此有,因为,所以当时,取最小值,故选B.【考点】三角函数的对称性9.在中,(1)求角B的大小;(2)求的取值范围.【答案】(1) ;(2) .【解析】(1)由正弦定理实现边角互化,再利用两角和与差的正余弦公式化简为,再求角的值;(2)二倍角公式降幂扩角,两角差余弦公式展开,同时注意隐含条件,即可化为一角一函数,再结合求其值域.求解时一定借助函数图象找其最低点与最高点的纵坐标.试题解析:(1)由已知得:,即∴∴ 5分(2)由(1)得:,故+又∴所以的取值范围是. 12分【考点】1.正余弦定理;2.三角函数值域;3.二倍角公式与两角和与差的正余弦公式.10.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.11.函数,,在上的部分图象如图所示,则的值为.【答案】【解析】根据题意,由于函数,,在上的部分图象可知周期为12,由此可知,A=5,将(5,0)代入可知,5sin(+)=0,可知=,故可知==,故答案为【考点】三角函数的解析式点评:主要是考查了三角函数的解析式的求解和运用,属于基础题。

高中数学三角函数练习题及答案

高中数学三角函数练习题及答案

高中数学三角函数练习题及答案一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足22b a ac -=,则11tan tan A B-的取值范围为___________.3.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,4ACB AB π∠=则四面体ABCD 体积的最大值为___________.4.在ABC 中,AB =BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.5.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________6.在ABC 中,角A 、B 、C 的对边a 、b 、c 为三个连续偶数且2C A =,则b =__________.7.已知函数()2sin 16f x x πω⎛⎫=-- ⎪⎝⎭,其中0>ω,若()f x 在区间(4π,23π)上恰有2个零点,则ω的取值范围是____________.8.设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________. 9.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b =,2B C =,则a c +的取值范围为________.10.已知1OB →=,,A C 是以O 为圆心,0BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫ ⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭12.若函数sin 2y x =与()sin 2y x ϕ=+在0,4π⎛⎫⎪⎝⎭上的图象没有交点,其中()0,2ϕπ∈,则ϕ的取值范围是( )A .[),2ππB .,2ππ⎡⎤⎢⎥⎣⎦C .(),2ππD .,213.已知ABC 的内角分别为,,A B C ,2cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1214.已知,a b Z ∈,满足)sin 50a b ︒=,则a b +的值为( )A .1B .2C .3D .415.已知02πθ<<,()()cos 1sin 110sin cos f m m m θθθθθ--⎛⎫=+++> ⎪⎝⎭,则使得()f θ有最大值时的m 的取值范围是( )A .1,22⎛⎫⎪⎝⎭B .1,33⎛⎫ ⎪⎝⎭C .[]1,3D .1,14⎡⎤⎢⎥⎣⎦16.在ABC 中,,E F 分别是,AC AB 的中点,且32AB AC =,若BEt CF <恒成立,则t 的最小值为( ) A .34B .78C .1D .5417.在三棱锥A BCD -中,2AB AD BC ===,CD =AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π18.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④19.已知函数()*()cos 3f x x πωω⎛⎫=+∈ ⎪⎝⎭N ,若函数()f x 图象的相邻两对称轴之间的距离至少为4π,且在区间3(,)2ππ上存在最大值,则ω的取值个数为( ) A .4B .3C .2D .120.将方程23sin cos 3sin 3x x x +=的所有正数解从小到大组成数列{}n x ,记()1cos n n n a x x +=-,则122021a a a ++⋅⋅⋅+=( )A .34-B .24-C .36-D .26-三、解答题21.在海岸A 处,发现北偏东45︒方向,距离A 为31-海里的B 处有一艘走私船,在A 处北偏西75︒方向,距离A 为2海里的C 处有一艘缉私艇奉命以103海里/时的速度追截走私船,此时,走私船正以10海里/时的速度从B 处向北偏东30方向逃窜.(1)问C 船与B 船相距多少海里?C 船在B 船的什么方向? (2)问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间. 22.函数()sin y x ωϕ=+与()cos y x ωϕ=+(其中0>ω,2πϕ<)在52x ⎡∈⎢⎣⎦的图象恰有三个不同的交点,,P M N ,PMN ∆为直角三角形,求ϕ的取值范围.23.函数()()303f x x πωω⎛⎫=+> ⎪⎝⎭在一个周期内的图象如图所示,A 为图象的最高点,B ,C 为图象与x 轴的交点,ABC ∆为等边三角形.将函数()f x 的图象上各点的横坐标变为原来的π倍后,再向右平移23π个单位,得到函数()y g x =的图象.(Ⅰ)求函数()g x 的解析式;(Ⅱ)若不等式()23sin 324x m g x m π-⋅-≤+对任意x ∈R 恒成立,求实数m 的取值范围.24.如图,某市一学校H 位于该市火车站O 北偏东45︒方向,且42OH km =,已知, OM ON 是经过火车站O 的两条互相垂直的笔直公路,CE ,DF 及圆弧CD 都是学校道路,其中//CE OM ,//DF ON ,以学校H 为圆心,半径为2km 的四分之一圆弧分别与, CE DF 相切于点, C D .当地政府欲投资开发AOB 区域发展经济,其中,A B 分别在公路, OM ON 上,且AB 与圆弧CD 相切,设OAB θ∠=,AOB 的面积为2Skm .(1)求S 关于θ的函数解析式;(2)当θ为何值时,AOB 面积S 为最小,政府投资最低? 25.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知33sin cos 022b A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,且2sin 6sin sin A B C =⋅. (1)求A ;(2)若()b c a R λλ+=∈,求λ的值.26.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.27.如图,在ABC ∆中,90,3,1ABC AB BC ︒∠===,P 为ABC ∆内一点,90BPC ︒∠=.(1)若32PC =,求PA ; (2)若120APB ︒∠=,求ABP ∆的面积S .28.某公司欲生产一款迎春工艺品回馈消费者,工艺品的平面设计如图所示,该工艺品由直角ΔABC 和以BC 为直径的半圆拼接而成,点P 为半圈上一点(异于B ,C ),点H 在线段BC 上,且满足CH AB ⊥.已知90ACB ∠=︒,1dm AB =,设ABC θ∠=.(1)为了使工艺礼品达到最佳观赏效果,需满足ABC PCB ∠=∠,且CA CP +达到最大.当θ为何值时,工艺礼品达到最佳观赏效果;(2)为了工艺礼品达到最佳稳定性便于收藏,需满足60PBA ∠=︒,且CH CP +达到最大.当θ为何值时,CH CP +取得最大值,并求该最大值.29.已知函数()sin 24a a x x b f π⎛⎫=+++ ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,函数()f x 的值域是2,2⎡⎤-⎣⎦. (1)求常数a ,b 的值;(2)当0a <时,设()2g x f x π⎛⎫=+ ⎪⎝⎭,判断函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调性.30.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.【参考答案】一、填空题1.982.23⎛ ⎝⎭3.3(21)24.①③5.12(,)369-6.107.742ω<<或91322ω<≤.8.π3##60°9.(10.⎡⎢⎣⎦二、单选题 11.A 12.A 13.A 14.B 15.A 16.B 17.A 18.B 19.C 20.C 三、解答题21.(1)=BC C 船在B 船的正西方向;(2)缉私艇沿东偏北30才能最快追上走私船. 【解析】(1)在ABC 中根据余弦定理计算BC ,再利用正弦定理计算ABC ∠即可得出方位; (2)在BCD △中,利用正弦定理计算BCD ∠,再计算BD 得出追击时间. 【详解】解:(1)由题意可知1=AB ,2AC =,120BAC ∠=︒, 在ABC 中,由余弦定理得:2222cos1206BC AB AC AB AC =+-︒=,BC ∴,由正弦定理得:sin sin AC BCABC BAC=∠∠,即2sin ABC∠解得:sin ABC ∠=, 45ABC ∴∠=︒,C ∴船在B 船的正西方向.(2)由(1)知=BC 120DBC ∠=︒, 设t 小时后缉私艇在D 处追上走私船,则10BD t =,CD =,在BCD △10sin tBCD∠, 解得:1sin 2BCD ∠=, 30BCD ∴∠=︒,BCD ∴△是等腰三角形,10t ∴=,即t =∴缉私艇沿东偏北30【点睛】本题考查了正余弦定理解三角形,以及解三角形的实际应用,考查转化能力和运算能力,属于中档题. 22.,44ππϕ⎡⎤∈-⎢⎥⎣⎦【解析】且为等腰三角形,由此可确定周期,进而得到ω的知;采用整体对应的方式可知若为三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦,由此可构造不等式求得结果. 【详解】令t x ωϕ=+,结合sin y t =与cos y t =图象可知:sin y t =与cos y t =,其交点坐标分别为42π⎛ ⎝⎭,5,42π⎛- ⎝⎭,94π⎛ ⎝⎭,13,42π⎛ ⎝⎭,...,PMN ∆为等腰三角形.PMN ∆∴斜边长为2T πω==,解得,ω=; 52553244T T =⋅<,∴两图象不可能四个交点;由x ⎡∈⎢⎣⎦,有5,2t πϕϕ⎡⎤∈+⎢⎥⎣⎦,两图象有三个交点只需95,,442πππϕϕ⎡⎤⎡⎤⊂+⎢⎥⎢⎥⎣⎦⎣⎦, 由45924πϕπϕπ⎧≤⎪⎪⎨⎪+≥⎪⎩得:,44ππϕ⎡⎤∈-⎢⎥⎣⎦.【点睛】本题考查根据三角函数的交点与性质求解解析式中的参数范围的问题,关键是能够利用正余弦函数的性质类比得到正弦型和余弦型函数的交点所满足的关系,从而根据两函数交点个数确定不等关系.23.(Ⅰ)()12g x x =(Ⅱ)2,23⎡⎤-⎢⎥⎣⎦【解析】 【分析】(Ⅰ)利用等边三角形的性质,根据已知,可以求出函数的周期,利用正弦型函数的最小正周期公式求出ω,最后根据正弦型函数图象的变换性质求出()y g x =的解析式; (Ⅱ)根据函数()y g x =的解析式,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立,利用换元法,构造二次函数,分类讨论进行求解即可. 【详解】(Ⅰ)点AABC ∆为等边三角形,所以三角形边长为2, 所以24T πω==,解得2πω=,所以()23f x x ππ⎛⎫+ ⎪⎝⎭, 将函数()f x 的图象上各点的横坐标变为原来的π倍后,得到()123h x x π⎛⎫=+ ⎪⎝⎭,再向右平移23π个单位,得到()12g x x =. (Ⅱ)()22g x x x ππ⎛⎫-=-= ⎪⎝⎭,所以()223sin 233cos 3cos x g x x m x π⋅-=--,原不等式等价于23cos 3cos 10x m x m +++≥在x ∈R 恒成立. 令cos x t =,[]1,1t ∈-,即23310t mt m +++≥在[]1,1t ∈-上恒成立.设()2331t t mt m ϕ=+++,对称轴2m t =-, 当12m-≤-时,即2m ≥时,()1240m ϕ-=-+≥,解得2m ≤,所以2m =; 当12m-≥时,即2m ≤-时,()1440m ϕ=+≥,解得1m ≥-(舍); 当112m -<-<时,即22m -<<时,231024m m m ϕ⎛⎫-=-++≥ ⎪⎝⎭,解得223m -≤<.综上,实数m 的取值范围为2,23⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了正弦型函数的图象变换和性质,考查了利用换元法、构造法解决不等式恒成立问题,考查了数学运算能力.24.(1)2[2(sin cos )1]2,0,sin cos 2S θθπθθθ+-⎛⎫=⋅∈ ⎪⎝⎭;(2)4πθ=. 【解析】 【分析】(1)以点O 为坐标原点建立如图所示的平面直角坐标系,则(4,4)H ,在Rt ABO 中,设AB l =,又OAB θ∠=,故cos OA l θ=,sin OB l θ=,进而表示直线AB 的方程,由直线AB 与圆H 相切构建关系化简整理得4(sin cos )2sin cos l θθθθ+-=,即可表示OA ,OB ,最后由三角形面积公式表示AOB 面积即可;(2)令2(sin cos )1t θθ=+-,则223sin cos 8t t θθ+-=,由辅助角公式和三角函数值域可求得t 的取值范围,进而对原面积的函数用含t 的表达式换元,再令1m t=进行换元,并构建新的函数2()321g m m m =-++,由二次函数性质即可求得最小值. 【详解】解:(1)以点O 为坐标原点建立如图所示的平面直角坐标系,则(4,4)H ,在Rt ABO 中,设AB l =,又OAB θ∠=,故cos OA l θ=,sin OB l θ=. 所以直线AB 的方程为1cos sin x yl l θθ+=,即sin cos sin cos 0x y l θθθθ+-=. 因为直线AB 与圆H 相切, 所以22|4sin 4cos sin cos |2sin cos l θθθθθθ+-=+.(*)因为点H 在直线AB 的上方, 所以4sin 4cos sin cos 0l θθθθ+->,所以(*)式可化为4sin 4cos sin cos 2l θθθθ+-=,解得4(sin cos )2sin cos l θθθθ+-=.所以4(sin cos )2sin OA θθθ+-=,4(sin cos )2cos OB θθθ+-=. 所以AOB 面积为21[2(sin cos )1]2,0,2sin cos 2S OA OB θθπθθθ+-⎛⎫=⋅=⋅∈ ⎪⎝⎭.(2)令2(sin cos )1t θθ=+-,则223sin cos 8t t θθ+-=,且2(sin cos )111]4t πθθθ⎛⎫=+-=+-∈ ⎪⎝⎭,所以222162322318t S t t t t =⋅=+--++,1]t ∈.令1m t ⎫=∈⎪⎣⎭,2214()321333g m m m m ⎛⎫=-++=--+ ⎪⎝⎭,所以()g m在⎫⎪⎣⎭上单调递减.所以,当m =4πθ=时,()g m 取得最大值,S 取最小值.答:当4πθ=时,AOB 面积S 为最小,政府投资最低.【点睛】本题考查三角函数的实际应用,应优先结合实际建立合适的数学模型,再按模型求最值,属于难题. 25.(1)3A π=;(2)λ=. 【解析】 【分析】(1)根据诱导公式、正弦定理、同角三角函数基本关系式,结合已知等式,化简tan A =(0,)A π∈,可得A 的值;(2)由已知根据余弦定理可得2223a a bc λ+=,利用正弦定理可得26a bc =,联立即可解得λ的值. 【详解】(13sin cos 022A a B ππ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭cos sin 0A a B ⇒+=,cos sin sin 0B A A B ⇒+=(0,)sin 0B B π∈∴≠,tan (0,)3A A A ππ∴=∈∴=;(2)22sin 6sin sin 6A B C a ac =⋅⇒=,2222222cos )(3a b c bc B b c b bc bc c +⋅=++=--=-,而()b c a R λλ+=∈, 22()3a a bc λ=-,而26a ac =,所以有2302λλλλ=⇒=>∴=【点睛】本题考查了诱导公式、正弦定理、同角三角函数基本关系式、余弦定理,考查了数学运算能力.26.(1)()fx 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 214x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.27.(12 【解析】 【分析】(1)求出12BP ==,,36CBP ABP ππ∠=∠=,ABP ∆中由余弦定理即可求得PA ;(2)设PBA α∠=,利用正弦定理表示出()sin120sin 60AB PB =︒︒-α,求得tan α=,利用面积公式即可得解. 【详解】(1)在ABC ∆中,90,1ABC AB BC ︒∠===,2AC =P 为ABC ∆内一点,90BPC ︒∠=,PC =,所以12BP =,CBP ∆中,由余弦定理得:2221cos 22BP BC PC CBP BP BC +-∠==⋅所以,36CBP ABP ππ∠=∠=ABP ∆中,由余弦定理得:AP==; (2)120APB ︒∠=,设0,,90,602PBA PBC PAB π⎛⎫∠=α∈∠=︒-α∠=︒-α ⎪⎝⎭,在Rt PBC ∆中,sin sin PB BC =⋅α=α, 在PBA ∆中,由正弦定理()sin120sin 60AB PB=︒︒-α,即()sin 2sin 60α=︒-α,sin sin α=α-α,所以tan α=sin PB α==ABP ∆的面积11sin 22S AB PB α=⋅==. 【点睛】此题考查解三角形,对正余弦定理的综合使用,涉及两角差的正弦公式以及同角三角函数关系的使用,综合性较强.28.(1)π6θ=(2)当π12θ=,CH CP +【解析】(1)设ABC PCB θ∠=∠=,则在直角ΔABC 中,sin AC θ=,cos BC θ=,计算得到2sin sin 1AC CP θθ+=-++,计算最值得到答案.(2)计算sin cos CH θθ=⋅,得到πsin 23CH CP θ⎛⎫+=+ ⎪⎝⎭.【详解】(1)设ABC PCB θ∠=∠=,则在直角ΔABC 中,sin AC θ=,cos BC θ=. 在直角ΔPBC 中,2cos cos cos cos PC BC θθθθ=⋅=⋅=, sin sin cos sin cos PB BC θθθθθ=⋅=⋅=.22sin cos sin 1sin AC CP θθθθ+=+=+-2sin sin 1θθ=-++,π0,3θ⎛⎫∈ ⎪⎝⎭,所以当1sin 2θ=,即π6θ=,AC CP +的最大值为54. (2)在直角ΔABC 中,由1122ABC S CA CB AB CH ∆=⋅=⋅,可得sin cos sin cos 1CH θθθθ⋅==⋅.在直角ΔPBC 中,πsin 3PC BC θ⎛⎫=⋅- ⎪⎝⎭ππcos sin cos cos sin 33θθθ⎛⎫=⋅- ⎪⎝⎭,所以1sin cos cos sin 2CH CP θθθθθ⎫+=+-⎪⎪⎝⎭,π0,3θ⎛⎫∈ ⎪⎝⎭,所以211sin 2sin cos 22CH CP θθθθ+=-11πsin 22sin 2423θθθ⎛⎫==+ ⎪⎝⎭ 所以当π12θ=,CH CP +【点睛】本题考查了利用三角函数求最值,意在考查学生对于三角函数知识的应用能力. 29.(1)2a =,2b =-或2a =-,4b =函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增.函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减. 【解析】 【分析】(1)先求得sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦,再讨论0a >和0a <的情况,进而求解即可; (2)由(1)()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭则()2sin 224g x x π⎛⎫=++ ⎪⎝⎭进而判断单调性即可 【详解】解:(1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,444x πππ⎡⎤+∈⎢⎥⎣⎦,所以sin 24x π⎡⎤⎛⎫+∈⎢⎥ ⎪⎝⎭⎣⎦, ①当0a >时,由题意可得12a ab a a b ⎧⎛⨯++=⎪ ⎨⎝⎭⎪⨯++=⎩即22a b a b ⎧++=⎪⎨⎪+=⎩解得2a =,2b =-; ②当0a <时,由题意可得221a a b a a b ⎧⎛⨯-++=⎪ ⎨⎝⎭⎪⨯++=⎩,即222a b a b ⎧++=⎪⎨⎪+=⎩,解得2a =-,4b =(2)由(1)当0a <时,2a =-,4b =所以()2sin 224f x x π⎛⎫=-++ ⎪⎝⎭所以()2sin 22224f x x g x πππ⎡⎤⎛⎫⎛⎫=+=-+++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2sin 224x π⎛⎫=++ ⎪⎝⎭令222242k x k πππππ-+≤+≤+,k Z ∈,解得388k x k ππππ-+≤≤+,k Z ∈, 当0k =时,388x ππ-≤≤,则3,0,0,8828ππππ⎡⎤⎡⎤⎡⎤-⋂=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 所以函数()g x 在0,8π⎡⎤⎢⎥⎣⎦上单调递增,同理,函数()g x 在,82ππ⎡⎤⎢⎥⎣⎦上单调递减【点睛】本题考查由三角函数性质求解析式,考查正弦型函数的单调区间,考查运算能力 30.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】 【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可. 【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴=()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫⎪⎝⎭对称2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m =()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.。

高中数学三角函数练习题及答案解析(附答案)

高中数学三角函数练习题及答案解析(附答案)

高中数学三角函数练习题及答案解析(附答案)一、选择题1.探索如图所呈现的规律,判断2 013至2 014箭头的方向是()图1-2-3【解析】观察题图可知0到3为一个周期,则从2 013到2 014对应着1到2到3.【答案】 B2.-330是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角【解析】-330=30+(-1)360,则-330是第一象限角.【答案】 A3.把-1 485转化为+k360,kZ)的形式是()A.45-4360 B.-45-4360C.-45-5360 D.315-5360【解析】-1 485=-5360+315,故选D.【答案】 D4.(2019济南高一检测)若是第四象限的角,则180-是() A.第一象限的角 B.第二象限的角C.第三象限的角 D.第四象限的角【解析】∵是第四象限的角,k360-90k360,kZ,-k360+180180--k360+270,kZ,180-是第三象限的角.【答案】 C5.在直角坐标系中,若与的终边互相垂直,则与的关系为()A.=+90B.=90C.=+90-k360D.=90+k360【解析】∵与的终边互相垂直,故-=90+k360,kZ,=90+k360,kZ.【答案】 D二、填空题6.,两角的终边互为反向延长线,且=-120,则=________. 【解析】依题意知,的终边与60角终边相同,=k360+60,kZ.【答案】k360+60,kZ7.是第三象限角,则2是第________象限角.【解析】∵k360+180k360+270,kZk180+90k180+135,kZ当k=2n(nZ)时,n360+90n360+135,kZ,2是第二象限角,当k=2n+1(nZ)时,n360+270n360+315,nZ2是第四象限角.【答案】二或四8.与610角终边相同的角表示为________.【解析】与610角终边相同的角为n360+610=n360+360+250=(n+1)360+250=k360+250(kZ,nZ).【答案】k360+250(kZ)三、解答题9.若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,图1-2-4(1)求该函数的周期;(2)求t=10.5 s时该弹簧振子相对平衡位置的位移.【解】(1)由题图可知,该函数的周期为4 s.(2)设本题中位移与时间的函数关系为x=f(t),由函数的周期为4 s,可知f(10.5)=f(2.5+24)=f(2.5)=-8(cm),故t=10.5 s时弹簧振子相对平衡位置的位移为-8 cm.图1-2-510.如图所示,试表示终边落在阴影区域的角.【解】在0~360范围中,终边落在指定区域的角是0或315360,转化为-360~360范围内,终边落在指定区域的角是-4545,故满足条件的角的集合为{|-45+k36045+k360,kZ}.11.在与530终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720到-360的角.【解】与530终边相同的角为k360+530,kZ.(1)由-360<k360+530<0,且kZ可得k=-2,故所求的最大负角为-190.(2)由0<k360+530<360且kZ可得k=-1,故所求的最小正角为170(3)由-720k360+530-360且kZ得k=-3,故所求的角为-550.。

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5

零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得

三角函数高中试题及答案

三角函数高中试题及答案1. 已知函数 \( f(x) = \sin(x) \),求 \( f(\frac{\pi}{6}) \) 的值。

答案:\( f(\frac{\pi}{6}) = \sin(\frac{\pi}{6}) = \frac{1}{2} \)2. 计算 \( \cos(\frac{2\pi}{3}) \) 的值。

答案:\( \cos(\frac{2\pi}{3}) = -\frac{1}{2} \)3. 若 \( \sin(\theta) = \frac{3}{5} \),且 \( \theta \) 在第一象限,求 \( \cos(\theta) \) 的值。

答案:\( \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5} \)4. 已知 \( \tan(\alpha) = 2 \),求 \( \sin(\alpha) \) 和\( \cos(\alpha) \) 的值。

答案:\( \sin(\alpha) = \frac{2}{\sqrt{1 + \tan^2(\alpha)}} = \frac{2}{\sqrt{1 + 2^2}} = \frac{2}{\sqrt{5}} \),\( \cos(\alpha) = \frac{1}{\sqrt{1 + \tan^2(\alpha)}} =\frac{1}{\sqrt{1 + 2^2}} = \frac{1}{\sqrt{5}} \)5. 求 \( \sin(30^\circ) \) 和 \( \cos(60^\circ) \) 的值。

答案:\( \sin(30^\circ) = \frac{1}{2} \),\( \cos(60^\circ) =\frac{1}{2} \)6. 若 \( \sin(\beta) = \frac{1}{4} \),求 \( \sin(2\beta) \)的值。

高中数学三角函数测试卷(答案解析版)

高中数学三角函数测试卷(答案解析版)高中数学三角函数测试卷(答案解析版)一、选择题1. 假设α是锐角,sinα=0.6,那么sin(90°-α)的值是多少?解析:根据三角函数的互余关系,sin(90°-α) = cosα = √(1 - sin²α) = √(1 - 0.6²) = 0.8。

答案:0.82. 已知tanα = 3/4,sinα的值为多少?解析:由tanα = sinα/cosα可得sinα = tanα × cosα = 3/4 × 4/5 = 3/5。

答案:3/53. 已知sinα = 1/2,cosβ = 3/5,α和β都是锐角,则sin(α+β)的值是多少?解析:根据两角和的公式,sin(α+β) = sinα × cosβ + cosα × sinβ = (1/2) × (3/5) + √(1 - (1/2)²) × √(1 - (3/5)²) = 3/10 + √(3/10 × 7/10) = 3/10 + √(21/100) = 3/10 + 3√21/10√10 = (3 + 3√21)/10。

答案:(3 + 3√21)/10二、填空题4. 在锐角三角形ABC中,已知∠A=30°,BC=6,AC=10,则AB 等于多少?解析:根据正弦定理,AB/AC = sin∠B/sin∠A,代入已知条件得到AB/10 = sin∠B/sin30°,即AB = 10×sin∠B/sin30°。

由∠B + ∠C = 90°可得∠B = 90° - ∠A - ∠C = 90° - 30° - 60° = 0°。

因此,AB =10×sin0°/sin30° = 0/0 = 0。

高中三角函数测试题及答案

三角函数单元测试班级 姓名 座号 评分一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的.(48分)1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A CD .A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是( )A .3πB .-3π C .6π D .-6π 3、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316D .-23164、已知角α的余弦线是单位长度的有向线段;那么角α的终边 ( ) A .在x 轴上 B .在直线y x =上C .在y 轴上D .在直线y x =或y x =-上 5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( )A .2-B .2C .12D . 12-6、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位7、如图,曲线对应的函数是 ( )A .y=|sin x |B .y=sin|x |C .y=-sin|x |D .y=-|sin x |8 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒ 9、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( ) A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形 10、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11、函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数12、函数y = ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:共4小题,把答案填在题中横线上.(20分) 13、已知απβαππβαπ2,3,34则-<-<-<+<的取值范围是 . 14、)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 .15、函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .三、解答题:共6小题,解答应写出文字说明、证明过程或演算步骤. 17、(8分)求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、(8分)已知3tan 2απαπ=<<,求sin cos αα-的值.19、(8分)绳子绕在半径为50cm 的轮圈上,绳子的下端B 处悬挂着物体W ,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W 的位置向上提升100cm?20、(10分)已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+21、(10分)求函数21()tan 2tan 5f t x a x =++在[,]42x ππ∈时的值域(其中a 为常数)22、(8分)给出下列6种图像变换方法:①图像上所有点的纵坐标不变,横坐标缩短到原来的21; ②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图像向右平移3π个单位; ④图像向左平移3π个单位;⑤图像向右平移32π个单位;⑥图像向左平移32π个单位。

高一三角函数公式及诱导公式习题(附答案)

三角函数公式1. 同角三角函数根本关系式 sin 2α+cos 2α=1 sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=sin α sin(π+α)=-sin αcos(π-α)=-cos α cos(π+α)=-cos α tan(π-α)=-tan α tan(π+α)=tan α sin(2π-α)=-sin α sin(2π+α)=sin α cos(2π-α)=cos α cos(2π+α)=cos α tan(2π-α)=-tan α tan(2π+α)=tan α 〔二〕 sin(π2 -α)=cos α sin(π2+α)=cos αcos(π2 -α)=sin α cos(π2 +α)=- sin αtan(π2 -α)=cot α tan(π2 +α)=-cot αsin(3π2 -α)=-cos α sin(3π2 +α)=-cos αcos(3π2 -α)=-sin α cos(3π2 +α)=sin αtan(3π2 -α)=cot α tan(3π2+α)=-cot αsin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin β cos(α-β)=cos αcos β+sin αsin β sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β tan(α+β)=tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β4. 二倍角公式 sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2α tan2α=2tan α1-tan 2α5.公式的变形(1)升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α(2)降幂公式:cos2α=1+cos2α2sin2α=1-cos2α2(3)正切公式变形:tanα+tanβ=tan(α+β)〔1-tanαtanβ〕tanα-tanβ=tan(α-β)〔1+tanαtanβ) (4)万能公式〔用tanα表示其他三角函数值〕sin2α=2tanα1+tan2αcos2α=1-tan2α1+tan2αtan2α=2tanα1-tan2α6.插入辅助角公式asinx+bcosx=a2+b2sin(x+φ) (tanφ= b a)特殊地:sinx±cosx= 2 sin(x±π4)7.熟悉形式的变形〔如何变形〕1±sinx±cosx 1±sinx 1±cosx tanx+cotx1-tanα1+tanα1+tanα1-tanα假设A、B是锐角,A+B=π4,那么〔1+tanA〕(1+tanB)=28.在三角形中的结论假设:A+B+C=π, A+B+C2=π2那么有tanA+tanB+tanC=tanAtanBtanCtan A2tanB2+tanB2tanC2+tanC2tanA2=1三角函数的诱导公式1一、选择题1.如果|cos x |=cos 〔x +π〕,那么x 的取值集合是〔 〕 A .-2π+2k π≤x ≤2π+2k π B .-2π+2k π≤x ≤2π3+2k πC .2π+2k π≤x ≤2π3+2k π D .〔2k +1〕π≤x ≤2〔k +1〕π〔以上k ∈Z 〕2.sin 〔-6π19〕的值是〔 〕 A .21 B .-21 C .23 D .-23 3.以下三角函数:①sin 〔n π+3π4〕;②cos 〔2n π+6π〕;③sin 〔2n π+3π〕;④cos [〔2n +1〕π-6π];⑤sin [〔2n +1〕π-3π]〔n ∈Z 〕.其中函数值与sin 3π的值相同的是〔 〕 A .①② B .①③④ C .②③⑤ D .①③⑤4.假设cos 〔π+α〕=-510,且α∈〔-2π,0〕,那么tan 〔2π3+α〕的值为〔 〕 A .-36B .36C .-26 D .26 5.设A 、B 、C 是三角形的三个内角,以下关系恒成立的是〔 〕 A .cos 〔A +B 〕=cos C B .sin 〔A +B 〕=sin C C .tan 〔A +B 〕=tan CD .sin2B A +=sin 2C6.函数f 〔x 〕=cos 3πx〔x ∈Z 〕的值域为〔 〕 A .{-1,-21,0,21,1} B .{-1,-21,21,1} C .{-1,-23,0,23,1}D .{-1,-23,23,1} 二、填空题7.假设α是第三象限角,那么)πcos()πsin(21αα---=_________. 8.sin 21°+sin 22°+sin 23°+…+sin 289°=_________. 三、解答题9.求值:sin 〔-660°〕cos420°-tan330°cot 〔-690°〕.10.证明:1)πtan(1)π9tan(sin 211cos )πsin(22++-+=--⋅+θθθθθ.11.cos α=31,cos 〔α+β〕=1,求证:cos 〔2α+β〕=31.12. 化简:︒+︒︒︒+790cos 250sin 430cos 290sin 21.13、求证:)π5sin()πcos()π6cos()π2sin()π2tan(θθθθθ+-----=tan θ.14. 求证:〔1〕sin 〔2π3-α〕=-cos α; 〔2〕cos 〔2π3+α〕=sin α.参考答案1一、选择题1.C 2.A 3.C 4.B 5.B 6.B 二、填空题7.-sin α-cos α 8.289 三、解答题 9.43+1. 10.证明:左边=θθθθ22sin cos cos sin 2-1--=-θθθθθθθθθθcos sin cos sin )sin )(cos sin (cos )cos (sin 2-+=-++,右边=θθθθθθθθcos sin cos sin tan tan tan tan -+=1-1+=1+-1--, 左边=右边,∴原等式成立.11.证明:∵cos 〔α+β〕=1,∴α+β=2k π.∴cos 〔2α+β〕=cos 〔α+α+β〕=cos 〔α+2k π〕=cos α=31.12.解:︒+︒︒︒+790cos 250sin 430cos 290sin 21=)360270cos()70180sin()36070cos()36070sin(21︒⨯+︒+︒+︒︒+︒︒+︒-+=︒-︒︒︒-70sin 70cos 70cos 70sin 21=︒-︒︒-︒70sin 70cos )70cos 70(sin 2=︒-︒︒-︒70sin 70cos 70cos 70sin =-1.13.证明:左边=θθθθθθθθθθsin cos cos )sin )(tan ()sin )(cos ()cos()sin()tan(--=-----=tan θ=右边,∴原等式成立.14证明:〔1〕sin 〔2π3-α〕=sin [π+〔2π-α〕]=-sin 〔2π-α〕=-cos α. 〔2〕cos 〔2π3+α〕=cos [π+〔2π+α〕]=-cos 〔2π+α〕=sin α.三角函数的诱导公式2一、选择题: 1.sin(4π+α)=23,那么sin(43π-α)值为〔 〕 A.21 B. —21 C. 23 D. —23 2.cos(π+α)= —21,23π<α<π2,sin(π2-α) 值为〔 〕 A.23 B. 21 C. 23± D. —233.化简:)2cos()2sin(21-•-+ππ得〔 〕A.sin2+cos2B.cos2-sin2C.sin2-cos2D.± (cos2-sin2) 4.α和β的终边关于x 轴对称,那么以下各式中正确的选项是〔 〕 A.sinα=sinβ B. sin(α-π2) =sinβ C.cosα=cosβ D. cos(π2-α) =-cosβ 5.设tanθ=-2, 2π-<θ<0,那么sin 2θ+cos(θ-π2)的值等于〔 〕, A. 51〔4+5〕 B. 51〔4-5〕 C. 51〔4±5〕 D. 51〔5-4〕二、填空题: 6.cos(π-x)=23,x ∈〔-π,π〕,那么x 的值为 . 7.tanα=m ,那么=+-+++)cos(-sin()cos(3sin(απα)απ)απ .8.|sinα|=sin 〔-π+α〕,那么α的取值范围是 . 三、解答题: 9.)cos(·3sin()cos()n(s 2sin(απα)παπα)π----+-απi .10.:sin 〔x+6π〕=41,求sin 〔)67x +π+cos 2〔65π-x 〕的值.11. 求以下三角函数值: 〔1〕sin 3π7;〔2〕cos 4π17;〔3〕tan 〔-6π23〕;12. 求以下三角函数值:〔1〕sin3π4·cos 6π25·tan 4π5; 〔2〕sin [〔2n +1〕π-3π2].13.设f 〔θ〕=)cos()π(2cos 23)2πsin()π2(sin cos 2223θθθθθ-+++-++-+,求f 〔3π〕的值.参考答案21.C 2.A 3.C 4.C 5.A 6.±65π7.11-+m m 8.[(2k-1) π,2k π]9.原式=)cos (·sin()cos()n s (sin αα)παπα--+--αi =)cos ?(sin )cos (sin 2αααα--= sinα 10.161111.解:〔1〕sin 3π7=sin 〔2π+3π〕=sin 3π=23.〔2〕cos4π17=cos 〔4π+4π〕=cos 4π=22.〔3〕tan 〔-6π23〕=cos 〔-4π+6π〕=cos 6π=23.〔4〕sin 〔-765°〕=sin [360°×〔-2〕-45°]=sin 〔-45°〕=-sin45°=-22. 注:利用公式〔1〕、公式〔2〕可以将任意角的三角函数转化为终边在第一象限和第二象限的角的三角函数,从而求值.12.解:〔1〕sin 3π4·cos 6π25·tan 4π5=sin 〔π+3π〕·cos 〔4π+6π〕·tan 〔π+4π〕 =〔-sin3π〕·cos 6π·tan 4π=〔-23〕·23·1=-43.〔2〕sin [〔2n +1〕π-3π2]=sin 〔π-3π2〕=sin 3π=23.13.解:f 〔θ〕=θθθθθcos cos 223cos sin cos 2223++-++=θθθθθcos cos 223cos cos 1cos 2223++-+-+=θθθθθcos cos 22)cos (cos 2cos 2223++---=θθθθθcos cos 22)1(cos cos )1(cos 223++---=θθθθθθθcos cos 22)1(cos cos )1cos )(cos 1(cos 222++--++-=θθθθθcos cos 22)2cos cos 2)(1(cos 22++++-=cos θ-1, ∴f 〔3π〕=cos 3π-1=21-1=-21.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数测试1、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A CD .A=B=C 2、将分针拨慢5分钟,则分钟转过的弧度数是 ( )A .3πB .-3π C .6π D .-6π 3、已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316D .-23164、已知角α的余弦线是单位长度的有向线段;那么角α的终边( ) A .在x 轴上 B .在直线y x =上C .在y 轴上D .在直线y x =或y x =-上 5、若(cos )cos2f x x =,则(sin15)f ︒等于 ( ) A .32-B .32C .12D . 12-6、要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位7、如图,曲线对应的函数是( ) A .y=|sin x | B .y=sin|x |C .y=-sin|x |D .y=-|sin x |8、化简1160-︒2sin 的结果是 ( )A .cos160︒B .cos160-︒C .cos160±︒D .cos160±︒9、A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为( )A. 锐角三角形B. 钝角三角形C. 等腰直角三角形D. 等腰三角形10、函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称 C .关于y 轴对称 D .关于直线x=6π对称 11、函数sin(),2y x x Rπ=+∈是( ) A .[,]22ππ-上是增函数 B .[0,]π上是减函数 C .[,0]π-上是减函数 D .[,]ππ-上是减函数12、函数y =的定义域是( )A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:共4小题,把答案填在题中横线上.(20分)13、已知απβαππβαπ2,3,34则-<-<-<+<的取值范围是 .14、)(x f 为奇函数,=<+=>)(0,cos 2sin )(,0x f x x x x f x 时则时 .15、函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 .16、已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .三、解答题:17、求值22sin 120cos180tan 45cos (330)sin(210)︒+︒+︒--︒+-︒18、已知3tan 2απαπ=<<,求sin cos αα-的值.19、已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20、(10分)求函数21()tan 2tan 5f t x a x =++在[,]42x ππ∈时的值域(其中a 为常数)21、(8分)给出下列6种图像变换方法:①图像上所有点的纵坐标不变,横坐标缩短到原来的21;②图像上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图像向右平移3π个单位;④图像向左平移3π个单位;⑤图像向右平移32π个单位;⑥图像向左平移32π个单位。

请用上述变换将函数y = sinx 的图像变换到函数y = sin (2x +3π)的图像.三角函数章节测试题一、选择题1. 已知sinθ=53,sin2θ<0,则tanθ等于 ( )A .-43B .43 C .-43或43 D .542. 若20π<<x ,则2x 与3sinx 的大小关系是 ( )A .x x sin 32>B .x x sin 32<C .x x sin 32=D .与x 的取值有关3. 已知α、β均为锐角,若P :sinα<sin(α+β),q :α+β<2π,则P 是q 的( ) A .充分而不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4. 函数y =sinx·|cotx |(0<x<π)的大致图象是 ( )A B C D5. 若f(sinx)=3-cos2x ,则f(cosx)=( ) A .3-cos2x B .3-sin2x C .3+cos2x D .3+sin2x 6. 设a>0,对于函数)0(sin sin )(π<<+=x xax x f ,下列结论正确的是 ( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值 7. 函数f(x)=x xcos 2cos 1-( )A .在[0,2π]、⎥⎦⎤ ⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤⎝⎛ππ2,23上递减 B .⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ,上递增,在⎥⎦⎤ ⎝⎛ππ,2、⎥⎦⎤⎝⎛ππ223,上递减 C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ, 上递减D .在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤⎝⎛ππ2,23上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤⎝⎛ππ,2上递减 8. y =sin(x -12π)·cos(x -12π),正确的是 ( )A .T =2π,对称中心为(12π,0) B .T =π,对称中心为(12π,0)xxxxC .T =2π,对称中心为(6π,0) D .T =π,对称中心为(6π,0) 9. 把曲线y cosx +2y -1=0先沿x 轴向右平移2π,再沿y 轴向下平移1个单位,得到的曲线方程为 ( )A .(1-y)sinx +2y -3=0B .(y -1)sinx +2y -3=0C .(y +1)sinx +2y +1=0D .-(y +1)sinx +2y +1=010.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 ( ) A .ω=2,θ=2π B .ω=21,θ=2πC .ω=21,θ=4π D .ω=2,θ=4π二、填空题11.f (x)=A sin(ωx +ϕ)(A>0, ω>0)的部分如图,则f (1) +f (2)+…+f (11)= . 12.已sin(4π-x)=53,则sin2x 的值为 。

13.]2,0[,sin 2sin )(π∈+=x x x x f 的图象与直线y =k 有且仅有两个不同交点,则k 的取值范围是 .14.已知θθsin 1cot 22++=1,则(1+sinθ)(2+cosθ)= 。

15.平移f (x)=sin(ωx +ϕ)(ω>0,-2π<ϕ<2π),给出下列4个论断: ⑴ 图象关于x =12π对称 ⑵图象关于点(3π,0)对称⑶ 周期是π ⑷ 在[-6π,0]上是增函数 以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题: (1) .(2) . 三、解答题 16.已知21)4tan(=+απ,(1)求αtan 的值;(2)求ααα222cos 1cos sin +-的值.17.设函数)()(c b a x f +⋅=,其中a =(sinx,-cosx),b =(sinx,-3cosx),c =(-cosx,sinx),x ∈R ;(1) 求函数f(x)的最大值和最小正周期;(2) 将函数y =f(x)的图象按向量d 平移,使平移后的图象关于坐标原点成中心对称,求|d |最小的d .18.在△ABC 中,sinA(sinB +cosB)-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.19.设f (x)=cos2x +23sinxcosx 的最大值为M ,最小正周期为T .⑴ 求M 、T .⑵ 若有10个互不相等的函数x i 满足f (x i )=M ,且0<x i <10π,求x 1+x 2+…+x 10的值.20.已知f (x)=2sin(x +2θ)cos(x +2θ)+23cos 2(x +2θ)-3。

⑴ 化简f (x)的解析式。

⑵ 若0≤θ≤π,求θ使函数f (x)为偶函数。

⑶ 在⑵成立的条件下,求满足f (x)=1,x ∈[-π,π]的x 的集合。

三角函数章节测试题参考答案1. A2. D3. B4. B5. C6. B7. A8. B9.C 10.A 11. 2+22 12.25713. 1<k <3 14. 4 15. (1) ②③⇒①④ (2) ①③⇒②④ 16.解:(1) tan(4π+α)=ααtan 1tan 1-+=21 解得tan α=-31(2)1cos 21cos cos sin 22cos 1cos 2sin 222-+-=+-ααααααα=6521tan cos 2cos sin 2-=-=-αααα17. 解:(1)由题意得f(x)=)(c b a +⋅ =(sinx ,-cosx)·(sinx -cosx ,sinx -3cosx) =sin 2x -2sinxcosx +3cos 2x =2+cos2x -sin2x =2+2sin(2x +43π) 故f(x)的最大值2+2,最小正周期为ππ=22 (2) 由sin(2x +43π)=0得2x +43π=k π 即x =2πk -83π,k ∈z 于是d =(83π-2πk ,-2) |d |=48322+⎪⎭⎫⎝⎛-ππk (k ∈z)因为k 为整数,要使| d |最小,则只有k =1,此时d =(-8π,-2)为所示. 18.∵ sinA(sinB +cosB)-sinC =0∴ sinA sinB +sinA cosB =sinA cosB +cosA sinB ∵ sinB > 0 sinA =cosA ,即tanA =1 又0 < A<π ∴ A =4π,从而C =43π-B 由sinB +cos2C =0,得sinB +cos2(43π-B)=0 即sinB(1-2cosB)=0 ∴cosB =21 B =3π C =125π 19.)(x f =2sin(2x +6π)(1) M =2 T =π(2) ∵)(i x f =2 ∴ sin(2x i +6π)=1 2x i +6π=2kπ+2πx i =2kπ+6π (k ∈z) 又0 < x i <10π ∴ k =0, 1, 2, (9)∴ x 1+x 2+…+x 10=(1+2+…+9)π+10×6π =3140π 20.解:(1) f (x)=sin(2x +θ)+3cos(2x +θ) =2sin(2x +θ+3π)(2) 要使f (x)为偶函数,则必有f (-x)=f (x) ∴ 2sin(-2x +θ+3π)=2sin(2x +θ+3π)∴ 2sin2x cos(θ+3π)=0对x ∈R 恒成立∴ cos(θ+3π)=0又0≤θ≤π θ=6π(3) 当θ=6π时f (x)=2sin(2x +2π)=2cos2x =1∴cos2x =21 ∵x ∈[-π,π] ∴x =-3π或3π21.)(x f =2sin(2x +6π)+2 由五点法作出y =)(x f 的图象(略) (1) 由图表知:0<a <4,且a≠3 当0<a <3时,x 1+x 2=34π 当3<a <4时,x 1+x 2=3π (2) 由对称性知,面积为21(67π-6π)×4=2π.。

相关文档
最新文档