多目标决策法
基于多目标决策方法的投资组合优化研究

基于多目标决策方法的投资组合优化研究投资组合是一个投资者同时购买多种资产以达到更好的效果的行为。
在实践中,投资者需要选择不同的资产来组成投资组合,并寻求最大化投资回报率和最小化投资风险的目标。
投资组合优化是指基于不同的目标和限制条件,确定投资组合的最佳配置方案。
多目标决策方法是一种有效的投资组合优化方法,本文将对其进行探讨。
一、多目标决策方法简介多目标决策方法是指在考虑多个目标时,为了达到最优的决策而采用的一种方法。
在投资组合构建中,多目标决策方法可以同时考虑投资的效益、成本、风险等多个因素。
传统的单目标决策方法只能考虑一个目标,难以真实反映复杂的决策问题。
而多目标决策方法则能够综合考虑多个目标,以较为科学的方式制定决策方案。
多目标决策方法常见的包括层次分析法、TOPSIS法、模糊综合评价法等。
这些方法在投资组合优化中都有着广泛的应用。
其中,层次分析法是一种结构化的分析方法,可以将繁琐而复杂的问题分解成较小的部分,从而逐步确定最佳决策方案。
TOPSIS法和模糊综合评价法则是一种综合评价方法,可以综合考虑多个因素的贡献程度,从而确定最佳决策选择。
二、多目标决策方法在投资组合优化中的应用在投资组合优化中,多目标决策方法的应用较为广泛。
例如,在基于收益率和风险的分析中,可以首先使用层次分析法,将各种资产按照收益率、风险等不同的指标进行分析和评价,从而确定各个资产对应指标的权重。
接着,可以使用TOPSIS法或模糊综合评价法等方法,对投资组合中各个资产的受益风险因素进行综合评价,最终得到最佳的投资组合。
三、多目标决策方法的优势和局限多目标决策方法的主要优势在于能够综合考虑多个因素的影响,能够更加全面和准确地评估各种决策方案。
其次,多目标决策方法可以精细化地拆分决策问题,更加科学和理性地制定决策过程,为决策者提供更加全面和准确的参考。
然而,多目标决策方法也存在一定的局限性。
首先,多目标决策方法需要大量的计算和分析工作,在时间和成本上都有一定的投入。
目标管理-多目标决策方法 精品

(x)
j 1
显然,对于不同s.的t. 权x 系X数,最优解x*(w)是不同的
,但是它们都是原多目标问题的非劣解,下面给出几组
权系数及其对应的最优解(表1).
5
表1 线性加权法的最优解
序
w=(w1,w2,w3)
1
(1, 0, 0)
2
(0, 1, 0)
3
(0, 0, 1)
4
(1/3, 1/3, 1/3)
按统计方法进行比较,例如利用假设检验的方法来确定不同方案
的优劣。
11
1.5 变动权系数法
让线性加权和评价函数
U
x
P
w
j
f
j
x
中的各权系数
j 1
wj(1jp)按一定规则变动,再求解问题(P1),就能
得到多目标决策问题(P0)的全部非劣解。
[例3] 求解双目标决策问题:
min Fx x 2 , 2 x
目标函数,就能得到P2个值。
fk0
f
* k
min
xX
fk (x)
fk (xk )
(k
1,2, ), P)
fkj f j (xk ) ( j k, j 1,2,P) 然后,作线性方程组 jp1 w j f kj k 1, 2, 3, P
jP1 w j 1
其中是待定常数,由此可以解出权系数 wj 1, 2, 3, , P
f1* ,
f
1 2
]
F(x2 ) [ f1 (x2 ), f 2 (x2 )] [ f12 , f1* ]
15
目标空间中的几何图形见图3.3所示。
图3.3 法几何说明
16
记理想点
投资组合优化中的多目标决策方法研究

投资组合优化中的多目标决策方法研究随着经济的发展和投资行为的多样化,投资组合优化成为了新时代的热门话题。
许多投资者通过投资组合优化实现个人财富的增值和风险的管理。
然而,在投资组合优化的过程中,涉及到的多个目标之间存在冲突,投资者往往需要在多个目标之间达到一个平衡。
因此,如何进行多目标决策,是投资组合优化研究中需要关注的一个问题。
一、投资组合优化的基础理论投资组合优化是指将投资标的组合起来进行协调,以实现期望收益最大化或风险最小化的目的。
基础理论包括资产定价理论、有效前沿理论和贝尔塔数学模型等。
其中,“有效前沿理论”是投资组合优化的核心理论,其表达了风险和收益之间的权衡关系。
二、多目标决策方法针对投资组合优化中的多个目标相互制约的问题,需要采用更加细致和全面的技术方法来进行多目标决策。
以下是几种常用的多目标决策方法。
1、TOPSIS法TOPSIS法是一种常用的多目标决策方法,通过计算各个方案与正理想和负理想方案的距离,从而得出评价各方案优劣的结果。
其中,正理想方案是指在所有考虑因素中都取得最好结果的方案,负理想方案是指在所有考虑因素中都取得最差结果的方案。
通过归一化和加权,得出各方案权重和排名,从而实现投资组合的优化。
2、模糊综合评价法模糊综合评价法是一种基于模糊数学的多目标决策方法,它可以很好地解决多目标决策中的不确定性、模糊性和复杂性问题。
模糊综合评价法的基本流程是建立模糊数学模型,确定评价因素和权重,通过计算各方案的综合评分,对投资组合进行优化。
3、层次分析法层次分析法是一种将多个目标进行层次化分析的多目标决策方法。
该方法将各个目标按照不同因素进行划分,形成一个层次结构。
在此基础上,通过对各个因素进行比较和权重确定,得出最终的投资组合方案。
三、投资组合优化的案例应用以上海证券市场为例,通过对多个投资标的的历史数据进行收益率、风险等方面的分析,可以得到一组标的的有效前沿。
在此基础上,可以采用TOPSIS法、模糊综合评价法或层次分析法等多目标决策方法,来获取投资组合优化方案。
规划环境下的多目标决策方法研究

规划环境下的多目标决策方法研究随着经济的发展和城市化的加速,人们对生活环境的要求也日益提高。
规划环境下的多目标决策方法研究,旨在通过科学合理的规划和决策来提高城市环境的质量,并实现可持续发展目标。
本文将从多个角度探讨这一主题。
一、什么是多目标决策?多目标决策是指在有限的资源约束条件下,针对多种目标制定出最优方案的决策过程。
在城市规划中,如果只考虑单一目标,难以全面优化城市环境,因此多目标决策方法被广泛应用。
有些目标可能涉及社会、经济和环境等方面。
二、多目标决策与城市规划城市规划是一种复杂的、综合性的系统工程,既涉及城市空间结构的组织与调整,也涉及城市的经济、社会和文化等各个方面。
多目标决策方法的应用,可以使城市规划更加科学和合理,更好地实现城市的可持续发展目标。
三、多目标决策方法多目标决策方法包括线性规划法、非线性规划法、模糊规划法、层次分析法、灰色关联度分析法等。
这些方法的选择要根据实际情况灵活运用,尽可能地满足城市规划的多样化需求。
层次分析法是一种常用的多目标决策方法。
它将各种目标按照重要性排序,通过对各目标的重要性比较和权值赋予,得出最优解决方案。
灰色关联度分析法是一种综合分析方法,它可以有效地处理多目标决策的模糊性、不确定性问题。
四、多目标决策方法在城市规划中的应用1. 优化城市空间结构。
城市空间结构是城市发展的基础,合理规划和设计城市空间结构是城市规划的重要任务之一。
多目标决策方法可以帮助规划师权衡各个因素的重要性,找到最优的城市空间结构。
2. 促进城市绿色发展。
绿色发展是可持续发展的核心要求之一,城市规划需要在保障城市经济发展的同时,注重环境和资源保护。
多目标决策方法可以帮助规划师考虑城市经济和生态环境的平衡关系,制定出更加环保、合理的城市规划方案。
3. 优化城市交通网络。
城市交通网络是城市发展的重要组成部分,而存在的问题也极为复杂。
多目标决策方法可以帮助规划师考虑交通流量、空气质量、能源消耗等多个因素,更好地规划城市交通网络。
多目标决策分析

多目标决策分析多目标决策分析是指在决策过程中需要综合考虑多个目标或指标,通过权衡各个目标的重要性,找出最优的决策方案。
在实际决策过程中,往往存在多个决策目标,这些目标之间可能存在相互冲突或矛盾的情况。
如果只考虑一个单一目标进行决策,可能会导致其他目标的损失或忽视。
因此,采用多目标决策分析方法,可以使决策者能够综合考虑各个目标的权重,根据实际需求找到最佳的平衡点。
多目标决策分析方法主要包括层次分析法(AHP)、启发式规划方法、熵权法等。
层次分析法是一种将问题层次化的方法,通过构建目标层、准则层和方案层,对不同层次的权重进行比较和评估,最终得出各个方案的总得分,从而选择最优的方案。
该方法能够更加直观地显示出各个目标之间的重要程度,使决策者更容易进行决策。
启发式规划方法是一种基于专家经验和启发式算法的决策方法。
通过依赖于已有的知识和模型,利用优化算法进行求解,找到满足各个目标的最优解。
该方法适用于复杂的决策问题,但需要专家的经验来指导和修正算法。
熵权法是一种通过计算各个指标的熵值,根据熵值的大小确定各个指标的权重。
熵值越大,指标越多样化,对决策有更多的贡献,权重也就越高。
该方法可以很好地解决指标权重的确定问题,适用于多指标决策问题。
在使用多目标决策分析方法时,需要先明确决策目标,确定各个目标的权重,然后对各个方案进行评估和比较,最终选择最优的方案。
在决策过程中,需要充分考虑各个目标的重要性,尽可能达到各个目标的平衡。
综上所述,多目标决策分析是一种能够综合考虑多个目标的决策方法,通过权衡各个目标的重要性,找出最优的决策方案。
该方法能够更好地满足实际需求,并提供有效的决策支持。
多目标决策方法

多目标决策方法一.多目标决策方法简介1.多目标决策问题及特点(1) 案例个人:购物;买房;择业......集体或社会:商场,医院选址;水库高度选择...... (2) 要素行动方案集合X;目标和属性;偏好结构和决策规则(3) 多目标决策有如下几个特点:决策问题追求的优化目标多于一个;目标之间的不可公度性:指标量纲的不一致性; 目标之间的矛盾性;定性指标与定量指标相混合:有些指标是明确的,可以定量表示出来,如:价格、时间、产量、成本、投资等。
有些指标是模糊的、定性的,如人才选拔时候选人素质考察时往往会以:思想品德、学历、能力、工作作风、市场应变能力等个性指标作为决策依据。
2. 多目标决策问题的描述)}(),(),({21x f x f x f DR n0)(,0)(,0)(.21 x g x g x g TS p决策空间:}0)({ x g x X i 目标空间})({X x x f F两个例子:离散型;连续型3.多目标决策问题的劣解与非劣解非劣解的寻找连续型有时较难4.多目标决策主要有以下几种方法:(1)化多为少法:化成只有二个或一个目标的问题;(2)直接求非劣解法:先求出一组非劣解,然后按事先确定好的评价标准从中找出一个满意的解。
(3)分层序列法:将所有目标按其重要性程度依次排序,先求出第一个最重要的目标的最优解,然后在保证前一目标最优解的前提下依次求下一目标的最优解,一直求到最后一个目标为止。
((4)目标规划法:对于每一个目标都事先给定一个期望值,然后在满足系统一定约束条件下,找出与目标期望值最近的解。
(5)重排序法:把原来的不好比较的非劣解通过其他办法使其排出优劣次序来。
(6)多属性效用法:各个目标均用表示效用程度大小的效用函数表示,通过效用函数构成多目标的综合效用函数,以此来评价各个可行方案的优劣。
(7)层次分析法:把目标体系结构予以展开,求得目标与决策方案的计量关系。
(8)多目标群决策和多目标模糊决策。
层次分析法--多目标决策

单目标与多目标决策
• 决策的标准根据一个指标来决定,这样的 决策称为单目标决策,例如,是否兼并一 家公司,决策的依据是这家公司的净资产; 是否投资某一个项目,决策的依据是这个 项目的投资回报指标;
• 许多决策方法都是建立在单目标决策的基 础上的,例如线性规划模型就是,典型的 单目标决策模型
多目标决策的线性加权法
• 解决多目标决策问题的一种常用方法是将 多目标分解为单目标问题,然后线性加权 求和的方法。 • 例子11.1 商品住宅选择问题。有三套住宅 可供选择,选择的目标包括面积、单价、 朝向、地段和楼层五个因素宅选择的多目标决策问题
面积(平 方米) 住宅A 住宅B 200 180 单价(元 朝向 /平方米) 4800 南 5500 西
商品住宅选择的多目标决策问题
• 为了将五个指标转化为一个目标,需要确 定各目标对决策者的重要性,即各目标的 权重。然后用相应的权重对各指标的归一 化值进行线性加权求和。
• 根据决策者对五个目标的偏好,设定目标 重要性由大到小依次排列为:单价》面积》 地段》朝向》楼层。设五个目标的权重为
1、2、3、4、5、其中1 2 3 4 5 1 1 2 3 4 5 0.
一、建立层次结构模型
将所包含的因素分组设层,并标明各层因素之间的关系, 如对决策问题,可构造出下图所示的层次结构模型。
目标层A
目标A
准则层C
准则C1
准则C2
准则C3
方案层P
方案P1
方案P2
方案P3
方案P4
方案P5
12
二、基本思路
先分解后综合的系统思想: 首先将所要分析的问题层次化:根据问题的性质和要达到的总目标,将问题分解成 不同的组成因素,按照因素间的相互关系及隶属关系,按不同层次聚集组合,形成 一个多层分析结构模型,最终归结为最低层(方案、措施、指标等)相对于最高层 (总目标)相对重要程度的权值或相对优劣次序的问题。 分解
决策理论与方法多属性决策多目标及序贯决策

决策理论与方法多属性决策多目标及序贯决策多属性决策是指在决策过程中考虑多个属性或指标,通过对这些属性进行量化和比较,找出最优选择的决策方法。
在实际决策中,我们常常需要考虑多个属性因素,而这些因素往往是相互矛盾甚至相互制约的。
多属性决策的关键是建立合理的评价指标体系,将不同属性进行量化,再通过合适的决策模型或方法进行计算和比较。
常用的多属性决策模型包括加权法、层次分析法和灰色关联法等。
多目标决策是指在决策过程中存在多个决策目标,且这些目标往往是相互冲突或无法同时达到的。
多目标决策的目标是找到一个最佳的折衷方案,使得各个决策目标能够得到尽可能满足。
多目标决策的关键是建立合理的决策模型,将各个决策目标进行量化和比较,再通过适当的优化方法或规划方法寻找最优解。
常用的多目标决策方法包括线性规划、整数规划、动态规划和遗传算法等。
序贯决策是指在决策过程中需要根据不完全的信息和不确定的环境进行连续的决策,即通过一系列的决策步骤逐渐完善和调整决策方案。
序贯决策的关键是建立适当的决策模型,将决策过程分解为多个连续的阶段,每个阶段根据已有的信息和条件做出决策,并根据反馈信息不断调整和优化决策方案。
常用的序贯决策方法包括马尔可夫决策过程、博弈论和贝叶斯决策等。
在实际应用中,多属性决策、多目标决策和序贯决策往往会相互结合使用。
例如,在制定企业的发展战略时,需要考虑多个因素,如市场需求、竞争环境和资源能力等,这涉及到多属性决策的内容。
同时,为了实现企业的长远目标,需要考虑多个决策目标,如利润最大化、成本最小化和风险最小化等,这也涉及到多目标决策的内容。
而在制定战略的实施方案时,可能需要根据不断变化的市场和竞争环境进行序贯的决策,这涉及到序贯决策的内容。
综上所述,多属性决策、多目标决策和序贯决策是决策理论与方法中常用的三个重要方法。
它们分别从不同的角度和需求出发,帮助人们在复杂和不确定的决策环境中做出最佳决策。
这些方法在实际应用中相互结合,能够提供更全面和准确的决策支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13章多目标决策单目标决策问题前三章已经进行了较为详细的探讨。
从合理行为假设引出的效用函数,提供了对这类问题进行合理分析的方法和程序。
但在实际工作中所遇到的的决策分析问题,却常常要考虑多个目标。
这些目标有的相互联系,有的相互制约,有的相互冲突,因而形成一种异常复杂的结构体系,使得决策问题变得非常复杂。
国外一般认为,多目标优化问题最早是在19世纪末由意大利经济学家帕累托(V.Pareto)从政治经济学的角度提出来的,他把许多本质上不可比较的目标,设法变换成一个单一的最优目标来进行求解。
到了20世纪40年代,冯诺曼等人由从对策论的角度提出在彼此有矛盾的多个决策人之间如何进行多目标决策问题。
1950年代初,考普曼(T.C.koopmans)从生产和分配的活动分析中提出多目标最优化问题,并引入了帕累托最优的概念。
1960年代初,菜恩思(F.Charnes)和考柏(J.Cooper)提出了目标规划方法来解决多目标决策问题。
目标规划是线性规划的修正和发展,这一方法不只是对一些目标求得最优,而是尽量使求得的最优解与原定的目标值之间的偏差为最小。
1970年代中期,甘尼(R.L.Keeney)和拉发用比较完整的描述多属性效用理论来求解多目标决策问题。
1970年代末,萨蒂(A.L.Saaty)提出了影响广泛的AHP(the analytical hierarchy process)法,并在1980年代初纂写了有关AHP 法的专著。
自1970年代以来,有关研究和讨论多目标决策的方法也随之出现。
总之,多目标决策问题正愈来愈多的受到人们的重视,尤其是在经济、管理、系统工程、控制论和运筹学等领域中得到了更多的研究和关注。
13.1 基本概念多目标决策和单目标决策的根本区别在于目标的数量。
单目标决策,只要比较各待选方案的期望效用值哪个最大即可,而多目标问题就不如此简单了。
例13.1房屋设计某单位计划建造一栋家属楼,在已经确定地址及总建筑面积的前提下,作出了三个设计方案,现要求根据以下5个目标综合选出最佳的设计方案:1)低造价(每平方米造价不低于500元,不高于700元);2)抗震性能(抗震能力不低于里氏5级不高于7级);3)建造时间(越快越好);4)结构合理(单元划分、生活设施及使用面积比例等);5)造型美观(评价越高越好)这三个方案的具体评价表如下。
表13.1 三种房屋设计方案的目标值具体目标方案1(A1)方案2(A2)方案3(A3)低造价(元/平方米)500 700 600抗震性能(里氏级) 6.5 5.5 6.5建造时间(年) 2 1.5 1结构合理(定性)中优良造型美观(定性)良优中由表中可见,可供选择的三个方案各有优缺点。
某一个方案对其中一个目标来说是最优者,从另一个目标角度来看就不见得是最优,可能是次优。
比如从造价低这个具体目标出发,则方案1较好;如从合理美观的目标出发,方案2就不错;但如果从牢固性看,显然方案3最可靠等等。
1.多目标决策问题的基本特点例13.1就是一个多目标决策问题。
类似的例子可以举出很多。
多目标决策问题除了目标不至一个这一明显的特点外,最显著的有以下两点:目标间的不可公度性和目标间的矛盾性。
目标间的不可公度性是指各个目标没有统一的度量标准,因而难以直接进行比较。
例如房屋设计问题中,造价的单位是元/平方米,建造时间的单位是年,而结构、造型等则为定性指标。
目标间的矛盾性是指如果选择一种方案以改进某一目标的值,可能会使另一目标的值变坏。
如房屋设计中造型、抗震性能的提高可能会使房屋建造成本提高。
2.多目标问题的三个基本要素一个多目标决策问题一般包括目标体系、备选方案和决策准则三个基本因素。
目标体系—是指由决策者选择方案所考虑的目标组及其结构;备选方案—是指决策者根据实际问题设计出的解决问题的方案。
有的被选方案是明确的、有限的,而有的备选方案不是明确的,还有待于在决策过程中根据一系列约束条件解出。
决策准则—是指用于选择的方案的标准。
通常有两类,一类是最优准则,可以把所有方案依某个准则排序。
另一类是满意准则,它牺牲了最优性使问题简化,把所有方案分为几个有序的子集。
如“可接受”与“不可接受”;“好的”、“可接受的”、“不可接受的”与“坏的”。
3.几个基本概念1)劣解和非劣解劣解:如某方案的各目标均劣于其他目标,则该方案可以直接舍去。
这种通过比较可直接舍弃的方案称为劣解。
非劣解:既不能立即舍去,又不能立即确定为最优的方案称为非劣解。
非劣解在多目标决策中起非常重要的作用。
单目标决策问题中的任意两个方案都可比较优劣,但在多目标时任何两个解不一定都可以比较出其优劣。
如图13.1,希望f 1和f 2两个目标越大越好,则方案A 和B 、方案D 和E 相比就无法简单定出其优劣。
但是方案E 和方案I 比较,显然E 比I 劣。
而对方案I 和H 来说,没有其它方案比它们更好。
而其它的解,有的两对之间无法比较,但总能找到令一个解比它们优。
I 、H 这一类解就叫非劣解,而A 、B 、C 、D 、E 、F 、G 叫作劣解。
如果能够判别某一解是劣解,则可淘汰之。
如果是非劣解,因为没有别的解比它优,就无法简单淘汰。
倘若非劣解只有一个,当然就选它。
问题是在一般情况下非劣解远不止一个,这就有待于决策者选择,选出来的解叫选好解。
对于m 个目标,一般用m 个目标函数12(),(),,()m f x f x f x 刻划,其中x 表示方案,而x 的约束就是备选方案范围。
最优解:设最优解为*x ,它满足)()(*x f x f i i ≥ n i ,,2,1 = (13.1.1)2)选好解在处理多目标决策时,先找最优解,若无最优解,就尽力在各待选方案中找出非劣解,然后权衡非劣解,从中找出一个比较满意的方案。
这个比较满意的方案f 1(第一目标值)f 2(第二目标值)图13.1 劣解与非劣解就称为选好解。
单目标决策主要是通过对各方案两两比较,即通过辨优的方法求得最优方案。
而多目标决策除了需要辩优以确定哪些方案是劣解或非劣解外,还需要通过权衡的方法来求得决策者认为比较满意的解。
权衡的过程实际上就反映了决策者的主观价值和意图。
13.2 决策方法解决多目标决策问题的方法目前已有不少,本节主要介绍以下三种:化多目标为单目标的方法、重排次序法、分层序列法。
决策的一般步骤为,第一步,判断各个方案的非劣性,从所有方案中找出全部非劣方案,即满意方案。
第二步,在全部非劣方案中寻找最优解或选好解。
13.2.1 化多目标为单目标的方法由于直接求多目标决策问题比较困难,而单目标决策问题又较易求解,因此就出现了先把多目标问题转换成单目标问题然后再进行求解的许多方法。
下面介绍几种较为常见的方法。
1) 主要目标优化兼顾其它目标的方法设有m 个目标f 1(x ),f 2(x ),….,f m (x ),x ∈R 均要求为最优,但在这m 个目标中有一个是主要目标,例如为f 1(x ),并要求其为最大。
在这种情况下,只要使其它目标值处于一定的数值范围内,即m i f x f f i i i ,...,3,2,)('''=≤≤就可把多目标决策问题转化为下列单目标决策问题:'1''''max (){(),2,3,...,;}x R i i i f x R x f f x f i m x R ∈=≤≤=∈ (13.2.1)例13.2 设某厂生产A 、B 两种产品以供应市场的需要。
生产两种产品所需的设备台时、原料等消耗定额及其质量和单位产品利润等如表13.2所示。
在制定生产计划时工厂决策者考虑了如下三个目标:第一,计划期内生产产品所获得的利润为最大;第二,为满足市场对不同产品的需要,产品A 的产量必须为产品B 的产量的1.5倍;第三,为充分利用设备台时,设备台时的使用时间不得少于11个单位。
表13.2 产品消耗、利润表显然,上述决策问题是一个多目标决策问题,今若将利润最大作为主要目标,则后面两个目标只要符合要求即可。
这样,上述问题就可变换成单目标决策问题,并可用线性规划进行求解。
设1x 为产品A 的产量,2x 为产品B 的产量,则上述利润最大作为主要目标,其它两个目标可作为约束条件,其数学模型如下:max 212.34x x z +=12121212122412(3312.. 1.502411,0x x x x s t x x x x x x +≤⎧⎪+≤⎪⎪-=⎨⎪+≥⎪⎪≥⎩设备台式约束)(原料约束)(目标约束)(目标约束) (13.2.2) (线性规划问题及后面所介绍的目标规划问题的求解过程请参阅《运筹学》有关部分。
)2) 线性加权和法设有一多目标决策问题,共有f 1(x ),f 2(x ),…,f m (x )等m 个目标,则可以对目标 f i (x ) 分别给以权重系数i λ(i =1,2,…,m ),然后构成一个新的目标函数如下:max F (x )=)(1x f i mi i∑=λ(13.2.3)计算所有方案的F (x )值,从中找出最大值的方案,即为最优方案。
在多目标决策问题中,或由于各个目标的量纲不同,或有些目标值要求最大而有些要求最小,则可首先将目标值变换成效用值或无量纲值,然后再用线性加权和法计算新的目标函数值并进行比较,以决定方案取舍。
3) 平方和加权法设有m 个目标的决策问题,现要求各方案的目标值f 1(x ),f 2(x ),…,f m (x )与规定的m 个满意值f 1*,f 2*,…,f m *的差距尽可能小,这时可以重新设计一个总的目标函数:F (x )=2*1))((iimi ifx f -∑=λ (13.2.4)并要求min F (x ),其中i λ是第i (i =1,2,…)个目标的权重系数。
4) 乘除法当有m 个目标f 1(x ),f 2(x ),…,f m (x )时,其中目标f 1(x ),f 2(x ),…,f k (x )的值要求越小越好,目标f k (x ),f k+1(x ),…,f m (x )的值要求越大越好,并假定f k (x ),f k+1(x ),…,f m (x )都大于0。
于是可以采用如下目标函数F (x )=)()()()()()(2121x f x f x f x f x f x f m k k k ⋅⋅⋅⋅⋅⋅⋅⋅++ (13.2.5)并要求min F (x )。
5) 功效系数法设有m 个目标f 1(x ),f 2(x ),…,f m (x ),其中k 1个目标要求最大,k 2个目标要求最小。
赋予这些目标f 1(x ),f 2(x ),…,f m (x ) 以一定的功效系数d i (i =1,2,…,m ),10≤≤i d 。