量子力学复习

合集下载

《量子力学》复习资料提纲

《量子力学》复习资料提纲

)(Et r p i p Ae-⋅=ρϖηϖψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。

四、表象算符在其自身的表象中的矩阵是对角矩阵。

五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。

第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射: 附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=**ηϖi j ⎩⎨⎧≥≤∞<<=ax x a x x V 或0,0,0)(0=⋅∇+∂∂j tϖρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H ϖημ)(,)(),(r er t r n tE i n n n ϖϖϖηψψψ-=n n n E H ψψ=(3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。

2.波函数统计解释:若粒子的状态用()t r ,ρψ描写,τψτψψd d 2*=表示在t 时刻,空间r ρ处体积元τd 内找到粒子的几率(设ψ是归一化的)。

量子力学总复习

量子力学总复习

2 mv m A
A 为该金属材料的逸出功
3 光子的能量、质量与动量 光子静止质量: m 0 0
m
hν c
2
光子的能量:
h ν mc
p h
2
光子的动量:

h p n

4 光的“波粒二象性”

康普顿效应
hν0 n0 c
碰撞过程中能量守恒
hν n c
hν 0 m 0 c hν mc
Ψ t

ቤተ መጻሕፍቲ ባይዱ

2
Ψ ( r , t ) U ( r , t )Ψ ( r , t ) i
2
Ψ (r , t ) t
2m
2 定态薛定谔方程 若势能 U 与 t 无关,仅是坐标的函数。
Ψ (r , t ) Φ (r )e

i
Et
2 * Ψ (r , t ) Ψ (r , t )Ψ (r , t ) Φ (r )
E mc hν
2
p mv
h

这种和实物粒子相联系的波称为 德布罗意波 或 物质波 。

h p

h mV

h m 0V
1
2
德布罗意公式

h m0v
如果 v c ,
则:
七 不确定性关系
1 位置与动量的不确定性关系
x p y p z p
x

1 玻尔的三条基本假设 (1)定态假设:原子系统只能处在一系列具有不连续能量的 状态,在这些状态上电子虽然绕核做园周运动但并不向外辐射 电磁波。这些状态称为原子系统的稳定状态(简称定态)。 这些定态的能量:

量子力学复习重点

量子力学复习重点
1 2 1 2



1 e 2

2 2
x
e
i Px
dx




e
1 2 x2 2
e
i Px
dx

1 2 1 2 1 2




e
1 ip p2 2 ( x 2 )2 2 2 2 2
dx

2 e

4 2 1 ( 3 2a0 a0


0
r 2 r / a0 (2r )e dr a0
2 2 a0 a0 4 2 2 ( 2 ) 4 2 4 4 2a0 2a0
(r , , )d (5) c( p) * p (r )

c( p ) 2
p2 ; 2
(3)动量的几率分布函数。
解:(1) U
1 1 2 x 2 2 2 2



x 2 e
2
x2
dx

1 1 1 2 1 1 2 2 2 2 2 2 2 2 4 2 2
1 4

(2) T

4 3 a0


0
r 3 a 2 r / a0 dr

4 3! 3 a0 3 4 2 a0 2 a 0
(2) U (
e2 e2 ) 3 r a0

0 0

2

0
1 2 r / a0 2 e r sin drd d r
e2 3 a0 4e 2 3 a0
解: U ( x)与t 无关,是定态问题。其定态 S—方程

量子力学复习题

量子力学复习题

量子力学复习题
量子力学是20世纪初发展起来的一种物理学理论,它主要描述微观粒子如原子、电子、光子等的行为。

量子力学的核心概念包括波函数、量子态、量子跃迁、测不准原理等。

以下是一些关于量子力学的复习题,可以帮助你更好地理解这一理论。

1. 波函数:描述一个量子系统状态的数学函数是什么?它如何与粒子的物理性质相联系?
2. 薛定谔方程:写出非相对论性量子力学中描述粒子状态随时间演化的基本方程。

3. 量子态:解释什么是量子态,以及如何通过测量来确定一个量子系统的量子态。

4. 量子跃迁:描述量子跃迁的概念,并解释它在原子光谱中的作用。

5. 测不准原理:解释海森堡测不准原理的内容,并说明它对量子力学实验的意义。

6. 量子纠缠:解释什么是量子纠缠,以及它在量子通信和量子计算中的应用。

7. 泡利不相容原理:描述泡利不相容原理,并说明它如何影响多电子原子的电子排布。

8. 量子隧道效应:解释量子隧道效应,并讨论它在扫描隧道显微镜中的应用。

9. 量子退相干:解释量子退相干的概念,并讨论它对量子计算和量子信息的影响。

10. 量子力学的解释:讨论不同的量子力学解释,如哥本哈根解释、多世界解释等,并比较它们之间的异同。

11. 量子力学与经典力学的关系:讨论量子力学与经典力学之间的联系和区别,以及量子力学如何从经典力学中发展而来。

12. 量子力学的应用:列举量子力学在现代科技中的应用实例,如半导体技术、量子点、量子传感器等。

通过解答这些问题,你可以更深入地理解量子力学的基本原理和它在现代物理学中的重要性。

记住,量子力学是一门非常抽象的学科,需要大量的练习和思考才能掌握。

教务处量子力学复习提纲

教务处量子力学复习提纲

《量子力学》总复习一. 波粒二象性---微观粒子特性(1) 态的描述经典态(),P r →量子态(态矢—一般表示)或波函数:),...,(),,(t P t x Φψ(不同的具体表象)),(t x ψ的意义:t 时刻,x 附近,单位体积内找到粒子的几率幅 ),(t x ψ的性质:1)单值,2)连续,3)归一(2) 力学量的描述QQ ˆ→,对易关系,测不准问题 (3) 德布洛意关系 k P E ==,ω (粒子量与波量)二.力学量算符(1)Qˆ 出现的场合:Q ˆ ,(2)Q ˆ的性质:1)线性性 nnn n Q CC Q ψψ∑∑=ˆˆ(态的叠加原理的要求) 2)厄米性 Q Q ˆˆ=+ 或⎰⎰=τψψτψψd Q d Q **)ˆ(ˆ (Qˆ的本征值、平均值为实数的要求) (3)Qˆ的表示:不同表象有不同的表示 x 表象中:,ˆ,ˆxi P x xx∂∂== P 表象中:,ˆ,ˆxx xP P P i x=∂∂-= n 表象中:ˆˆˆ)xaa +=+, 注:1)<Qˆ>与表象的选择无关! 2)算符相等的定义:ψ=ψB A ˆˆ(ψ为任意态),则B Aˆˆ= (4) 力学量算符的对易关系2ˆˆˆˆˆ[,],[,]ˆˆˆ[,]ˆˆˆ[,]ˆˆˆ[,]ˆˆ[,]0j k j kj kj k llxy z yz x zx yix P i L L i LL L i L L L i L L L i L L L δε==⎧=⎪⎪↔=⎨⎪=⎪⎩= ,其中110ijkε⎧⎪=-⎨⎪⎩当下标排列(,,)i j k 为偶排列时ijk ε值为1;为奇排列时ijk ε值为-1;当下标(,,)i j k 中有两个下标相同时ijk ε值为0 注:对易关系与表象的选择无关! (5) 测不准关系222]ˆ,ˆ[41)ˆ()ˆ(B A B A -≥∆∆ 表明:1)0]ˆ,ˆ[≠B A,B A ˆ,ˆ无共同的本征态,B A ,不可能同时测准; 2)0]ˆ,ˆ[=B A,B A ˆ,ˆ有共同的本征态,B A ,有可能同时测准,即 在它们的共同本征态上可同时测准。

量子力学复习资料

量子力学复习资料

《量子力学》复习资料第一章 绪论1、经典物理学的困难:①黑体辐射;②光电效应;③氢原子线性光谱;④固体在低温下的比热。

2、★★★普朗克提出能量子假说:黑体只能以νh E =为能量单位不连续的发射和吸收辐射能量,⋯⋯==,3,2,1 n nh E n ν,能量的最小单元νh 称为能量子。

意义:解决了黑体辐射问题。

3、★★★(末考选择)爱因斯坦提出光量子假说:电磁辐射不仅在发射和吸收时以能量νh 的微粒形式出现,而且以这种形式在空间以光速c 传播,这种粒子叫做光量子,也叫光子。

意义:解释了光电效应。

【注】光电效应方程为0221W hv v m m e -= 4、★★★玻尔的三个基本假设:①定态假设:原子核外电子处在一些不连续的定常状态上,称为定态,而且这些定态相应的能量是分立的。

②跃迁假设:原子在与能级m E 和n E 相对应的两个定态之间跃迁时,将吸收或辐射频率为ν的光子,而且有m n E E hv -=.③角动量量子化假设:角动量必须是 的整数倍,即 ,3,2,1,==n n L意义:解决了氢原子光谱问题。

(末考选择)5、★★★玻尔理论后来也遇到了困难,为解决这些困难,德布罗意提出了微观粒子也具有波粒二象性的假说。

6、德布罗意公式:⇒⎪⎩⎪⎨⎧===k n h p h Eλν意义:将光的波动性和粒子性联系起来,两式的左端描述的是粒子性(能量和动量),右端描述的是波动性(频率和波长)。

7、(填空)德布罗意波长的计算:meUhmE h p h 22===λ 8、★★★康普顿散射实验的意义:证明了光具有粒子性。

(末考填空)同时也证实了普朗克和爱因斯坦理论的正确性。

9、★★★证实了电子具有波动性的典型实验:戴维孙-革末的电子衍射实验(也证实了德布罗意假说的正确性)、电子双缝衍射实验。

10、微观粒子的运动状态和经典粒子的运动状态的区别:(1)描述方式不同:微观粒子的运动状态用波函数描述,经典粒子的运动状态用坐标和动量描述;(2)遵循规律不同:微观粒子的运动遵循薛定谔方程,经典粒子的运动遵循牛顿第二定律。

量子力学期末复习课件省名师优质课赛课获奖课件市赛课一等奖课件

量子力学期末复习课件省名师优质课赛课获奖课件市赛课一等奖课件
E n 8ma2
能级分布是不均匀旳,能级越高, 能级之间旳间距就越大
22n2
E n 8ma2
41
两组波函数
n
=
Asin n x
2a
0
N为正偶数,|x|<a |x|≥a
n
=
B cos n x
2a
0
N为正奇数,|x|<a |x|≥a
(1) (2)
42
第三步:波函数归一化
43
2
再由波函数旳归一化条件 n (x) dx 1
绪论
黑体辐射、光电效应和康普顿散射 揭示了光旳波粒二象性
三个试验现象经典物理旳理论无法解释
黑体辐射
光电效应 氢原子光谱
从而诞生了量子力学
1
Bohr原子轨道量子化
1、玻尔旳量子论
1923年,Bohr把Planck—Einstein旳概念利用来处理原子 构造和光谱旳问题,提出了原子旳量子论,其中极为主要旳两个 概念(假定):定态假设与量子跃迁
6
§2.1 波函数旳统计解释
7
§2.1 波函数旳统计解释
波函数是描述微观粒子旳状态
因为微观粒子具有波粒二象性,坐标和动量不能同步拟定, 当粒子处于某一状态时,坐标和动量一般具有许多可能值, 这些可能值各自以一定旳概率出现,这些概率能够由一种 函数得出——波函数 只要系统旳波函数已知,系统旳其他性质也能够懂得:
1
2
y C sin qx C cos qx
1
2
y C sin(qx ) 1
三个方程是等价旳
38
第二步:利用波函数旳原则条件(单值、有限、连续) 定未知数
39
根据波函数旳连续性 ( ) 0 代入到下面旳方程

量子力学复习资料

量子力学复习资料

量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。

它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。

例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。

2、量子态量子态是描述微观粒子状态的方式。

与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。

波函数的平方表示在某个位置找到粒子的概率密度。

3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。

即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。

二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。

对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。

2、算符在量子力学中,物理量通常用算符来表示。

例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。

算符作用在波函数上,得到相应物理量的可能取值。

三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。

其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

思考题1、以下说法是否正确:(1)量子力学适用于微观体系,而经典力学适用于宏观体系;(2)量子力学适用于 不能忽略的体系,而经典力学适用于 可以忽略的体系。

答:(1)量子力学是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。

(2)对于宏观体系或 可以忽略的体系,并非量子力学不能适用,而是量子力学实际上已经过渡到经典力学,二者相吻合了。

2、微观粒子的状态用波函数完全描述,这里“完全”的含义是什么?答:按照波函数的统计解释,波函数统计性的描述了体系的量子态。

如已知单粒子(不考虑自旋)波函数)ψ,则不仅可以确定粒子的位置概率分布,而且如粒子(r的动量、能量等其他力学量的概率分布也均可通过)ψ而完全确定。

(r由于量子理论和经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。

从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。

3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。

答:设1ψ和2ψ是分别打开左边和右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ和2ψ的线性叠加2211ψψψc c +=来表示。

可见态的叠加不是概率相加,而是波函数的叠加,屏上粒子位置的概率分布由222112ψψψc c +=确定,2ψ中出现有1ψ和2ψ的干涉项]Re[2*21*21ψψc c ,1c 和2c 的模对相对相位对概率分布具有重要作用。

4、(1)波函数ψ与ψk 、ψαi e 是否描述同一态?(2)下列波函数在什么情况下才是描述同一态?221122112121;;ψψψψψψααi i e c e c c c +++这里21,c c 是复常数,21,αα是实常数。

答:(1)ψ与ψk 、ψαi e 描述的相对概率分布完全相同,如对空间1x 和2x 两点的相对概率=221)()(x x ψψ=221)()(x k x k ψψ221)()(x e x e i i ψψαα,故ψ与ψk 、ψαi e 均描述同一态。

(2)由于任意复数θi e c c =, 以及2*12*1*21*2122221122211ψψψψψψψψc c c c c c c c +±+=± 显然,只有当复数c c c ==21,即c c c ==21,且αααi i i e e e ==21时,αααψψψψψψψψψψi i i e c e c e c c c c )(),(,2122112122112121+=++=++均描述同一态。

5、量子力学为什么要用算符表示力学量?表示力学量的算符为什么必须是线性厄密的?答:用算符表示力学量,是量子体系所固有的波粒二象性所要求的,这正是量子力学处理方法上的基本特点之一。

我们知道,表示量子态的波函数是一种概率波,因此,即是在一确定的量子态中,也并非各力学量都有完全确定值,而是一般的表现为不同数值的统计分布,这就注定了经典力学量的表示方法(可由运动状态完全决定)不再使用,因此需要寻求新的表示方法。

下面从力学量的平均值的表示式出发,说明引入算符的必要性。

如果体系处于)(x ψ中,则它的位置平均值为 xdx x x 2)(⎰=ψ 类似地,它的动量的平均值也可表示为 pdx x p 2)(⎰=ψ若要求出上述积分,必须将p 表示为x 的函数,然而这是做不到的,因为按不确定关系p(x)的表示是无意义的,因此不能直接在坐标表象中用上式求动量平均值。

我们可先在动量表象中求出动量平均值,然后再转换到坐标表象中去。

p d p p p 2)(⎰=ϕ 利用⎰-=dx e x p ipx /2/1)()2(1)(ψπϕ有 ⎰⎰⎰''=-'dxdp x d e x p x e p ipx x ip/*/)()(21ψψπ作代换//ipx ipx e xi pe --∂∂=,并对x p ',积分得(推广到三维) τψψd r i r p )())((*∇-=⎰可见,要在坐标表象中计算动量平均值,那么动量矢量恰与算符∇- i 相当。

实际上,任何一个力学量在非自身表象中计算平均值时,都与相应的算符相当,自然会引入算符表示力学量的概念。

用算符表示力学量问题还可以从另一个角度来说明。

我们知道,在量子力学中,力学量之间的关系从其数值是否能同时确定来考虑,有相互对易与不对易两种,而经典力学量之间都是对易的,因此经典力学量的表示方法不能适用于量子力学,然而数学运算中算符与算符之间一般并不满足交换律,也就是存在不对易情况,因此用算符表示力学量是适当的。

力学量必须用线性厄密算符表示,这是由量子态叠加原理所要求的;任何力学量的实际测量值必须是实数,因此它的本征值也必为实数,这就决定了力学量必须由厄密算符来表示。

6、力学量之间的对易关系有何物理意义?答:力学量之间的对易关系,是量子力学中极为重要的关系。

它相当于旧量子论中的量子化条件,具有深刻的物理含义。

对易关系表明,经典因果性不是普遍成立的,并指出各类力学量能够同时确定的条件(相互对易),体现了量子力学的基本特点。

与不确定原理一样,力学量之间的对易关系也是来源于物质的波粒二象性。

从纯理论的角度说,它也可以作为量子力学的基本出发点。

此外,对于有的力学量,对易关系反映了它的基本特征,如γαβγβαεL i L L =],[,就可作为角动量的定义。

7、什么是力学量的完全集?它有何特征?答:设有一组彼此独立而又相互对易的力学量( ,,21F F ),它们的共同本征函数系为),,(21 n n ϕϕ,如果给定一组量子数),,(21 n n 就可以确定体系的一个可能态,那么,就称( ,,21F F )为体系的一个力学量完全集。

它的特点是:(1)力学量完全集的共同本征函数系构成一个希尔伯特空间;(2)力学量完全集所包含力学量的数目等于量子数组),,(21 n n 所包含的量子数数目,即体系的自由度数;(3)力学量完全集中所有力学量是可以同时测量的。

8、何谓定态? 它有何特征?答:定态就是概率密度和概率流密度不随时间而变化的状态。

若势场恒定0=∂∂tV ,则体系可以处于定态。

定态具有以下特征:(1)定态波函数时空坐标可以分离, /)(),(iEt e r t r -=ψψ,其中)(r ψ是哈密顿量H 的本征函数,而E 为相应的本征值;(2)不显含时间t 的任何力学量,对于定态的平均值不随时间而变化,各种可能值出现的概率分布也不随时间而变化。

注意,通常用)(r ψ表示定态只是一种简写,定态是含时态,任何描写粒子状态的波函数都是含时的。

9、不确定关系如何体现微观粒子的普遍本质——波粒二象性?答:对于微观粒子使用“波粒二象性”的术语,这本身既反映了经典物理概念的局限性,又反映了我们语言的局限性。

我们可以认为,物质兼具粒子性和波动性,但确切地说,它们既不是经典波,也不是经典粒子,经典物理中粒子和波的概念只有经过修正才能被量子理论借用,不确定性关系就反映了这种修正,它给出了这两个概念能够被有效借用的限度,如2≥∆⋅∆p x 给出了用粒子图像描述物质的局限性。

10、如何用矩阵表示量子态与力学量,并说明理由。

答: 矩阵表示一般用于本征值为分立谱的表象(相应希尔伯特空间的维数是可数的)。

具体说,如果力学量A 的本征函数为n ϕϕϕ ,,21,相应本征值为n A A A ,,21。

任意态矢ψ可展开为∑=nn n a ψψ态矢ψ在A 表象的表示为展开系数{}n a 组成的一列矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n a a a 21ψ其意义是:在ψ态中,力学量A 取值n A 的几率为2n a ,与坐标表象波函数的意义相类似。

力学量用厄密矩阵表示⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n A A A A A A A A A A212222111211 ),(j i ij A A ϕϕ= 可见列矩阵与方阵维数与希尔伯特空间维数相同。

用矩阵表示力学量,理由如下:(1)可以反映力学量作用一个量子态而得到另一个量子态的事实。

设)()(x A x ψϕ=,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n b b b 21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n A A A A A A A A A 212222111211⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a21 简记为Aa b =; (2)矩阵乘法一般不满足交换律,这恰好能满足两个力学量一般不对易的要求;(3)厄密矩阵的性质能体现力学量算符的厄密性。

11、算符(力学量)在其自身表象中如何表示?其本征矢是什么?答:力学量本征值是分立谱时,它在其自身表象中的表示是对角化的,对角元素就是它的本征值⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n A A A A 00000021本征矢为单一元素列矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0011 ϕ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=0102 ϕ ………12、狄拉克符号中,引入了右矢>,为什么又引入左矢<,右矢和左矢能够相加吗?答:在量子力学中,态空间是具有内积的矢量空间,类似于希尔伯特空间波函数ϕ和ψ的内积⎰=τψϕψϕd *),(,>ϕ|和>ψ|的内积记为><ψϕ|,|ϕ<是对应于>ϕ|的左矢,属于伴随空间的一个矢量。

由于左矢和右矢是分属于不同空间的矢量,它们不能相加。

13、(1)∧+∧++∧∧=<>A B B A |)|(ψψ(2)>>=ψλλψ||(3)如>ψ是∧F 的本征矢,则||ψψ<'=<∧F F(4)算符||n n P n ><=的物理意义是什么?公式∑=<nn n 1|.|成立的条件是什么?答:算符||n n P n ><=的物理意义在于,它作用于任何态矢上得到该态矢在基矢>n |方向的投影矢量,>>=><>=n A A n n A P n n ||||;且n n P n n n n n n P =><=><><=|||||2,故||n n P n ><=称为投影算符,>=<A n A n |是投影数值。

公式∑=<nn n 1|.|成立的条件是基矢集{}>n |组成正交、归一、完备系,任意态矢均可按{}>n |唯一展开><>>=>=∑∑A n n n A A nn n||||,由于>A |为任意态矢,故得到∑∑=><=nnn n n P 1||,此式可作为完全集的定义式,称为封闭性关系。

相关文档
最新文档