分子标记原理和技术
分子标记技术的原理和应用

分子标记技术的原理和应用1. 简介分子标记技术是一种用于标记和检测生物分子的方法。
通过在目标分子上引入特定标记物,可以实现对这些分子进行定量、定位及特异性检测。
本文将介绍分子标记技术的原理和应用。
2. 原理分子标记技术主要通过以下步骤来实现对目标分子的标记和检测:•选择标记物:标记物通常是具有特异性的分子或结构,如荧光染料、酶、金纳米颗粒等。
根据标记物的特性和应用需求,选择合适的标记物。
•引入标记物:将选定的标记物与目标分子进行结合。
这可以通过化学反应、酶促反应或物理吸附等方法实现。
•检测标记物:使用适当的检测方法,如光谱分析、电化学方法等,对标记物进行定量或定性检测。
这些方法可以根据标记物的特性和需求选择。
3. 应用分子标记技术在许多领域都有广泛的应用。
以下是一些主要的应用领域:3.1 生物医学研究•免疫组织化学:通过标记特定抗体来检测组织中的蛋白质,用于研究疾病诊断、治疗反应和组织学研究。
•分子诊断:使用分子标记技术检测体液中的特定生物分子,如DNA、RNA和蛋白质,用于早期疾病诊断和个体化治疗。
•药物研发:利用分子标记技术对药物与靶标的相互作用进行研究,加速药物研发过程。
3.2 食品安全检测•农药残留检测:使用分子标记技术检测食品中的农药残留物,保证食品安全。
•食品成分分析:通过标记特定分子,检测食品中的成分和添加物。
3.3 环境监测•水质检测:使用分子标记技术检测水中的有害物质和污染物,保护环境和人类健康。
•大气污染监测:通过标记特定分子,检测大气中的污染物,评估空气质量。
3.4 基因组学研究•基因定位:使用分子标记技术对基因组中特定序列进行定位和研究。
•基因表达分析:通过标记RNA或蛋白质,研究基因在各个组织中的表达情况。
4. 总结分子标记技术以其高灵敏度、高特异性和高可视性等优势,在生物医学研究、食品安全检测、环境监测和基因组学研究等领域具有广泛的应用前景。
随着技术的不断发展和创新,相信分子标记技术将在未来发挥更大的作用,并为各个领域的研究和应用带来更多的突破。
分子标记技术

多组学数据整合
采用降维技术对高维数据进行处理,如主成分分析、t-SNE等,以降低数据复杂度并提高可视化效果。
数据降维处理
结合多种分析方法对整合后的数据进行联合分析,如聚类分析、差异表达分析、功能注释等,以深入挖掘数据中的生物学意义。
02
CHAPTER
DNA分子标记方法
利用随机引物对基因组DNA进行PCR扩增,通过电泳等方法检测扩增产物多态性。
原理
特点
应用
实验操作简便、快速、成本低,但稳定性较差,重复性有待提高。
适用于遗传多样性分析、品种鉴定、基因定位等研究。
03
02
01
基于DNA单链在非变性条件下的构象多态性,通过电泳等方法检测不同构象的DNA单链。
前景展望
随着基因组学、转录组学等高通量测序技术的不断发展,未来分子标记技术将更加精准、高效和便捷。同时,随着人工智能和大数据技术的融合应用,分子标记技术将在更多领域发挥重要作用,如精准医疗、个性化治疗、生态环境监测等。此外,随着合成生物学和基因编辑技术的不断发展,利用分子标记技术进行基因定位和编辑将成为可能,这将为遗传性疾病的治疗和农作物遗传改良提供新的思路和方法。
原理
微小RNA(miRNA)和长非编码RNA(lncRNA)是两类重要的非编码RNA,它们在基因表达调控中发挥关键作用。miRNA通过靶向mRNA导致其降解或抑制其翻译来发挥作用,而lncRNA则通过多种机制调节基因表达。
原理
miRNA和lncRNA作为分子标记在疾病诊断、预后评估和治疗靶点筛选等方面具有潜在应用价值。例如,在癌症研究中,特定miRNA或lncRNA的表达水平与癌症的发生、发展和转移密切相关,可作为癌症诊断和治疗的生物标志物。此外,miRNA和lncRNA还可用于研究细胞分化、发育和逆境胁迫等生物学过程。
第五章分子标记技术原理与应用

AFLP标记的基本原理是基于PCR技术扩增基因 组DNA限制性片段,基因组 DNA先用限制性内切酶切割,然后将双链接头 连接到DNA片段的末端,接 头序列和相邻的限制性位点序列,作为引物结 合位点。限制性片段用两种 酶切割产生,一种是罕见切割酶,一种是常用 切割酶。
分子标记的应用
获得与目标性状连锁的分子标记
分子标记辅助育种的经典例子
美国科学家将分子选择应用在玉米杂种优势遗传改良上,经过改良的B73 改良的Mo17的组合比原始的B73 Mo17组合和一个高产推广组合 Pioneer hybrid 3165皆增产10%以上(Stuber and Sisco 1991; Stuber et al. 1995)。 通过分子标记技术将3个抗稻瘟病基因(Pi-2、Pi-1和Pi-4)在水稻第6、 11和12号染色体上进行定位,然后利用连锁标记将这3个抗性基因聚合起 来。基因聚合试验从3个分别带有Pi-2、Pi-1和Pi-4基因的近等基因系 C101LAC、C101A51和C101PKT出发,已成功地获得聚合了这3个抗稻瘟病 基因的植株,它们可以作为供体亲本在育种中加以利用,可同时提供数 个抗性基因。 (Zheng et al. 1995)
一、限制性片段长度多态性技 术(RFLP)
限制性片段长度多态性技术(RFLP)是用已知的 限制性内切酶消化目标 DNA,电泳印迹,再用DNA探针杂交并放射自 显影,从而得到与探针同源 的DNA序列酶切后在长度上的差异。 RFLP标记在正常的分离群体中都呈典型的孟德 尔式遗传。PFLP的结果稳 定,在作物基因图谱构建和QTL基因定位分析 上使用较多。
三、简单重复序列SSR
dna分子标记技术概述

DNA分子标记技术概述1. 引言DNA分子标记技术是现代生物学和医学领域中非常重要的一项技术。
它可以通过特定的标记方法,在DNA分子上进行特异性地标记,从而实现对DNA序列的检测、定位和分析。
本文将对DNA分子标记技术进行全面、详细、完整和深入地探讨。
2. DNA分子标记技术的原理2.1 标记物选择在进行DNA分子标记之前,需要选择合适的标记物。
常用的DNA分子标记物包括荧光染料、辣根过氧化物酶标记物、生物素标记物等。
这些标记物具有不同的优势和适用范围,可以根据具体实验需求来选择合适的标记物。
2.2 标记方法DNA分子标记方法有多种,常用的包括直接标记法和间接标记法。
直接标记法是将标记物直接连接到DNA分子上,常用于荧光标记。
间接标记法是通过先引入标记物、再进行特定的反应来实现标记,常用于酶标记和生物素标记等。
2.3 标记效率和准确性DNA分子标记技术的效率和准确性是衡量其优劣的重要指标。
高效率和准确性可以保证实验结果的可靠性和准确性。
因此,在选择标记物和标记方法时,需要考虑到其标记效率和准确性,以及对实验结果的影响。
3. DNA分子标记技术的应用领域3.1 DNA测序和基因组学研究DNA分子标记技术在DNA测序和基因组学研究中有广泛的应用。
通过标记技术,可以对DNA序列进行检测和定位,从而实现对基因组的研究和分析。
3.2 分子诊断和疾病检测DNA分子标记技术在分子诊断和疾病检测中起到关键作用。
通过标记技术,可以检测和分析与疾病相关的基因或基因突变,从而实现早期诊断和治疗。
3.3 人类遗传学研究DNA分子标记技术对人类遗传学研究具有重要意义。
通过标记技术,可以进行人类遗传多样性和遗传变异的研究,为疾病发生机制和个体差异提供重要的参考和依据。
3.4 动植物遗传改良DNA分子标记技术在动植物遗传改良中有广泛应用。
通过标记技术,可以进行动植物基因分型和基因定位,为遗传改良工作提供重要的科学依据和技术支持。
3-分子标记技术原理、方法及应用

细胞学标记
植物细胞染色体的变异:包括染色体核型(染 色体数目、结构、随体有无、着丝粒位置等) 和带型(C带、N带、G带等)的变化。
优点: 能进行一些重要基因的染色体或染色 体区域定位
缺点: (1)材料需要花费较大的人力和较长 时间来培育,难度很大; (2) 有些变异难以用细 胞学方法进行检测
生化标记
主要包括同工酶和等位酶标记。分析方法是从 组织蛋白粗提物中通过电泳和组织化学染色法 将酶的多种形式转变成肉眼可辩的酶谱带型。
优点: 直接反映了基因产物差异,受环境影 响较小
缺点: (1)目前可使用的生化标记数量还相 当有限; (2)有些酶的染色方法和电泳技术有一 定难度
分子标记
主要指能反映生物个体或种群间基因组中某种 差异特征的DNA片段,它直接反映基因组DNA 间的差异,也叫DNA标记。
2/片段迁移率的变化要反映分子量的差异 ————DNA在聚丙烯酰胺凝胶上迁移率也受构象 变化影响
RFLP 基 本 步 骤
RFLP patterns in Pinus densata
RFLP
优点: 无表型效应,不受环境条件和发育阶段的影响
共显性,非常稳定 起源于基因组DNA自身变异,数量上几乎不受限制
分子标记技术原理、方法 及应用
黄健子 2011.10
一、遗传标记的类型及发展 二、几种常见分子标记的原理及方法 三、分子标记技术的应用
一、遗传标记的类型及发展
遗传标记(genetic marker):指可追踪染色体、染
色体某一节段、某个基因座在家系中传递的任何一 种遗传特性。它具有两个基本特征,即可遗传性和 可识别性;因此生物的任何有差异表型的基因突变 型均可作为遗传标记。包括形态学标记、细胞学标 记、生化标记和分子标记四种类型。
分子标记技术的类型原理及应用

分子标记1.分子标记技术及其定义1974年,Grozdicker等人在鉴定温度敏感表型的腺病毒DNA突变体时, 利用限制性内切酶酶解后得到的DNA片段的差异, 首创了DNA分子标记。
所谓分子标记是根据基因组DNA存在丰富的多态性而发展起来的可直接反映生物个体在DNA水平上的差异的一类新型的遗传标记,它是继形态学标记、细胞学标记、生化标记之后最为可靠的遗传标记技术。
广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质分子。
通常所说的分子标记是指以DNA多态性为基础的遗传标记。
分子标记技术本质上都是以检测生物个体在基因或基因型上所产生的变异来反映基因组之间差异。
2.分子标记技术的类型分子标记从它诞生之日起, 就引起了生物科学家极大的兴趣,在经历了短短几十年的迅猛发展后, 分子标记技术日趋成熟, 现已出现的分子标记技术有几十种, 部分分子标记技术所属类型如下。
2.1 建立在Southern杂交基础上的分子标记技术(1) RFLP ( Rest rict ion Fragment Length Polymorphism)限制性内切酶片段长度多态性标记;(2) CISH ( Chromosome In Situ Hybridization) 染色体原位杂交。
2.2 以重复序列为基础的分子标记技术(1) ( Satellite DNA ) 卫星DNA;(2) ( Minisatellite DNA ) 小卫星DNA;(3) SSR( Simple Sequence Repeat ) 简单序列重复, 即微卫星DNA。
2.3 以PCR为基础的分子标记技术(1) RAPD ( Randomly Amplif ied Polymorphic DNA ) 随机扩增多态性DNA;(2) AFLP( Amplif ied Fragment Length Polymorphism) 扩增片段长度多态性;(3) SSCP( Single Strand Conformation Polymorphism) 单链构象多态性;(4) cDNA-AFLP( cDNA- AmplifiedFragment Length Polymorphism) cDNA -扩增片段长度多态性;(5) TRAP( Target Region Amplified Polymorphism) 靶位区域扩增多态性;(6) SCAR ( Sequence Char acterized Amplified Region) 序列特征化扩增区域;(7) SRAP ( Sequencerelated Amplified Polymorphism) 相关序列扩增多态性。
常用分子标记技术原理及应用

单链制备
通过加热或化学方法 将双链DNA变性为 单链。
凝胶电泳
将单链DNA在聚丙 烯酰胺凝胶上进行电 泳,并观察迁移率变 化。
结果分析
通过比较正常和突变 DNA的迁移率,确 定是否存在基因突变。
应用实例
遗传病诊断
SSCP技术可用于检测与遗传病相关的 基因突变,如囊性纤维化、镰状细胞 贫血等。
肿瘤研究
特点
高分辨率、高灵敏度、可重复性和可 靠性,能够检测出微小的基因组差异 ,广泛应用于遗传育种、生物多样性 保护、人类医学等领域。
分子标记技术的应用领域
遗传育种
通过分子标记技术对动植物进行遗传资源鉴定、品种纯度 鉴定、遗传连锁分析和基因定位等,提高育种效率和品质。
生物多样性保护
利用分子标记技术对物种进行遗传结构和亲缘关系分析, 评估物种的遗传多样性和濒危程度,为保护生物多样性提 供科学依据。
人类医学
分子标记技术在人类医学中用于疾病诊断、药物研发、个 体化医疗等方面,有助于提高疾病的预防、诊断和治疗水 平。
常用分子标记技术简介
RFLP(限制性片段长度多态性)
SSR(简单序列重复)
利用限制性内切酶对DNA进行切割,产生 不同长度的片段,通过电泳和染色检测多 态性。
利用串联重复的DNA序列多态性进行标记 ,通过PCR扩增和电泳检测多态性。
分子标记辅助育种
利用AFLP技术标记控制重要性状 的基因,辅助育种者快速筛选具 有优良性状的个体。
植物分子生态学研
究
利用AFLP技术分析植物种群遗传 结构、物种演化和生态适应性等 方面的研究。
04
SSR技术
原理
简单序列重复标记(SSR)是一种基于PCR的分子标记技 术,利用微卫星序列的重复单元进行扩增,通过检测等位 基因的长度多态性来识别基因组中的变异。
分子标记技术原理方法及应用

分子标记技术原理方法及应用分子标记技术是一种用于检测和定位特定分子的方法。
其原理是通过将一种特殊的化学物质(标记物)与目标分子结合,然后利用标记物的性质来对目标分子进行分析和检测。
分子标记技术被广泛应用于生物医学研究、生物学检测和药物研发等领域。
常用的分子标记技术有荧光标记、酶标记和放射性标记等。
荧光标记是一种将目标分子与荧光染料结合的技术。
荧光标记的原理是通过荧光染料的特性,使得目标分子在荧光显微镜下显示出特定的荧光信号,从而对其进行定位和分析。
荧光标记可以在细胞、组织和体内进行,具有灵敏度高、分辨率高和实时监测的优点。
常见的荧光标记方法有间接免疫荧光标记、原位杂交荧光标记和荧光蛋白标记等。
荧光标记技术广泛应用于细胞定位、蛋白质相互作用研究、细胞分析和分子诊断等领域。
酶标记是一种利用酶与底物反应的方法进行分子标记。
通常,酶标记将目标分子与特定的酶(如辣根过氧化酶、碱性磷酸酶等)结合,然后通过对底物的催化作用产生显色或荧光信号。
酶标记在生物学检测中得到广泛应用,特别是在酶联免疫吸附试验(ELISA)中。
酶标记具有灵敏度高、稳定性好的特点,可以用于检测蛋白质、核酸和小分子等生物分子。
放射性标记是利用放射性同位素与目标分子结合的技术。
放射性同位素具有高灵敏度和长时间半衰期的特点,可以用于追踪和测定目标分子的存在和分布。
放射性标记技术广泛应用于细胞和分子影像学、放射性定位和药物代谢等领域。
分子标记技术在生物医学研究、生物学检测和药物研发等领域有着广泛的应用。
在生物医学研究中,分子标记技术可以用于研究细胞和分子的结构和功能,探索疾病的发生机制和药物的作用机理。
在生物学检测中,分子标记技术可以用于检测和定位特定的生物分子,如蛋白质、核酸和小分子等,从而实现对生物过程的观察和分析。
在药物研发中,分子标记技术可以用于筛选和评价药物的活性和毒性,以及研究药物的代谢和药理学特性。
总之,分子标记技术的发展和应用为生物医学研究和生物学检测提供了强大的工具,有助于我们深入理解生命的奥秘和开发有效的治疗手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同工酶与等位酶
✍同工酶与等位酶
电泳可区分的同一种酶(系统)的不同变化。
同工酶(isozyme):广义是指生物体内催化相同反应而
分子结构不同的酶。催化相同的化学反应,但其蛋白 质分子结构、理化性质和免疫性能等方面都存在明显 差异的一组酶 。
等位酶(allozyme):由同一个位点的不同等位基因编码
染色体显带(chromosome banding):借助于特殊的处理程序,
使染色体显出深浅不同的带纹。染色体的数目、位置、宽窄与浓 淡具有相对的稳定性。
染色体带型分析:通过蛋白酶或酸、碱、盐等化学因素或温度变
化等物理因素处理染色体,然后用Giemsa、芥子喹吖因等染料进 行染色,可使各对染色体上表现出不同的染色带型或荧光域,因 而可以在经典的核型分析的基础上,进一步根据染色体的带型更 精细地分析染色体。
达能力。
第一章 绪论
1.1 遗传标记的类型及发展 1.2 遗传物质——DNA 1.3 聚合酶链式反应——PCR 1.4 分子标记常用技术概述
1.1 遗传标记的类型及发展
A genetic marker is any difference in DNA, no matter how it is detected, whose pattern of transmission from generation to generation can be detected. Genetic marker that are detected by direct analysis of the DNA are called DNA markers.
在个体发育中,从胚胎到出生,再到成年,随着组织的分化和发
育,各种同工酶谱也有一个分化转变的过程。
酶是基因表达的直接产物,同工酶谱的器官组织特异性也反映了基
因表达的特异性。
目前与性别分化有关的同工酶研究大多集中在过氧化物酶同工酶在
雌雄器官中的差异研究。
早在1972年,Penel等就注意到菠菜的性别差异与过氧化物酶同工酶
分子标记技术
(Techniques of Molecular Markers)
课程基本情况:
教学目的: 使学生了解以Souther blot 、 PCR为基础,能用于遗传多样性 研究的分子标记技术,包括RFLP、RAPD、AFLP、SSR、ISH、 DDRT-PCR、SNP 等. 教学内容及基本要求: DNA结构与功能;PCR技术;各种分子标记技术 基本原理;各种分子标记技术基本操作方法;分子标记技术的应用; 实验中经常遇到的问题及解决方法。 教学目标:使学生掌握常见分子标记技术使用的基本技能。 学习本课程的前期课程要求: 遗传学、细胞生物学、分子生物学.
✍分子标记的种类与历史
蛋白质:同工酶(等位酶)上世纪六十年代以来 核苷酸序列和片段:tRNA(1965) 1980年以来:RFLP 1984年以来:SSR 1990年以来:RAPD 1993年以来:AFLP 1996年以来:DDRT-PCR
1.2 遗传物质——DNA
✍ DNA结构原理 ✍ DNA分子的结构与功能 ✍ DNA的理化性质及应用
形态标记简单直观、经济方便;但其数量在多
数植物中是很有限的,且多态性较差,表现易 受环境影响,并且有一些标记与不良性状连锁。 此外形态标记的获得需要通过诱变、分离纯合 的过程,周期较长。因此,形态标记在作物遗 传育种中的作用是有限的。
❷ 细胞学标记(cytological markers)
☛ 细胞学标记即植物细胞染色体的变异。各个物种的染色 体都有特定的特征。 包括染色体核型(染色体数目、结构、随体有无、 着丝粒位置等)和带型(C带、N带、G带等)的变化 与形态标记相比,细胞学标记的优点是能进行一些 重要基因的染色体或染色体区域定位。但细胞学标记材 料需要花费较大的人力和较长时间来培育,难度很大; 同时某些物种对染色体变异反应敏感;还有些变异难以 用细胞学方法进行检测。 因此,到目前为止,真正应用于作物遗传育种研究 中的细胞学标记还很少。
1.2.1 DNA结构原理
✍ DNA双螺旋的发现
✍ 典型双螺旋结构
DNA双螺旋的发现
✍ 1943年Avery证明DNA携带遗传信息
Oswald Avery (1877-1955) Microbiologist Avery led the team that showed that DNA is the unit of inheritance. One Nobel laureate has called the discovery "the historical platform of modern DNA research", and his work inspired Watson and Crick to seek DNA's structure.
谱带的数目有关。
沈德绪认为葡萄和中华猕猴桃中雌株酶带数也比雄株多。 范双喜等对芦笋雌雄株过氧化物酶同工酶(POD)进行了研究,结果
表明雄株均比相应的雌株少一条酶带,说明芦笋性别差异与过氧化 物酶同工酶谱带的数目有关,过氧化物酶同工酶谱的差异可以作为 性别鉴定的指标。
另外在杨梅、猕猴桃等中也有过类似的报道。
✍广义的分子标记是指可遗传并可检测的特异 DNA序列或蛋白质。
狭义的分子标记仅指DNA或(RNA)标记,而这 个界定现在被广泛采纳。 ✍目前,分子标记技术(这里指DNA或cDNA分 ion Fragment Length Polymorphisms)、 RAPD (Random Amplified Polymorphic DNA)、 AFLP (Amplified fragment length polymorphisms)、 SSR (Simple sequence repeats)、 GISH (Genomic in situ hybridization) 、 mRNA DD (mRNA Differential Display) 、 SSH (Suppression Subtraction Hybridization) 、 AP-PCR (Arbitray-primer PCR)、 DAF (DNA amplified fingprinting)、 SPARs (Single primer amplification reactions) 、
❸ 生化标记(biochemical markers)
☛ 生化标记主要包括同工酶和等位酶标记, 同工酶是指一个以上基因座位编码的酶的不同形式;
等位酶是指由一个基因座位的不同等位基因编码的酶的不同分子 形式。
分析方法是从植物组织的蛋白粗提物中通过电泳和组织化学染色 法将酶的多种形式转变成肉眼可辩的酶谱带型。 与形态标记、细胞学标记相比,生化标记具两个方面的优点: 一是表现近中性,对植物经济性状一般没有大的不良影响; 二是直接反映了基因产物差异,受环境影响较小。 但目前可使用的生化标记数量还相当有限,同时有组织特异性和 发育时期特异性。且有些酶的染色方法和电泳技术有一定难度,因此 其实际应用受到一定限制。
❶ 形态标记(morphological markers)
☛形态标记即植物的外部形态特征。
主要包括肉眼可见的外部特征,如:株高、穗长、 粒色、花色、粒重等;
也包括色素、生理特性、生殖特性、抗病虫性等 有关的一些特性。 1864年,孟德尔以豌豆的花色、种子形状、子叶颜色、 豆荚形状、豆荚颜色、花序着生部位和株高7个不同的 形态标记为对象,进行豌豆杂交试验,对杂交后代进 行分析研究,得出了著名的分离和独立分配规律。
1.1 遗传标记的类型及发展
✍遗传标记(genetic markers)是研究生物遗传变异规律及其 物质基础的重要手段。遗传标记主要有4种类型: ❶ 形态标记(morphological markers) ❷ 细胞学标记(cytological markers) ❸ 生化标记(biochemical markers) ❹ 分子标记(molecular markers) 在植物遗传育种研究中可被利用的遗传标记应具备 以下几个条件:
别、免疫调节和对异体移植物排斥反应。 HLA-DRB1基因是最具多态 性的基因,存在106个等位基因,尤其是外显子2处含有多达40个等位 基因,最常见的有16个等位基因位点,此处含有与某些疾病的易感基 因和保护基因。
共显性:杂合子的一对等位基因各自都具有自己的表型效
应,当这一对等位基因杂合时,两种表现型共存。便于鉴 别基因的 纯合或杂合。
(1)多态性高; (2)表现共显性; (3)对农艺性状影响小; (4)经济方便,容易观察记载。
多态性:群体内存在着和等位基因相关的若干种表现型,
是单一基因座等位基因变异性在群体水平的体现。
遗传多态性发生于基因组群体内,表现出由于等位基因受
影响而产生不同的基因型,由此产生个体之间的多态性。
HLA基因多态性:人类白细胞抗原(HLA)的主要功能是参与自我识
SCARs (Sequenced characteried amplified regions)、
AMO (Anchored Microsatellite Oligonucleotides) 、 STS (Sequenc-tagged Site) 、
SNP (Single Nucleotide Polymorphism) .
教
材: 郑成木 主编.《植物分子标记原理与方法》. 湖南科技出版社,
2002年5月
考核:写一份读书报告,并做成PPT进行讲解。
何谓读书报告,就是读完书之后的心得报告, 是阅读者系统的收集、统整、研读与创作主题相 关的各种材料,经分析、归纳、提炼等思维活动,提 出个人见解和观点的文字作品。 写读书报告的目的在于增加新知、提升研究和表
应振士等分析认为,过氧化物同工酶与雌性相关性的原因可能与其