配位聚合物的应用及其研究进展
镧系金属配位聚合物的应用

镧系金属配位聚合物的应用下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!镧系金属配位聚合物是一种具有广泛应用前景的材料,在各个领域都有着重要的作用。
配位聚合物的应用研究

配位聚合物的应用研究研究组姓名选题意义配位聚合物(coordination polymers)是有机配体与金属离子通过自组装过程形成的具有周期性网络结构的晶体材料。
它结合了复合高分子和配位化合物两者的特点,是一类具有特殊性质的杂化材料。
作为新型功能性分子材料,配位聚合物的设计与合成,结构及其性能的研究越来越受到各个领域科学家的重视,形成了跨越多个学科的热点研究领域。
报告内容具有三维空旷网络结构的金属有机骨架材料(metal-organic framework,MOFs)是一种稳定的配位聚合物材料。
MOFs材料在溶剂分子脱除后能保持骨架结构稳定,具有超大的比表面积和孔体积。
稳定性的提高大大拓展了MOFs材料的应用领域,成为MOFs材料发挥其特殊性质的基础。
MOFs材料可以用于类分子筛载体、气体存储和分离、非线性光学、分子磁体、手性拆分、发光材料、光电转化、催化等众多领域。
其中MOFs在多相不对称催化和光催化领域的应用由于其重要性逐渐受到科学家的重视。
使用具有手性催化活性的有机分子作为配体,可以得到具有手性催化活性的MOFs材料。
这是一种特殊的多相化方式,催化剂负载量大,活性中心均匀分布,开放的孔道有利于底物与活性中心接近。
在手性催化中具有重要应用的卟啉、席夫碱、联萘配体都已成功合成了MOFs材料,而且材料具有较好的手性选择性。
以光学纯的手性酒石酸衍生物为配体,合成具有手性孔道的MOFs材料,不仅可以成功地拆分外消旋的配位化合物,而且还成功实现了对酯交换反应的不对称催化作用。
理论计算表明,MOFs材料也是一种合适的半导体材料,能带带隙在1.0到5.5eV之间。
有机部分吸收光子的能量,能够发生从有机到无机部分的电荷转移。
从而像半导体一样,能作为电子给体和受体。
光激发后,MOFs材料能发生光致变色、光催化产氢、光催化氧化有机物等反应。
前景展望由于作为配位聚合物组成部分的金属离子和有机配体的高度可调性和配位方式的多样性,配位聚合物具有无限的组成和结构可裁性,这是其它材料所无法比拟的。
基于吡嗪及其衍生物的配位聚合物的合成与应用研究

基于吡嗪及其衍生物的配位聚合物的合成与应用研究1、前言配位聚物(coordinationpolymers ),是由过渡金属和有机配体自组装 ,在空间上形成一维、二维或三维的无限结构。
这类无机-有机杂化复合聚合物材料结构多样、性能优异 ,作为功能材料如选择性催化分子识别、气体吸附、离子交换、超高纯度分离材料 ,生物传导材料 ,光电材料 ,新型半导体材料 ,磁性材料和芯片开发等领域显示了诱人的应用前景。
因此 ,这方面的研究成为 20 世纪 90 年代后化学和材料学科中最为活跃的研究领域之一。
深入地了解配位聚合物的合成、结构、性能及应用是近年来化学家和材料科学家追求的目标。
目前 ,这类化合物的研究基本上集中在以有机桥基和金属离子为单元构筑【1—3】的各类具有功能特性的聚合物。
最近10 年内有许多文献【4 —6】报道了该类物质的特殊理化性质 ,如催化性能、手性、导电性、发光性、磁性、非线性光学性能和多孔性。
在含氮杂环配体当中,以吡嗪及其相关的各种衍生物为配体而合成的配合物在含氮芳香杂环为配体的配合物家族中占据有非常重要的位置。
它们以其特有的配位结构和配位性质而被配位化学工作者所重视。
本综述主要探讨以吡嗪及其衍生物为有机配体的相关配位聚合物的研究工作情况。
2、有机配体的设计现已得知,多核配合物中配位原子的电子密度与其桥联金属离子间的磁耦合作用有着密切的关联因素,特别是桥联配体[7-38]的配位原子的电子密度直接影响着其桥联金属离子间的磁相互作用的大小。
配位原子的电子密度大,则其桥联金属离子间的磁相互作用就强;反之,其磁相互作用就弱。
因此,为了获得具有较强的磁耦合性质的桥联多核配合物,应设计、合成那些含有较大电子密度的配位原子的配体。
理论和实验均已证实,氮杂环化合物中氧原子的电子密度远大于其相应的氮杂环中氮原子的电子密度[39-40]。
因此,氮杂环氮氧化物中氧原子较相应的氮杂环化合物中氮原子具有强的配位能力而可形成强的配位键。
金属有机多孔配位聚合物的研究进展

金属有机多孔配位聚合物的研究进展多孔材料在物质分离、气体储存和异相催化等领域有着广泛的应用。
传统的无机多孔材料包括硅藻土和沸石等天然多孔材料和名目繁多的(如,活性炭、活性氧化铝、蛭石、微孔玻璃、多孔陶瓷等)人工多孔材料。
天然无机多孔材料的结构类型有限,人造无机多孔材料虽然可克服这一缺点(通过改变制备工艺,人们可以制备从微孔、中孔到大孔等各类多孔材料),但是人造多孔材料的缺点是无法获得均匀孔结构。
近年来"无机!有机杂化配合物作为一种新型的多孔材料引起了人们的广泛关注。
人们将这种配合物定义为金属有机类分子筛"其孔洞处在纳米的数量级" 又称纳米微孔配位聚合物,这类材料的功能可以通过无机物种或有机桥联分子进行调节,过渡金属可以将其还原转化为沸石性主体,从而产生一些有趣的具有磁性和光谱特性的孔洞,而有机物质可以调节孔道尺寸、改变孔的内表面,还具有化学反应性或手性,可以弥补传统分子筛的许多不,在异相催化、手性拆分、气体存储、离子交换、主客体化学、荧光传感器以及光电磁多功能材料等领域显示出良好的应用前景。
和无机多孔材料相比,这类分子材料具有(1)结构多样性:MOFs是由金属离子(node)和有机配体(linker或spacer)通过配位键形成的配位聚合物,有机配体分子的多样性和金属离子配位几何的多样性导致了它们构成的配位聚合物结构的多样性(2)分子设计和分子剪裁的可行性:调节有机配体的几何性质和选择不同配位几何的金属离子可调控配位聚合物孔的结构(3)制备条件温和:在常压或几十个大气压,200度左右或更低的温度下反应等优点,因而对MOFs 的研究备受化学和材料科学工作者的关注。
由于配位聚合物的形成可以看作具有各自配位特征的配体和金属离子之间的合理识别与组装,因此,配体的几何构型和配位性能及金属离子的配位趋向和配位能力对配位聚合物的结构起着决定作用。
此外,阴离子、溶剂、反应物配比、溶液的pH、合成方法(水热或溶剂热,溶液法、扩散法、溶胶法)、反应温度等也对配位聚合物的结构有重要的影响。
金属配位聚合物的合成与性能研究

金属配位聚合物的合成与性能研究金属配位聚合物是一种具有特殊结构和性能的新型材料,其合成方法和性能研究一直备受学术界的关注。
本文将介绍金属配位聚合物的合成方法、性能研究以及其在材料科学中的应用。
一、金属配位聚合物的合成方法金属配位聚合物的合成方法多样,可以通过配位反应合成,也可通过溶剂热法、溶胶-凝胶法等合成。
1. 配位反应合成配位反应合成是一种常用的金属配位聚合物合成方法。
首先选择金属离子和配体,通过它们之间的配位作用形成聚合物结构。
常用的配体包括有机酸、有机碱等。
通过调节配体的配位特性和金属离子的电子结构,可以合成出具有不同结构和性能的金属配位聚合物。
2. 溶剂热法溶剂热法是一种简便有效的金属配位聚合物合成方法。
通过将金属盐和有机配体溶解在合适的溶剂中,在高温条件下,经过反应和结晶过程,得到金属配位聚合物。
溶剂热法具有操作简便、反应快速等优点。
3. 溶胶-凝胶法溶胶-凝胶法是一种通过控制溶胶和凝胶形成过程来合成金属配位聚合物的方法。
通常可以选择适当的溶胶,在其中溶解金属盐和有机配体,通过加热、干燥等处理,使其形成凝胶,再经过适当的后处理方法,得到金属配位聚合物。
二、金属配位聚合物的性能研究金属配位聚合物具有丰富的结构和性能,其性能研究对于深入理解其特性和应用具有重要意义。
1. 结构表征金属配位聚合物的性能研究的重要一环是其结构表征。
通过使用X射线衍射、红外光谱、核磁共振等技术手段,可以确定金属配位聚合物的晶体结构、配位结构和配位键等信息。
2. 物理性能研究金属配位聚合物的物理性能研究主要包括热学性质、光学性质、导电性等。
通过热重分析、差示扫描量热法、紫外可见光谱、电导率测试等手段,可以评估金属配位聚合物在热学、光学和电学方面的性能。
3. 应用性能研究金属配位聚合物在催化、吸附等领域具有广泛的应用前景。
对于金属配位聚合物的应用性能研究,可以通过评估其在吸附分离、催化反应中的效果,来探究其应用潜力和机理。
[高分子材料] 南开大学卜显和:多孔配位聚合物的发展历程及研究进展
![[高分子材料] 南开大学卜显和:多孔配位聚合物的发展历程及研究进展](https://img.taocdn.com/s3/m/7b1096adf12d2af90342e694.png)
南开大学卜显和:多孔配位聚合物的发展历程及研究进展2020-01-04以下文章来源于中国科学杂志社,作者中国科学:化学多孔配位聚合物(PCP)(包括金属有机框架)是一类由金属节点和配体通过配位键连接形成的晶态多孔材料。
作为一类新兴的无机-有机杂化材料, PCP具有丰富且可调节的结构和功能, 因此其在气体吸附分离、催化、传感等诸多领域展现出巨大的应用潜力, 是多学科交叉的研究热点。
南开大学化学学院卜显和教授课题组近期在《中国科学:化学》发表评述,依据PCP的结构及性质特点,总结了第一至第四代多孔配位聚合物PCP研究的发展历程, 介绍了该领域的主要研究内容和典型研究进展, 进而基于该领域未来面临的挑战和发展趋势分析了材料的实用化前景。
近年来, 多孔配位聚合物(porous coordination polymer, PCP) (包括金属有机框架(metal-organic framework, MOF))的研究方兴未艾。
PCP是由金属节点(金属离子或金属簇)和有机连接体通过配位键自组装形成的具有无限网络结构的材料。
其作为配位超分子化学的一个重要组成部分, 与无机化学、有机化学、晶体工程、拓扑学、材料化学及固态化学等领域相互交叉、渗透, 现已成为化学和材料领域的研究热点之一。
相较于传统的无机多孔材料(如沸石分子筛、微孔二氧化硅), PCP具有结构和组成多样、结构可设计、孔道可调节和易于功能化的优点。
因此, 这类材料在吸附分离、催化、检测、磁性以及光电等领域展现出巨大的应用价值和潜力。
按照PCP的发展历程和属性对其进行的分类根据剑桥晶体数据中心的统计, 1972~2016年, 约有7万例可被定义为MOF的新结构被合成, 对应的可定义为PCP的化合物的数量更加庞大。
基于PCP数量的急剧增长, 相关研究论文的发表数量也在逐年递增。
与此同时, 涉及PCP材料的研究领域不断扩大。
目前PCP的研究热点主要集中在以下5个方面。
配位聚合物在有机反应中的催化机理研究

配位聚合物在有机反应中的催化机理研究配位聚合物是一类具有特殊结构和功能的聚合物,其分子中含有特定的配位基团,能够与金属离子形成稳定的配位化合物。
配位聚合物在有机反应中具有重要的催化作用,其催化机理是当前有机化学研究的热点之一。
配位聚合物的催化作用主要体现在两个方面:一是配位基团与金属离子的催化活性,二是配位聚合物分子结构的灵活可控性。
配位基团能够与金属离子形成稳定的配合物,提高金属离子的活性,加速有机反应的进行。
同时,通过设计合成特定结构的配位聚合物,可以调控其催化活性和选择性,实现对有机反应的精确控制。
配位聚合物在有机反应中的催化机理涉及复杂的配位化学和有机化学过程。
首先,配位基团与金属离子之间发生配位作用,形成稳定的配位化合物。
这一过程为后续有机反应提供了良好的反应环境和活化能量。
随后,金属离子与底物分子发生反应,催化底物分子的转化。
最终,反应生成产物,金属离子被再生,参与下一轮反应。
通过实验和理论研究,科学家们揭示了配位聚合物在有机反应中的催化机理。
他们发现,配位聚合物能够通过配位效应和空间位阻效应促进有机反应的进行。
配位效应使金属离子与底物分子之间形成稳定的配位键,提高反应速率和选择性;空间位阻效应能够限制底物分子的进入和反应路径,避免副反应的发生,使反应更加高效和特异。
配位聚合物在有机反应中的催化机理研究具有重要的理论和应用意义。
深入了解催化机理有助于设计高效、高选择性的催化剂,推动有机合成反应的发展。
同时,配位聚合物的催化机理也为材料科学和药物设计提供了新思路和方法,拓展了配位聚合物在不同领域的应用。
总的来说,配位聚合物在有机反应中的催化机理研究为有机化学领域带来了新的认识和突破。
未来,我们可以通过进一步探索配位聚合物的催化机理,发展更加高效、环保的有机合成方法,为化学领域的发展做出更大的贡献。
新型金属_有机骨架配位聚合物_MOF_的研究进展_杨捷

收稿日期:2009-09-09作者简介:杨捷,女,硕士,江苏盐城人,研究方向:纳米多孔配位聚合物。
文章编号:1002-1124(2009)12-0054-03Sum 171No.11化学工程师ChemicalEngineer2009年第12期体合成的骨架结构比较简单,但稳定性较差。
多齿配体的配位情况比较复杂,得到的配合物稳定性较好。
有机配体主要包括羧酸类、氨类、吡啶类、醇类和腈类等。
常见的中性配体为含氮杂环类化合物。
1.2金属离子的选择构筑MOFs的另一要素是金属离子。
金属离子在构筑配位聚合物中充当连接配体的结点,不同金属离子具有不同的配位数和配位构型,因而在构筑MOFs中起着不同的连接作用。
近几年,除过渡金属离子外,稀土金属离子尤其是镧系金属离子开始被使用,它们的配位数较高,为七、八或九配位,可以形成具有丰富多彩结构的M OFs。
由上可见,设计具有一定功能的多孔配位聚合物比较简单,但在实际的合成中却很难控制M OFs 的结构,主要问题是:(1)当客体分子移走后,合成的骨架容易坍塌;(2)骨架网络的相互贯穿(interpene-tration)现象,即两个或两个以上的独立无限网络通过物理作用互相交织在一起而形成一个分子整体。
相互贯穿会导致孔径大幅度减小甚至完全消失,为了避免贯穿结构,人们对结点和联结桥进行了精心的设计,虽然采取了很多方法避免相互贯穿,但最终的结构还是很难控制。
2MOFs的分类随着配位化学涵盖的范围和研究内容的不断扩大,MOFs的种类和数目在不断增长,结构新颖、性能特殊的配合物源源不断地涌现。
目前,M OFs的合成主要采用几种配体:含氮杂环配体、含羧基配体、含氮杂环与羧酸混合配体、两种羧酸混合配体等。
最常用的是前两种,下面我们将分别介绍。
2.1含羧基配体的MOFsYaghi用锌盐与对苯二甲酸(BDC)反应得到了立方结构的三维多孔聚合物[Zn4O(BDC)3](M OF-5)(图1(a))[3],球体代表形成的孔洞,其直径为1.85 nm,比表面积为2500~3000m2·g-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配位聚合物在光电磁材料中的应用姓名:吴娜学号:10207010摘要:配位聚合物由于其特殊的结构及其在光电磁等方面优异的性能引起了科学家的广泛关注。
本文综述了金属有机化合物在光电磁材料中的应用,并对新型多功能材料在设计、合成与应用方面的广阔前景作了展望。
关键词:配位聚合物;多功能材料;非线性光学;材料化学引言:配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。
近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。
配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。
配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。
并对分子器件和分子机器的发展起着至关重要的作用。
配位聚合物在新的分子材料中将发挥重要的作用。
配位化学理论在材料的分子设计中也将起着重要的指导作用。
材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。
功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2)分子化;(3)巨大的应用前景。
金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。
以下是金属有机化合物分别在光电磁材料中的应用。
1 配位聚合物在光学材料中的应用配位聚合物的光学性质研究主要集中在光致发光、电致发光以及非线性光学等方面[8]。
1.1光致发光和电致发光材料当外界光照射到某些物质的时候,这些物质会发射出各种波长和不同强度的可见光,而当外界光停止照射时,这种发射光也随之消失,我们称这种发光现象叫光致发光( PL);当物质在一定的电场下,被相应的电能所激发也能产生发光现象,我们称之为电致发光(EL)。
发光的原因是由于分子吸收了某一特定波长的光而达到激发态,激发态是不稳定的中间态,当它通过辐射跃迁回到基态时,能量以分子荧光或磷光的形式释放,这时分子就表现出发光的性质。
.发光材料是有机电致发光器件中的核心部分,现代合成技术的发展已经使染料的发光范围可以通过分子的剪裁精细调节。
经过20多年的深入研究,已经设计合成出系列的红色(R)、绿色(G)和蓝色(B)发光材料,一些性能优良的材料已经用于制备单色发光器件如八羟基喹啉铝(Alq3)等。
某些有机化合物本身就有发光性质,但有些没有,通过与金属离子配位以后,有些原来不发光的有机化合物转变为能发光的配合物;有些原来发光很弱的有机化合物变成了强发光的金属有机配合物。
这说明了金属离子通过了某种方式提高了有机配体的发光效率。
这类有机化合物绝大多数是芳香族化合物,金属离子多为非过渡金属离子,如8 -羟基喹啉可以与许多二价、三价、四价金属离子生成配合物,羟基蒽酮染料和偶氮染料与Al3+、Be2+、Ga3+、Sc3+、In3+、Th4+、Zr4+和Zn2+等离子都能形成发光配合物。
锌的有机配合物是有机薄膜电致发光(有机EL)器件中的重要材料,如Zn-甲亚胺配合物都具有较高的熔点,因而有助于EL器件的耐热性和提高器件的稳定性[9]。
它的其它配合物如Zn(BTZ)2 (图1)显示了很强的荧光,并且可通过真空蒸镀形成非常好的无结晶薄膜,亮度很高,接近为白色发光。
这是一种新型的RGB(Red-Green-Blue)发光材料[10]。
对于有机EL器件应用于全色显示和背照明是极其有意义的,还有锌的羟基黄酮类配合物,它们也可以用作电致发光材料[11]。
.图1. Zn(BTZ)2的结构图2. TTA的结构红色发光金属配合物中,主要有稀土铕配合物、金属卟啉配合物和金属钌配合物等。
最早报道用于有机电致发光器件的稀土铕配合物是三价铕离子与三氟乙酰噻吩丙酮(TTA) (结构见图2)的二元配合物Eu(TTA)3。
Kido等将Eu配合物作为客体发光材料掺杂到主体材料中,形成主客体结构[12]。
在最佳条件下得到器件的起亮电压为6 V,最大亮度达到460 cd·m-2(16V)。
这是目前Eu配合物EL材料中发光亮度最高的器件。
1.2 非线性光学材料当光和物质相互作用时,会产生吸收、反射、散射和发光等和光的强度发生变化的效应其入射的频率(或能量)则没有变化。
而在激光这类高强度的电磁场和物质相互作用时会产生非经典光学的频率、相位、偏振和其它传输性质变化的新电磁场。
能够起这种作用的物质我们称之为非线性光学材料。
如二阶非线性光学材料,是指它能和入射的基频为ω的光波相互作用后产生频率为2ω的倍频光波. 随着科学高速发展而进入信息技术时代,非线性光学材料研究在现代激光技术、光学通讯、光子计算和动态成像等高新技术中都有广泛应用。
第一篇报道金属有机化合物的非线性光学(NLO)性质的文章发表于1986年[13],从那以后,金属有机非线性光学材料的研究逐步展开,不断深入。
总的发展过程是:由随机测试发展到有意识地进行分子设计;由测试粉末倍频效应发展到测试(或计算)分子二阶非线性系数β;由二阶非线性光学效应扩展到三阶效应;由借用有机非线性光学材料的分子设计理论逐步发展到总结金属有机化合物自身的结构与性能的关系。
近年来,Marder等合成了一系列带二茂铁基团的吡啶季铵盐(如图3),其中当X-为碘阴离子时,化合物的粉末倍频效应为尿素的220倍[8],这是迄今为止金属有机化合物中粉末倍频效应最强的化合物。
图3. 二茂铁吡啶季铵盐通过改变过渡金属的氧化状态(d电子数目)、几何构型及它们的顺磁反磁性可以改进这类化合物的非线性光学特性。
目前已经对一系列有机金属分子的NLO系数和不同金属离子、配体成键方式和共轭性间的关系进行了研究。
其中金属羰基化合物如:Cr (η6-C6H5X)(CO)3(X = H,OMe,NH2,COOMe),其中芳基作为给体通过d-π*反馈键而作为基态受体[14];金属茂烯类:一系列铁和钌的二茂铁作为给体,以共轭键联结不同受体的配合物呈现很高的β值[15];它们在UV和可见光区具有两个强吸收带。
由EHMO计算表明能量最低的跃迁是MLCT带。
而最高的能量的跃迁是具有一定金属成分的配体的π→π*跃迁。
秦金贵等合成了多种高价钛、锆的多茂金属有机化合物,发现该类配合物具有较浅的颜色,在可见区基本透明,并能较容易结晶为非心空间群,具有潜在的应用价值。
他们还合成了一类线型有机汞化合物,研究表明该类化合物具有较大β值和较宽的透过波段[16]金属有机配位化合物的NLO材料近年来有了很大的进展:如Thompson的水杨醛腙类的一维链状配合物、Sakaguchi等的联吡啶钌衍生物以及一些钼和钨的亚硝基配合物等。
具有代表性的是平面型金属配合物反式[M(L)2X (σ- C6H5A)][17]其中M = Ni,Pd和Pt作为桥,联结X = I,Br,Cl等电子给体和Ph-A (A = CHO,NO2)等电子受体,L = P (Et)3等。
后来也对一系列过渡金属配合物的二阶NLO进行过研究[18],特别是对混合价配合物[(NH3)5Ru-N≡C-Ru (CN)5]的研究[19],它具有目前最大的二阶NLO系数。
2 配位聚合物在导电材料中的应用近年来,由线性碳桥桥联的过渡金属有机化合物(又称金属有机“分子导线”)以其在一维分子导体、液晶材料和非线性光学材料方面的潜在应用价值引起学术界和产业界的关注。
一维无限链状多烯的离域体系可用作具有导电性和非线性光学性能的金属有机低聚物和聚合物的前体,也可用于合成新的多不饱和有机化合物。
可通过分子设计与合成将含有机配体的过渡金属LnM引入共轭桥的两端或嵌入到碳链中间。
金属有机片断的引入可增加不饱和碳链的稳定性,其可极化、电子受授等性质和MLCT(金属-配体电荷转移)作用或非中心对称性则会增强这类棒状π离域体系分子的液晶性质、非线性光学性质和一维导电性[20]。
用于导电材料的金属有机化合物主要有两类:(1)低维配位聚合物,如基于大环平面如酞菁、卟啉等堆砌成柱的导电材料。
(2)电荷转移复合盐,其中包括富勒烯(Fullerene)金属盐。
酞菁(Pc)是一种18π电子体系的大环共扼平面配体。
对于PcCu I、PcNiI、PcH2 I酞菁配合物,其室温电导率可达500~2000 S·cm-1[21]电导呈现出明显的各向异性。
Joyner和Kenny首先报道了以氧为桥联配体的一维酞菁聚合物[PcMO ]∞(M = Si,Ge,Sn)。
从[PcGaF ]n 的晶体结构数据可知其面间距为3187 Å,大于分子间π -π相互作用的距离(314 Å)[22]而在这些聚合物中掺杂碘时,其电导率可增加高达109数量级。
粉末X射线研究表明,分子链中酞菁环的面间距越近,π轨道的重叠越大,其电导率越高。
国内中科院钱人元和王佛松等在聚吡咯、聚苯胺等导电高分子材料方面也开展了大量工作.具有导电性能的分子金属电荷转移盐可分为三大类:即DA、DX和CA型,其中C为阳离子,X为阴离子,导电主要来源于D和A组分。
随着第一个有机金属导体TTF-TCNQ的出现,许多导体、超导材料也相继问世,如电化学结晶合成的DA型导体α-( EDT-TTF)[Ni(dmit)2](TTF)[Ni(dmit)2]2,α和α′-(TTF)[Pd(dmit)2]2等甚至显示超导性质,DX型分子导体k-(ET)2Cu[N(CN)2]Br和k-(ET)2Cu [N(CN)2] Cl等等。
3配位聚合物在磁性材料中的应用由于当代高技术发展的需要,铁磁体作为信息记录、存储材料越来越重要,而金属有机材料质轻、易加工,很多方面迫切需要以有机铁磁材料代替无机铁磁材料。
十几年来,科学家们试图设计、合成出稳定性好、磁含量高、铁磁转变温度高和具有较高矫顽力的金属有机铁磁体,取得了一些可喜的成果。
20世纪80年代中期,意大利化学家Gatteschi首先把具有成桥能力的有机自由基NITR(2- R-4,4,5,5-四甲基-3-氧化-咪唑啉-1-氧基自由基,R 为脂肪基团或芳香取代基团)作为自旋载体引入分子铁磁体的合成,制备了许多一维链金属-自由基化合物M(hfac)2-NITR(hfac为六氟乙酰丙酮),极大地丰富了低维磁体系的研究内容。