锁相环频率合成器

合集下载

锁相环(PLL)频率合成调谐器

锁相环(PLL)频率合成调谐器

锁相环(PLL)频率合成调谐器调谐器俗称高频头,是对接收来的高频电视信号进行放大(选频放大)并通过内部的变频器把所接收到的各频道电视信号,变为一固定频率的图像中频(38MHz)和伴音中频以利于后续电路(声表面滤波器、中放等)对信号进行处理。

调谐器(高频头)原理:高频放大:把接收来的高频电视信号进行选频放大。

本机振荡器:产生始终高于高频电视信号图像载频38MHz的等幅载波,送往混频器。

混频器:把高频放大器送来的电视信号和本机振荡器送来的本振等幅波,进行混频产生38MHz的差拍信号(即所接收的中频电视信号)输出送往预中放及声表面滤波器。

结论:简单的说:只要改变本机振荡器的频率即可达到选台的目的)一、电压合成调谐器:早期彩色电视接收机大部分均采用电压合成高频调谐器,其调谐器的选台及波段切换均由CPU输出的控制电压来实现(L、H、U波段切换电压及调谐选台电压),其中调谐选台电压用来控制选频回路和本振回路的谐振频率,调谐选台电压的任何变化都将导致本机振荡器频率偏移,选台不准确、频偏、频漂。

为了保证本机振荡器频率频率稳定,必须加上AFT系统。

由于AFT系统中中放限幅调谐回路和移相网络一般由LC谐振回路构成,这个谐振回路是不稳定的,这就造成了高频调谐器本机振荡器频率不稳,也极易造成频偏、频漂。

二、频率合成调谐器1、频率合成的基本含义:是指用若干个单一频率的正弦波合成多个新的频率分量的方法(频率合成调谐器的本振频率是由晶振分频合成的)。

频率合成的方法有很多种。

下图为混频式频率合成器方框图以上图中除了三个基频外还有其“和频”及“差频”输出(还有各个频率的高次谐波输出)。

输出信号的频率稳定性由基准信号频率稳定性决定,而且输出信号频率误差等于各基准信号误差之和,因此要想减少误差除了要提高基准信号稳定度之外还应减少基准信号的个数。

2、锁相环频率合成器:其方框图类似于彩色电视接收机中的副载波恢复电路,只是在输入回路插入了一个基准信号分频器(代替色同步信号输入)而在反馈支路插入一个可编程分频器(代替900移相)。

答辩-锁相环频率合成器的的设计与制作

答辩-锁相环频率合成器的的设计与制作
PCB板制作
将设计好的PCB板交给工厂进行制板。
焊接与组装
将元器件按照PCB板上的焊盘逐一焊 接,完成整个电路板的组装。
元器件选择与采购
元器件选择
根据电路参数和性能要求,选择合适 的电阻、电容、电感等元器件,确保 电路性能稳定可靠。
元器件采购
通过电子市场或网上商城等渠道,购 买所需的元器件,确保质量可靠、价 格合理。P源自B板设计与制作PCB板设计
使用EDA工具进行PCB板的设计,包括层数、线宽、间距等参数的设置,以及元件的布局和布线。
PCB板制作
将设计好的PCB板交给工厂进行制板,确保PCB板的品质和精度符合要求。
焊接与组装
焊接
使用电烙铁或热风枪等工具,将元器件按照PCB板上的焊盘逐一焊接,确保焊点质量良好、无虚焊、无短路。
性能评估与优化建议
性能评估
根据测试结果,该锁相环频率合成器在 输出频率、相位噪声和杂散抑制等方面 均表现出较好的性能,符合设计要求。
VS
优化建议
针对测试过程中发现的问题,建议进一步 优化电路设计,提高杂散抑制性能;同时 加强生产工艺控制,确保产品的一致性和 可靠性。
05
总结与展望
设计制作过程中的收获与不足
03
锁相环频率合成器的制作
制作流程
确定设计目标
明确频率范围、输出功率、相位噪声 等性能指标。
原理图设计
根据设计目标,使用EDA工具进行原 理图设计,包括PLL电路、VCO电路、 分频器等。
电路板布局
根据原理图,进行PCB板的布局设计, 确保信号路径短、干扰小。
元器件选型与采购
根据电路参数和性能要求,选择合适 的电阻、电容、电感等元器件,并完 成采购。

锁相环频率合成技术及其应用

锁相环频率合成技术及其应用

锁相环频率合成技术及其应用在当今的调频广播发送技术中,为了适应对发射机输出频率稳定度和频率准确度的严格要求,以及方便更换发射机频率的需要,在固态调频发射机中普遍使用了锁相技术和频率合成技术。

锁相环频率合成器成为固态调频发射机重要的组成部分。

锁相环频率合成器的优点在于其能提供频率稳定度很高的输出信号,能很好地抑制寄生分量,避免大量使用滤波器,因而有利于集成化和小型化。

而频率合成器中的程序分频器的分频比可以使用微机进行控制,易于实现发射机频率的更换及其频率显示的程控和遥控,促进全固态调频发射机的数字化、集成化和微机控制化。

将一个标准频率(如晶振参考源),经过加、减、乘、除运算,变成具有同一稳定度和准确度的多个所需频率的技术,称为频率合成技术。

控制振荡器,使其输出信号和一个参考信号之间保持确定关系的技术,称为锁相技术。

把由基准频率获得不同频率信号的组件或仪器,称为“频率合成器”。

频率合成的方法很多,但大致可分成两大类:直接合成法和间接合成法。

固态调频发射机中的频率合成器采用间接合成法。

间接合成法一般可用一个受控源(例如压控振荡器)、参考源和控制回路组成一个系统来实现。

即用一个频率源,通过分频产生参考频率,然后用锁相环(控制回路),把压控振荡器的频率锁定在某一频率上,由压控振荡器间接产生出所需要的频率输出。

1锁相环基本工作原理一个基本的锁相环路由以下3个部件组成:压控振荡器(VCO)、鉴相器(PD)和环路滤波器(LF),如图1所示。

当锁相环开始工作时,输入参考信号的频率f i与压控振荡器的固有振荡频率f 0总是不相同的,即f i≠f 0,这一固有频率差△f=f i-f 0必然引起它们之间的相位差不断变化,并不断跨越2π角。

由于鉴相器特性是以相位差2π为周期的,因此鉴相器输出的误差电压总是在某一范围内摆动。

这个误差电压通过环路滤波器变成控制电压加到压控振荡器上,使压控振荡器的频率f 0趋向于参考信号的频率f i,直到压控振荡器的频率变化到与输入参考信号的频率相等,并满足一定条件,环路就在这个频率上稳定下来。

基于锁相环的频率合成器..

基于锁相环的频率合成器..

综合课程设计频率合成器的设计与仿真前言现代通信系统中,为确保通信的稳定与可靠,对通信设备的频率准确率和稳定度提出了极高的要求. 随着电子技术的发展,要求信号的频率越来越准确和越来越稳定,一般的振荡器已不能满足系统设计的要求。

晶体振荡器的高准确度和高稳定度早已被人们认识,成为各种电子系统的必选部件。

但是晶体振荡器的频率变化范围很小,其频率值不高,很难满足通信、雷达、测控、仪器仪表等电子系统的需求,在这些应用领域,往往需要在一个频率范围内提供一系列高准确度和高稳定度的频率源,这就需要应用频率合成技术来满足这一需求。

本次实验利用SystemView实现通信系统中锁相频率合成器的仿真,并对结果进行了分析。

一、频率合成器简介频率合成是指以一个或少量的高准确度和高稳定度的标准频率作为参考频率,由此导出多个或大量的输出频率,这些输出频率的准确度与稳定度与参考频率是一致的。

用来产生这些频率的部件就成为频率合成器或频率综合器。

频率合成器通过一个或多个标准频率产生大量的输出频率,它是通过对标准频率在频域进行加、减、乘、除来实现的,可以用混频、倍频和分频等电路来实现。

其主要技术指标包括频率范围、频率间隔、准确度、频率稳定度、频率纯度以及体积、重量、功能和成本。

频率合成器的合成方法有直接模拟合成法、锁相环合成法和直接数字合成法。

直接模拟合成法利用倍频、分频、混频及滤波,从单一或几个参数频率中产生多个所需的频率。

该方法频率转换时间快(小于100ns),但是体积大、功耗大,成本高,目前已基本不被采用。

锁相频率合成器通过锁相环完成频率的加、减、乘、除运算,其结构是一种闭环系统。

其主要优势在于结构简化、便于集成,且频率纯度高,目前广泛应用于各种电子系统。

直接式频率合成器中所固有的那些缺点,在锁相频率合成器中大大减少。

本次实验设计的是锁相频率合成器。

二、锁相环频率合成器原理2.1锁相环路设计基础这一部分首先阐明了锁相环的基本原理及构成,导出了环路的相位模型和基本方程,概述了环路的工作过程,2.1.1锁相环基本原理锁相环( PLL)是一个相位跟踪系统。

基于锁相环的频率合成器的设计

基于锁相环的频率合成器的设计

基于锁相环的频率合成器的设计随着现代技术的进展,具有高稳定性和精确度的频率源已经成为通信、雷达、仪器仪表、高速计算机及导航系统的主要组成部分。

高性能的频率源可通过频率合成技术获得。

随着大规模的进展,锁相式频率合成技术占有越来越重要的地位。

由一个或几个高稳定度、高精确度的参考频率源通过数字锁相频率合成技术可获得高品质的离散频率源。

1 锁相环频率合成器的原理1.1 锁相环原理锁相环(PLL)是构成频率合成器的核心部件。

主要由相位(PD)、压控(VCO)、环路(LP)和参考频率源组成。

锁相环是一种利用外部输入的参考信号控制环路内部振荡信号反馈控制。

他的被控制量是相位,被控对象是压控振荡器。

1所示,假如锁相环路中压控振荡器的输出信号频率发生变幻,则输入到相位比较器的信号相位θv(t)和θR(t)必定会不同,使相位比较器输出一个与相位误差成比例的误差Vd(t),经环路滤波器输出一个缓慢变幻的直流电压Vc(t),来控制压控振荡器输出信号的相位,使输入和输出相位差减小,直到两信号之间的相位差等于常数。

此时,压控振荡器的输出信号频率和输入信号频率相等,且环路处于锁定状态。

1.2 锁相环频率合成器原理2所示,锁相环频率合成器是由参考频率源、参考分频器、相位比较器、环路滤波器、压控振荡器、可变分频器构成。

参考分频器对参考频率源举行分频,输出信号作为相位比较器参考信号。

可变分频器对压控振荡器的输出信号举行分频,分频之后返回到相位比较器输入端与参考信号举行比较。

当环路处于锁定时有f1=f2,由于f1=fr/M,f2=fo/N,所以有fo=Nfr/M。

只要转变可变分频器的分频第1页共3页。

锁相环路频率合成器的工作原理

锁相环路频率合成器的工作原理

锁相环路频率合成器的工作原理锁相环路频率合成器的工作原理锁相环路频率合成器是一种能够生成稳定高精度时钟信号的电路,广泛应用于通信、电子测量、控制系统等领域。

下面将介绍它的工作原理。

一、引言在很多电子系统中,需要使用时钟信号来同步各个部件的操作。

而这些部件的时钟信号源可能存在波动或漂移,导致同步出现偏差。

所以需要一种能够生成稳定的时钟信号的电路,锁相环路频率合成器应运而生。

二、基本结构锁相环路频率合成器由相频检测器、环形滤波器、控制电压生成器、数字频率分频器和参考振荡器组成。

1、相频检测器的作用是将参考信号与输出信号进行比较,得出它们之间的相位差或频率差。

2、环形滤波器的作用是对相频检测器输出的误差信号进行滤波。

3、控制电压生成器的作用是将滤波器的输出误差信号转化为控制电压,来调整和控制输出信号的频率或相位差。

4、数字频率分频器的作用是将输出信号分频,即降低频率。

5、参考振荡器的作用是提供一个稳定的参考信号。

三、工作原理锁相环路频率合成器的工作原理分为两个阶段:捕获和锁定。

在捕获阶段,锁相环路频率合成器控制电压的输出不断改变以使输出频率趋近于参考信号频率,同时,环形滤波器将误差信号滤波,保证输出稳定,从而实现捕获参考信号的频率。

在锁定阶段,锁相环路频率合成器控制电压的输出基本不变,但仍会根据环形滤波器的输出误差信号进行微调,使得参考信号与输出信号的相位差和频率差最小,实现锁相。

四、应用实例锁相环路频率合成器广泛应用于各种电子系统中,如:1、数字通信中的时钟恢复电路。

2、多频段合成天线接收器中的频率转换器。

3、控制系统中的精密时序控制器。

4、频率合成器中的同步产生电路。

五、总结锁相环路频率合成器是一种能够生成稳定高精度时钟信号的电路,由相频检测器、环形滤波器、控制电压生成器、数字频率分频器和参考振荡器组成。

它的工作原理分为捕获阶段和锁定阶段,并广泛应用于通信、电子测量、控制系统等领域。

锁相环CD4046设计频率合成器

锁相环CD4046设计频率合成器

目录一、设计和制作任务 (3)二、主要技术指标 (3)三、确定电路组成方案 (3)四、设计方法 (4)(一)、振荡源的设计 (4)(二)、N分频的设计 (4)(三)、1KHZ标准信号源设计(即M分频的设计) (5)五、锁相环参数设计 (6)六、电路板制作 (7)七、调试步骤 (8)八、实验小结 (8)九、心得体会 (9)十、参考文献 (9)附录:各芯片的管脚图 (10)锁相环CD4046设计频率合成器内容摘要:频率合成是以一个或少量的高准确度和高稳定度的标准频率作为参考频率,由此导出多个或大量的输出频率,这些输出的准确度与稳定度与参考频率是一致的。

在通信、雷达、测控、仪器表等电子系统中有广泛的应用,频率合成器有直接式频率合成器、直接数字式频率合成器及锁相频率合成器三种基本模式,前两种属于开环系统,因此是有频率转换时间短,分辨率较高等优点,而锁相频率合成器是一种闭环系统,其频率转换时间和分辨率均不如前两种好,但其结构简单,成本低。

并且输出频率的准确度不逊色与前两种,因此采用锁相频率合成。

关键词:频率合成器CD4046一、设计和制作任务1.确定电路形式,画出电路图。

2.计算电路元件参数并选取元件。

3.组装焊接电路。

4.调试并测量电路性能。

5.写出课程设计报告书二、主要技术指标1.频率步进 1kHz2.频率稳定度f ≤1KHz3.电源电压 Vcc=5V三、确定电路组成方案原理框图如下,锁相环路对稳定度的参考振动器锁定,环内串接可编程的分频器,通过改变分频器的分配比N,从而就得到N倍参考频率的稳定输出。

晶体振荡器输出的信号频率f1,经固定分频后(M分频)得到基准频率f1’,输入锁相环的相位比较器(PC)。

锁相环的VCO输出信号经可编程分频器(N分频)后输入到PC的另一端,这两个信号进行相位比较,当锁相环路锁定后得到:f1/M=f1’=f2/N 故f2=Nf’1 (f’1为基准频率)当N变化时,或者N/M变化时,就可以得到一系列的输出频率f2。

锁相环频率合成器

锁相环频率合成器

锁相环频率合成器锁相环频率合成器是一种电路,主要用于产生高精度、稳定的频率信号。

它的工作原理是将一个参考信号与一个可调节的振荡器信号进行比较,通过调节振荡器信号的频率和相位,使得两个信号保持同步,从而实现对输出频率的控制。

锁相环频率合成器广泛应用于通讯、雷达、测量等领域。

一、锁相环基本结构锁相环主要由三个部分组成:相位检测器(Phase Detector)、低通滤波器(Low Pass Filter)和电压控制振荡器(Voltage Controlled Oscillator)。

1. 相位检测器相位检测器主要用于比较参考信号与振荡器信号之间的相位差。

常见的有两种类型:同步检测器和非同步检测器。

同步检测器适用于参考信号和振荡器信号具有固定的相位关系时,而非同步检测器则适用于相位关系不确定或者变化较快的情况。

2. 低通滤波器低通滤波器主要用于平滑输出电压,并消除高频噪声干扰。

它的作用是将相位检测器输出的误差信号进行滤波,得到一个直流电压信号,这个信号被用来控制振荡器的频率和相位。

3. 电压控制振荡器电压控制振荡器(VCO)是锁相环频率合成器中最重要的部分之一。

它可以产生可调节的频率信号,并且可以通过调节输入电压来改变输出频率。

VCO通常由一个反馈环路组成,其中参考信号和VCO输出信号经过比较后产生误差信号,通过低通滤波器后输入到VCO中,从而实现对输出频率的控制。

二、锁相环工作原理锁相环工作原理可以用以下几个步骤来描述:1. 参考信号与振荡器信号进行比较,产生误差信号;2. 误差信号经过低通滤波器平滑处理后输入到VCO中;3. VCO产生新的振荡器信号,并与参考信号进行比较;4. 如果两个信号之间存在相位差,则继续调整VCO输出频率和相位,直到两个信号同步为止;5. 输出的同步信号可以用于驱动其他系统或设备。

三、锁相环应用锁相环频率合成器在通讯、雷达、测量等领域有着广泛的应用。

以下是一些常见的应用场景:1. 时钟恢复在数字通信系统中,接收端需要恢复发送端的时钟信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锁相频率合成器的设计
引言: 锁相频率合成器是基于锁相环路的同步原理,有一个高准确度、高稳定度的参考晶体振荡器,合成出许多离散频率。

即将某一基准频率经过锁相环的作用产生需要的频率。

一. 设计任务和技术指标
1. 工作频率范围:300kHz —700kHz
2. 电源电压:Vcc=5V
3. 通过原理图确定电路,并画出电路图
4. 计算元件参数选取电路元件(R1,R2,C1及环路滤波器的配置)
5. 组装连接电路,并测试选取元件的正确性
6. 调试并测量电路相关参数(测量相关频率点,输出波形,频率转换时间t c )
7. 总结并撰写实验报告 二.
设计方案
原理框图如下:
由上图可知,晶体振荡器的频率f i 经过M 固定分频后得步进参考频率f REF ,将f REF 信号作为鉴相器的基准与N 分频器的输出进行比较,鉴相器的输出U d 正比于两路输入信号的相位差,U d 经环路滤波得到一个平均电压U c ,U c 控制VCO 频率f 0的变化,使鉴相器的两路输入信号相位差不断减小,直到鉴相器的输出为零或某一直流电平。

锁定后的频率为f i /M=f 0/N=f REF 即f 0=(N/M)f i =Nf REF 。

当预置分频数N 变化时,输出信号频率f 0随着发生变化。

三.
电路原理与设计
(一) 晶体振荡器的设计
用2.5M 晶体和非门组成2.5MHz 振荡器。

如下图所示:
(二) M 分频电路
分频器选用74LS163,M=100
(三)锁相环的设计
CD4046压控振荡电路图如下:
数字锁相环CD4046有两个鉴相器、一个VCO、一个源极跟随器(本实验未用)和一个齐纳二极管组成。

鉴相器有两个共用的输入端PCA IN和PCB IN,输入端PCA IN既可以与大信号直接匹配,又可间接与小信号相接。

自偏置电路可在放大器的线性区调整小信号电压增益。

本试验中,VCO的输出电压最高不超过1.5MHz,决定振荡频率的不仅和电源电压有关,而且与外界阻容元件有关。

振荡频率的定时元件又R1、R2和电容C1。

估计电阻电容值后进行验证,确保VCO out输出为300—700kHz时为线性关系
电容=51pF, R1=10K,R2=51K
作图如下:
鉴相后需经过环路滤波送入VCO,实验中使用有源环路滤波器,如下图所示:
对于RC积分器的频率合成器,有
R=K d K0/N max·ωn·C
式中,K d是鉴相灵敏度,K d对数字电路的鉴相器,是固定值。

(四)N分频设置
所测频率点为300kHz、500kHz、700kHz,74LS163设置如下:
电路连接情况可对比M分频中的连接,只需更改预置数(即D3D2D1D0高低电平的连接),在这不作赘诉。

四.测量结果及分析
总体电路图如附录一所示
测量数据及分析:
五.收获和体会
通过本次实验,我复习了通信电路相关知识,并对cd4046有了初步了解,相信对以后的学习会有所帮助。

参考书
[1]李晋炬.通信电路与系统实验教程[M].北京:北京理工大学出版社,2006.09。

相关文档
最新文档