小学奥数———统筹与规划

合集下载

小学奥数———统筹与规划

小学奥数———统筹与规划

统筹与规划【知识要点】我国古代有一句话;“运筹于帷幄之间,决胜于千里之外。

”后人用这句话来形容领导者在后方筹划、制定作战策略,能决定千里之外的战争胜负。

这里“运筹”是制定策略、策划、统筹安排的以上。

在日常生活、学习和生产、工作中经常遇到一些事情需要我们进行合理的安排,而统筹方法是生活和生产中合理安排工作的一种科学方法。

应用统筹方法可以提高工作效率,减少时间的浪费。

应用统筹方法解决实际问题时,一般要做好3项调查:1、要做哪些工作?2、做每件工作需要多长时间?3、弄清所做工作的程序,即先做什么,后做什么,哪些工作可同时做?然后根据结果画一张流程图,然后再根据流程图详细地说明统筹安排的具体方法。

【典型例题】例1、早晨、妈妈起来准备早饭。

她烧开水要用8分钟,擦桌椅要用5分钟,灌开水要用分钟,下楼买油条、拿牛奶要6分钟,煮牛奶要用6分钟,并且灶台上只有一个灶头。

妈妈怎样安排才能使所用的时间最短?是多少分钟?练习、妈妈让玮文给客人烧水沏茶,洗水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟,为了使客人早点喝茶,你认为最合理的安排是多少分钟就能沏茶了?例2 用一个平底锅烙饼,每次只能放2张饼,烙熟一张饼需要2分钟(正反面各需要1分钟)如果要烙3张饼,最少需要多少分钟?烙120张饼呢?练习2、正元用平底锅烙饼给大家吃,这只锅同时能放4个大饼,烙一个饼需要4分钟,(每面各需2分钟),可心如烙6个饼只用6分钟,她是怎样操作的?例3、4个人各拿一个大小不同的水桶在自来水龙头前等候打水,他们打水所需要的时间分别是1分钟、2分钟、3分钟和4分钟。

如果只有一个水龙头,那么怎样适当安排他们的打水顺序,才能使每个人排队和打水的时间的总和最小?请你求出这个最小值。

练习1、在一条公路上每隔100千米有一个仓库,共有5个仓库。

一号仓库有20吨货物,二号仓库有10吨货物,五号仓库有50吨货物,其余两个仓库都是空的。

五年级奥数题及答案:统筹规划问题

五年级奥数题及答案:统筹规划问题

五年级奥数题及答案:统筹规划问题
编者小语:数学竞赛活动对于开发学生智力、开拓视野、促进教学改革、提高教学水平、发现和培养数学人才都有着积极的作用。

这项活动也激励着广大青少年学习数学的兴趣,吸引他们去进行积极的探索,不断培养和提高他们的创造性思维能力。

查字典数学网为大家准备了小学五年级奥数题,希望小编整理的五年级奥数题及参考答案:统筹规划问题,可以帮助到你们,助您快速通往高分之路!!
简单的统筹规划
某工地A有20辆卡车,要把60车渣土从A运到B,把40车砖从C运到D(工地道路图如右图所示),问如何调运最省汽油?
解:分析把渣土从A运到B或把砖从C运到D,都无法节省汽油.只有设法减少跑空车的距离,才能省汽油。

解:如果各派10辆车分别运渣土和砖,那么每运一车渣土要空车跑回300米,每运一车砖则要空车跑回360米,这样到完成任务总共空车跑了
300×60+360×40=32400(米)。

如果一辆车从A→B→C→D→A跑一圈,那么每运一车渣土、再运一车砖要空车跑
240+90=330(米).
因此,先派20辆车都从A开始运渣土到B,再空车开往C运
砖到D后空车返回A,这样每辆车跑两圈就完成了运砖任务.然后再派这20辆车都从A运渣土到B再空车返回A,则运渣土任务也完成了.这时总共空车跑了
330×40+300×20=19200(米).
后一种调运方案比前一种减少跑空车13200米,这是最佳节油的调运方案。

小学奥数 小学奥林匹克数学 竞赛数学 第12讲:统筹与对策

小学奥数 小学奥林匹克数学  竞赛数学 第12讲:统筹与对策

有12枚棋子,甲、乙两人轮流取,规定每次至少取1枚,最多取3枚,以取 走最后一枚棋子者为胜者.如果甲先取,那么谁有必胜策略?如果取走最后 一枚棋子者为败者,并且仍然是甲先取,那么谁有必胜策略?
【10】
现有2008根火柴,甲、乙两个人轮流从中取出火柴.每次最少 从中取出2根,最多取出4根.谁无法再次取出火柴谁就赢.如 果甲先取,请问谁有必胜癿策略?
【5】
下图是一张道路图,每段路旁标注癿数值表示小悦走这段路 所需癿分钟数.问:小悦从A出发走到B最快需要多少分钟?
8 6
4
3
A
5
2B
10
8
15 4
3
【6】
如图,一条路上从西向东有A、B、C、D、E 五所学校,分别有200人、 300 人、400人、500人、600人.任意相邻癿两所学校之间癿距离都是 100米,现在要在某所学校癿门口修建一个公共汽车站,要使所有人到 达车站癿距离之和最小,车站应该建在什么地方?距离癿总和最少是多少?
【11】
甲、乙两人玩一个游戏:有两堆小球,甲、乙两人轮流从中取球,每次只能从同 一堆中取,个数丌为零即可,规定取到最后一个球癿人赢,现在甲先取球. (1)如果开始时两堆球数分别是两个和两个,那么谁有必胜策略?请说明理由; (2)如果开始时两堆球数分别是两个和三个,那么谁有必胜策略?请说明理由; (3)如果开始时两堆球数分别是五个和八个,那么谁有必胜策略?请说明理由.
知识点回顾 游戏对策:
二,处于必胜状态的一方,总能进行一次适当的操作后,把必败的 状态留给对手。反之,处于必败状态的一方,无论采取什么策略, 都只能把必胜状态留给对手.
三,在很多对策问题中,具有对称性的状态往往是解决问题的关键。
四,在问题较复杂时,可以从简单情况入手,寻找规律.

五年级奥数专题 统筹规划(学生版)

五年级奥数专题 统筹规划(学生版)

统筹规划学生姓名授课日期教师姓名授课时长知识定位最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间的前提下,努力争取获得在允许范围内的最佳效益.因此,最优化问题成为现代应用数学的一个重要研究对象,它在生产、科学研究以及日常生活中都有广泛的应用.作为数学爱好者,接触一些简单的实际问题,了解一些优化的思想是十分有益的.其实统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率。

统筹方法,是生产、建设、工程和企业管理中合理安排工作的一种科学方法,它对于进行合理调度、加快工作进展,提高工作效率,保证工作质量是十分有效的.1. 如何合理的安排时间地点。

2. 如何安排能得到最优化的方案。

3. 最优化方案的条件。

知识梳理常用原则方法总结“节省跑空车的距离”是物资调运问题的一个原则。

“发生对流的调运方案“不可能是最优方案。

线性规划是运用一次方程(组)、一次函数来解决规划问题的数学分支。

规划论研究的问题主要有两类:一类是确定了一项任务,研究怎样精打细算使用最少人力、物力和时间去完成它;另一类是在已有一定数量的人力、物力和财力的条件下,研究怎样合理调配,使它们发挥最大限度的作用,从而完成最多的任务劳力组合最简单的情况就是效率比问题.这里给出多种劳力(或机械)干两种配套活的一般分工原则。

关于排序不等式,例如,有一台机床要加工n个工件,每个工件需要的加工时间不一样,问应该按照什么次序加工,才能使总的等待时间最短.递推思想的应用,从简单的较少的人数入手,通过逐步递推,探索一般规律,从而解决某些数字较大的问题.竞赛考点1. 寻找达到最优化条件的等价条件。

2. 合理安排多条件下的统筹问题。

3. 简单的较少的人数入手,通过逐步递推,探索一般规律例题精讲【试题来源】【题目】一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟)。

四年级奥数讲义:统筹与安排

四年级奥数讲义:统筹与安排

四年级奥数讲义:统筹与安排例1.妈妈让小明给客人烧水沏茶, 洗开水壶要1分钟, 烧开水要15分钟, 洗茶壶要1分钟, 洗茶杯要1分钟, 拿茶叶要2分钟。

小明估算了一下完成这些工作大约要20分钟。

为了让客人早点喝上茶, 按你认为最合理的安排, 多长时间就能让客人喝上茶?试一试, 用一只平底锅烙饼, 锅上只能放两块饼, 烙熟饼的一面需要2分钟, 两面共需要4分钟, 现在需要烙熟三块饼, 最少需要几分钟?•例2: 下图是一张道路图, 每段路旁标注的数值标示小王走这段路需要的分钟数。

问: 小王从A点出发走到B点至少需要多少分钟?/•试一试, 甲、乙、丙三名车工准备在同样功效的3个车床上车出7个零件, 加工各零件所需要的时间分别为4.5.6.6.8、9、9分钟。

三人同时开工, 问: 至少经过多少分钟可以车完所有的零件?例3, 甲、乙、丙、丁四个人过桥, 分别需要1.2.5.10分钟, 由于天黑需要借助手电筒过桥, 可是他们四人总共只有一个手电筒, 并且桥的载重能力有限, 每次最多只能承受两个人的重量, 也就是说、每次最多过两个人。

现在希望用最短的时间过桥, 怎样安样才能最短?是多少分钟?试一试, 小明骑在牛背上赶牛过河, 共有甲、乙、丙、丁四头牛, 甲牛过河需要1分钟, 乙牛过河需要2分钟, 丙牛过河需要5分钟, 丁牛过河需要6分钟, 小明每次只能骑一头牛, 赶一头牛。

小明怎样安样才能使四头牛过河的时间最短?是多少分钟?例4,如图所示5所学校A.B.C.D.E之间有公路相通, 图中标出了各段公路的千米数, 现在想在某学校召开一次学生代表大会, 出席会议的学生代及A.B.C.D.E校分别有6.4.8、7、10人, 为使参加会议的代表所走的路程总和最少, 会议应选在那个学校举行。

/试一试, 甲、乙、丙、丁四人同时到二个水龙头处用水, 甲洗拖布需要3分钟, 乙洗抹布需要分2钟, 丙用桶接水需要1分钟, 丁洗衣服需要10分钟, 怎样安排四个人的用水顺序。

小升初奥数-统筹与规划问题

小升初奥数-统筹与规划问题

统筹与规划问题计算是基础,看谁算得又快又准确,比一比。

1、5450.8212.599⎛⎫-+⨯⎪⎝⎭2、11164.53411112⨯+⨯3、99916÷4、333833 3.7544⨯-+⨯各种统筹规划问题,包括顺序安排、路线选择、货物调度等类型。

从这些具体的题意环境中运用数学方法从中找出最佳解决问题方案称为最优化问题。

解题的基本方法是枚举计算与比较。

最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间的前提下,努力争取获得在允许范围内的最佳效益.因此,最优化问题成为现代应用数学的一个重要研究对象。

一、课前考察学生基本知识点:1.妈妈让小明给客人烧水沏茶.洗开水壶要用1分钟,烧开水要用15分钟.洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟.小明估算了一下,完成这些工作要20分钟.为了使客人早点喝上茶,按你认为最合理的安排,多少分钟就能沏茶了?2.有157吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升与5公升.问如何选派车辆才能使运输耗油量最少?这时共需用油多少公升?3.两人轮流往一个圆桌面上放同样大小的硬币,规则是:每人每次只能放一枚,硬币不许重叠,谁放完最后一枚硬币而使对方再也无处可放,谁就获胜。

问:先放者如何取胜?4.(1)甲乙两仓库分别存粮20吨和12吨,准备分配到A、B两个粮店销售,A粮店需要22吨,B粮店需要10吨,每吨粮食运费如表1,怎样运花费最少?是多少?(2)甲乙两仓库分别存粮20吨和12吨,准备分配到A、B两个粮店销售,A粮店需要22吨,B粮店需要10吨,每吨粮食运费如表2,怎样运花费最少?是多少?二、最佳方法及对策例题1.甲地有59吨货物要运到乙地,大货车的载重量是7吨,小货车的载重量是4吨,大货车运一趟耗油14升,小货车运一趟耗油9升。

问:运完这批货物最少耗油多少升?2.甲、乙、丙3名车工准备在同样效率的3个车床上做出7个零件,加工各零件所需要的时间分别为4,5,6,6,8,9,9分钟。

小学奥数题库——统筹规划

小学奥数题库——统筹规划

板块一、合理安排时间【例1】一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎3张饼需几分钟?怎样煎?【巩固】(2000年《小学生数学报》数学邀请赛)烙饼需要烙它的正、反面,如果烙熟一块饼的正、反面,各用去3分钟,那么用一次可容下2块饼的锅来烙21块饼,至少需要多少分钟?【巩固】一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎2009张饼需几分钟?【例2】星期天妈妈要做好多事情。

擦玻璃要20分钟,收拾厨房要15分钟,洗脏衣服的领子、袖口要10分钟,打开全自动洗衣机洗衣服要40分钟,晾衣服要10分钟。

妈妈干完所有这些事情最少用多长时间?【巩固】小明在家的一面墙上贴奖状,一共有32张,给一张奖状涂满胶水需要2分钟,涂完胶水后要过2分钟才能往墙上贴,贴的过程需要1分钟,但是如果等待超过6分钟的话胶水就会干掉不能再贴,问:小明最快用多长时间能贴完所有的奖状?【例3】小明骑在牛背上赶牛过河.共有甲、乙、丙、丁4头牛.甲牛过河需要1分钟,乙牛过河需要2分钟,丙牛过河需要5分钟,丁牛过河需要6分钟.每次只能赶两头牛过河,那么小明要把这4头牛都赶到对岸,最小要用多少分钟?【例4】有四个人在晚上准备通过一座摇摇欲坠的小桥.此桥每次只能让2个人同时通过,否则桥会倒塌.过桥的人必须要用到手电筒,不然会一脚踏空.只有一个手电筒.4个人的行走速度不同:小强用1分种就可以过桥,中强要2分中,大强要5分中,最慢的太强需要10分中.17分钟后桥就要倒塌了.请问:4个人要用什么方法才能全部安全过桥?【例5】有一家五口人要在夜晚过一座独木桥.他们家里的老爷爷行动非常不便,过桥需要12分钟;孩子们的父亲贪吃且不爱运动,体重严重超标,过河需要时间也较长,8分钟;母亲则一直坚持劳作,动作还算敏捷,过桥要6分钟;两个孩子中姐姐需要3分钟,弟弟只要1分钟.当时正是初一夜晚又是阴天,不要说月亮,连一点星光都没有,真所谓伸手不见五指.所幸的是他们有一盏油灯,同时可以有两个人借助灯光过桥.但要命的灯油将尽,这盏灯只能再维持30分钟了!他们焦急万分,该怎样过桥呢?【巩固】(迎春杯试题)小强、小明、小红和小蓉4个小朋友效游回家时天色已晚,他们来到一条河的东岸,要通过一座小木桥到西岸,但是他们4个人只有一个手电筒,由于桥的承重量小,每次只能过2人,因此必须先由2个人拿着手电筒过桥,并由1个人再将手电筒送回,再由2个人拿着手电筒过桥……直到4人都通过小木桥.已知,小强单独过桥要1分钟;小明单独过桥要1.5分钟;小红单独过桥要2分钟;小蓉单独过桥要2.5分钟.那么,4个人都通过小木桥,最少要多少分钟?【例6】有甲、乙两个水龙头,6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.怎么安排这6个人打水,才能使他们等候的总时间最短,最短的时间是多少?【巩固】6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟.现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间最短?这个最短时间是多少?【巩固】 理发室里有甲、乙两位理发师,同时来了五位顾客,根据他们所要理的发型,分别需要10、12、15、20和24分钟,怎样安排他们理发的顺序,才能使这五人理发和等候所用时间的总和最少?最少时间为多少?【例 7】 (101培训试题)车间里有五台车床同时出现故障,已知第一台到第五台修复时间依次为18,30,17,25,20分钟,每台车床停产一分钟造成经济损失5元.现有两名工作效率相同的修理工,⑴ 怎样安排才能使得经济损失最少?⑵ 怎样安排才能使从开始维修到维修结束历时最短?【例 8】 (三帆中学入学考试试题)设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要1分钟,注满第二个人的桶需要2分钟,…….如此下去,当只有两个水龙头时,如何巧妙安排这十个人打水,使他们总的费时时间最少?最少的时间是多少?【例 9】 (小学数学报试题)右图是一张道路示意图,每段路上的数字表示小明走这段路所需要的时间(单位:分).小明从A 到B 最快要几分钟?H G FEDCB A 7565046463341【巩固】 (十一学校考题)下图为某三岔路交通环岛的简化模型,在某高峰时段,单位时间进出路口A ,B ,C 的机动车辆数如图所示,图中1x ,2x ,3x 分别表示该时段单位时间通过路段AB ,BC ,CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),问:1x ,2x ,3x 的大小关系.505530353020X 3X 2X 1【例 10】 某人从住地外出有两种方案,一种是骑自行车去,另一种是乘公共汽车去.显然公共汽车的速度比自行车速度快,但乘公共汽车有一个等候时间(候车时间可以看成是固定不变的),在任何情况下,他总是采用时间最少的最佳方案.下表表示他到达A 、B 、C 三地采用最佳方案所需要的时间.为了到达离住地8千米的地方,他需要花多少时间?并简述理由.板块二、合理安排地点【例 11】 如图,在街道上有A 、B 、C 、D 、E 、F 六栋居民楼,现在设立一个公交站,要想使居民到达车站的距离之和最短,车站应该设在何处?【巩固】 如图,在街道上有A 、B 、C 、D 、E 五栋居民楼,为使五栋楼的居民到车站的距离之和最短,车站应立于何处?【巩固】 有1993名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小?【例 12】 如图,在街道上有A 、B 、C 、D 、E 五栋居民楼,每栋楼里每天都有20个人要坐车,现在设立一个公交站,要想使居民到达车站的距离之和最短,应该设在何处?【例 13】 在一条公路上每隔100千米,有一个仓库(如图)共有5个仓库,一号仓库存有10吨货物,二号仓库有20吨货物,五号仓库存有40吨货物,其余两个仓库是空的.现在想把所以的货物集中存放在一个仓库里,如果每吨货物运输1公里需要0.5元运输费,那么最少要多少运费才行?40吨20吨10吨五四三二一【巩固】 (人大附中分班考试题)在一条公路上,每隔10千米有一座仓库(如图),共有五座,图中数字表示各仓库库存货物的重量.现在要把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要运费0.9元,那么集中到哪个仓库运费最少?6010吨20吨30吨10吨【例 14】 在一条公路上,每隔100千米有一座仓库,共有8座,图中数字表示各仓库库存货物的重量(单位:吨),其中C 、G 为空仓库.现在要把所有的货物集中存入一个仓库里,如果每吨货物运输1千米需要0.5元,那么集中到那个仓库中运费最少,需要多少元运费?60H GF E D CB A【巩固】 (04年我爱数学夏令营试题)一条直街上有5栋楼,从左到右编号为1,2,3,4,5,相邻两楼的距离都是50米.第1号楼有1名职工在A 厂上班,第2号楼有2名职工在A 厂上班……,第5号楼有5名职工在A 厂上班.A 厂计划在直街上建一通勤车站接送这5栋楼的职工上下班,为使这些职工到通勤车站所走的路程之和最小,车站应建在距1号楼多少米处?【例 15】 (奥数网习题库)右图是A ,B ,C ,D ,E 五个村之间的道路示意图,○中数字是各村要上学的学生人数,道路上的数表示两村之间的距离(单位:千米).现在要在五村之中选一个村建立一所小学.为使所有学生到学校的总距离最短,试确定最合理的方案.EDCB A 54235035202040【巩固】 (三帆中学分班考试题)有七个村庄1A ,2A ,,7A 分布在公路两侧(见右图),由一些小路与公路相连,要在公路上设一个汽车站,要使汽车站到各村庄的距离和最小,车站应设在哪里?公路A 6A 5A 7A 4A 3A 2A 1FEDB C【例 16】 (奥数网习题库)某乡共有六块麦地,每块麦地的产量如右图.试问麦场设在何处最好?(运输总量的千克千米数越小越好.)6000千克4000千克1000千克5000千克2000千克3000千克G FE D C B A板块三、合理布线和调运【例 17】 新建的自来水厂要给沿公路的十个村庄供应自来水(如下图,距离单位为千米),要安装水管有粗细两种选择,粗管足够供应所有村庄使用,细管只能供一个村用水,粗管每千米要用8000元,细管每千米要2000元,如果粗细管适当搭配,互相连接,可以降低费用,怎样安排才能使这项工程费用最低?费用是多少元?JIH G F E D C B A自来水厂【例 18】 (奥数网习题库)有十个村庄,座落在从县城出发的一条公路上,现要安装水管,从县城供各村自来水.可以用粗、细两种水管,粗管每千米7000元,细管每千米2000元.粗管足够供应所有各村用水,细管只能供应一个村用水,各村与县城间距离如右图所示(图中单位是千米),现要求按最节约的方法铺设,总费用是多少?A 10A9A 8A 7A 6A 5A 4A 3A 2A 152223242530县城【例 19】 北京、洛阳分别有11台和5台完全相同的机器,准备给杭州7台、西安9台,每台机器的运费如右表,如何调运能使总运费最省?6001000700800洛阳北京西安杭州发站运费/元到站【巩固】 北京、上海分别有10台和6台完全相同的机器,准备给武汉11台,西安5台,每台机器的运费如右表,如何调运能使总运费最省?到站运费/元发站武汉西安北京上海5007006001000【例 20】 北京和上海同时制成了电子计算机若干台,除了供应本地外,北京可以支援外地10台,上海可以支持外地4台.现决定给重庆8台,汉口6台,若每台计算机的运费如右表,上海和北京制造的机器完全相同,应该怎样调运,才能使总的运费最省?最省的运费是多少?5834上海北京重庆汉口发站运费/元到站【例 21】 北仓库有货物35吨,南仓库有货物25吨,需要运到甲、乙、丙三个工厂中去.其中甲工厂需要28吨,乙工厂需要12吨,丙工厂需要20吨.两个仓库与各工厂之间的距离如图所示(单位:公里).已知运输每吨货物1公里的费用是1元,那么将货物按要求运入各工厂的最小费用是多少元?161256810丙乙甲南仓库北仓库【例 22】 A 、B 两个粮店分别有70吨和60吨大米,甲、乙、丙三个居民点分别需要30吨、40吨和50吨大米.从A ,B 两粮店每运1吨大米到三个居民点的运费如右图所示:如何调运才能使运费最少?到站运费/元发站甲乙A B030400丙3020【例 23】 一支勘探队在五个山头A 、B 、C 、D 、E 设立了基地,人数如右图所示.为调整使各基地人数相同,如何调动最方便?(调动时不考虑路程远近)【例24】下图是一个交通示意图,A、B、C是产地(用●表示,旁边的数字表示产量,单位:吨),D、E、F是销地(用○表示,旁边的数字表示销量,单位:吨),线段旁边有括号的数字表示两地每吨货物的运价,单位:百元(例如B与D两地,由B到D或由由D到B每吨货物运价100元).将产品由产地全部运往销地,怎样调运使运价最小?最小运价是多少?第3题板块四、其他最优化问题【例25】用10尺长的竹竿做原材料,来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎么截法最合算?【例26】山区有一个工厂.它的十个车间分散在一条环行的铁道上.四列货车在铁道上转圈运送货物。

小学奥数教程之-统筹规划 (含答案)

小学奥数教程之-统筹规划 (含答案)

统筹规划教学目标1.掌握合理安排时间、地点问题.2.掌握合理布线和调运问题.知识点拨知识点说明:统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率.我国著名数学家华罗庚教授生前十分重视数学的应用,并亲自带领小分队推广优选法、统筹法,使数学直接为国民经济发展服务,他在中学语文课本中,曾有一篇名为《统筹原理》的文章详,细介绍了统筹方法和指导意义.运筹学是利用数学来研究人力、物力的运用和筹划,使它们能发挥最大效率的科学。

它包含的内容非常广泛,例如物资调运、场地设置、工作分配、排队、对策、实验最优等等,每类问题都有特定的解法。

运筹学作为一门科学,要运用各种初等的和高等的数学知识及方法,但是其中分析问题的某些朴素的思想方法,如高效率优先的原则、调整比较的思想、尝试探索的方法等,都是我们小学生能够掌握的。

这些来源于生活实际的问题,正是启发同学们学数学、用数学最好的思维锻炼题目。

本讲主要讲统筹安排问题、排队问题、最短路线问题、场地设置问题等。

这些都是人们日常生活、工作中经常碰到的问题,怎样才能把它们安排得更合理,多快好省地办事,就是这讲涉及的问题。

“节省跑空车的距离”是物资调运问题的一个原则。

“发生对流的调运方案”不可能是最优方案。

“小往大靠,支往干靠”。

例题精讲板块一、合理安排时间【例 1】一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎3张饼需几分钟?怎样煎?【考点】统筹规划【难度】2星【题型】解答【解析】因为这只平底锅上可煎两只饼,如果只煎1个饼,显然需要2分钟;如果煎2个饼,仍然需要2分钟;如果煎3个饼,所以容易想到:先把两饼一起煎,需2分钟;再煎第3只,仍需2分钟,共需4分钟,但这不是最省时间的办法.最优方法应该是:首先煎第1号、第2号饼的正面用1分钟;其次煎第1号饼的反面及第3号饼的正面又用1分钟;最后煎第2号、第3号饼的反面再用1分钟;这样总共只用3分钟就煎好了3个饼.(因为每只饼都有正反两面,3只饼共6面,1分钟可煎2面,煎6面只需3钟.)【答案】3分钟【巩固】烙饼需要烙它的正、反面,如果烙熟一块饼的正、反面,各用去3分钟,那么用一次可容下2块饼的锅来烙21块饼,至少需要多少分钟?【考点】统筹规划【难度】2星【题型】解答【关键词】2000年,小学生数学报,数学邀请赛【解析】先将两块饼同时放人锅内一起烙,3分钟后两块饼都熟了一面,这时取出一块,第二块翻个身,再放人第三块,又烙了3分钟,第二块已烙熟取出,第三块翻个身,再将第一块放入烙另一面,再烙3分钟,锅内的两块饼均已烙熟.这样烙3块饼,用去9分钟,所以烙21块饼,至少用÷⨯=(分钟).213963【巩固】一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟).问:煎2009张饼需几分钟?【考点】统筹规划【难度】2星【题型】解答【解析】我们归纳出煎1、2、3个饼分别需要2、2、3分钟,我们可以继续往下分析,煎4个饼最少需要4分钟,煎5个饼需要325+÷⨯=+=分钟,煎6个饼需要6226÷⨯=分钟,煎7个饼需要34227分钟,那么煎2009个饼至少需要2009分钟.【答案】2009分钟【例 2】星期天妈妈要做好多事情。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统筹与规划
【知识要点】
我国古代有一句话;“运筹于帷幄之间,决胜于千里之外。

”后人用这句话来形容领导者在后方筹划、制定作战策略,能决定千里之外的战争胜负。

这里“运筹”是制定策略、策划、统筹安排的以上。

在日常生活、学习和生产、工作中经常遇到一些事情需要我们进行合理的安排,而统筹方法是生活和生产中合理安排工作的一种科学方法。

应用统筹方法可以提高工作效率,减少时间的浪费。

应用统筹方法解决实际问题时,一般要做好3项调查:
1、要做哪些工作?
2、做每件工作需要多长时间?
3、弄清所做工作的程序,即先做什么,后做什么,哪些工作可同时做?
然后根据结果画一张流程图,然后再根据流程图详细地说明统筹安排的具体方法。

【典型例题】
例1、早晨、妈妈起来准备早饭。

她烧开水要用8分钟,擦桌椅要用5分钟,灌开水要用分钟,下楼买油条、拿牛奶要6分钟,煮牛奶要用6分钟,并且灶台上只有一个灶头。

妈妈怎样安排才能使所用的时间最短?是多少分钟?
练习、妈妈让玮文给客人烧水沏茶,洗水壶要用1分钟,烧开水要用15分钟,洗茶壶要用1分钟,洗茶杯要用1分钟,拿茶叶要用2分钟,为了使客人早点喝茶,你认为最合理的安排是多少分钟就能沏茶了?
例2 用一个平底锅烙饼,每次只能放2张饼,烙熟一张饼需要2分钟(正反面各需要1分钟)如果要烙3张饼,最少需要多少分钟?烙120张饼呢?
练习2、正元用平底锅烙饼给大家吃,这只锅同时能放4个大饼,烙一个饼需要4分钟,(每面各需2分钟),可心如烙6个饼只用6分钟,她是怎样操作的?
例3、4个人各拿一个大小不同的水桶在自来水龙头前等候打水,他们打水所需要的时间分别是1分钟、2分钟、3分钟和4分钟。

如果只有一个水龙头,那么怎样适当安排他们的打水顺序,才能使每个人排队和打水的时间的总和最小?请你求出这个最小值。

练习1、在一条公路上每隔100千米有一个仓库,共有5个仓库。

一号仓库有20吨货物,二号仓库有10吨货物,五号仓库有50吨货物,其余两个仓库都是空的。

选择要把所有的货物集中到一个仓库了。

(1)运到那个仓库才能使运行的路线最短?
(2)如果每吨货物运输1千米需要1元运费,那么最少需要多少运费?
例4、有A、B、C、D四人在晚上都要从桥的左边到右边。

过桥一次最多只能走两人,而且只有一只手电筒,过桥一定要用手电筒。

四人过桥最快所需要时间如下:A需要2分钟,B需要3分钟,C需要8分钟,D需要10分钟。

走的最快的人要等最慢的人,请问让所有人都过桥最短要()分钟。

练习1、牧童骑牛赶牛过河,共有甲、乙、丙、丁4头牛需过河,这4头牛过河需要的时间分别为1,2,5和6分钟。

如果牧童每次只能干2头牛过河,且返回须骑牛,则将这4头牛全部赶到对岸至少需要__________分钟。

练习2、A、B、C、D四人带着一个手电筒,要通过一个黑暗的只容2人走的隧道,每次先让2人带着手电筒通过,再由1人送回手电筒,又由2人带着手电筒通过……若A、B、C、D四人单独通过隧道分别需要3,4,5,6分钟,则他们4人都通过隧道至少需要_________分钟。

例5、32名学生需要到到河对岸去野营,只有一条船,每次最多载4人(其中需1人划船)。

往返一次需5分钟。

如果9时整开始渡河,9时17分时,至少有()人还在等待渡河。

A.16
B.17
C.19
D.22
练习1、王老师带着28名夏令营营员参加“金苹果”挑战极限比赛,他们来到河边,河边只有1条一次能载5个人的小渡船,已知每过一次和需4分钟,那么全体成员过河到达对岸共需_______________分钟。

练习2、长征期间,一支红军部队的76名战士要坐船过河,渡口处只有一条可载16人的木船(无船工),要将这些战士全部送到河对岸,用这条木船至少渡河__________次。

例6、商店规定3个空牛奶瓶可以换1瓶牛奶,聚餐时某小组的17名同学每人各买了1瓶牛奶,则这个小组的同学最多能喝到___________瓶牛奶。

练习1、现有10个啤酒瓶,3个啤酒瓶能换一瓶啤酒,问一共能换多少瓶啤酒?
例7、森林里小王与小唐正准备吃早餐,小王有4个烤饼,小唐有6个烤饼,这时来了一位老师,他说:“我实在太饿了,能和你们一起分享吗?”小王和小唐慷慨地答应了,3个人各吃了3个烤饼后,又把剩下的烤饼平均分成3块,每人又各吃了1块,之后老师拿出来5元钱付给他们,请问小王和小唐怎么分配这5元钱才是合理的呢?
趣味+☆题
有一个财迷总想使自己的钱成倍增长,一天他在一座桥上碰见一个老人,老人对他说:“你要走过这座桥再回来,你身上的钱就会增加一倍,但作为报酬,你每走一个来回要给我32个铜板。

”财迷算了算挺合适,就同意了。

他走过桥又走回来,身上的钱果然增加一倍,他很高兴地给了老人32个铜板,这样走完第五个来回,身上的最后32个铜板都给了老人,一个铜板也没剩下,财迷身上原有______铜板。

相关文档
最新文档