石墨烯的发现与发展历程
石墨烯 发现过程

石墨烯发现过程摘要:一、石墨烯的概述二、石墨烯的发现过程1.原子力显微镜的发明2.单层石墨烯的实验制备3.诺贝尔奖得主安德烈·盖姆和康斯坦丁·诺沃肖洛夫的贡献三、石墨烯的特性及应用1.机械强度2.导电性3.热传导性4.应用领域四、我国在石墨烯研究方面的进展五、石墨烯的未来发展前景正文:石墨烯,一种仅有一层原子厚度的二维材料,自2004年被安德烈·盖姆和康斯坦丁·诺沃肖洛夫成功实验制得,逐渐成为材料科学领域的热点。
石墨烯的发现过程可分为以下几个阶段。
首先,我们要了解石墨烯的来源。
石墨烯是碳的同素异形体之一,存在于自然界中的石墨中。
石墨是一种常见的矿物,具有良好的导电性和热传导性。
然而,在自然界中,石墨是以多层结构存在的,而石墨烯则是单层结构。
如何将多层石墨剥离成单层石墨烯成为科学家们面临的挑战。
石墨烯的发现过程可以追溯到20世纪80年代,当时原子力显微镜(AFM)的发明为科学家们提供了观测和操作单个原子级别的物质的新工具。
借助原子力显微镜,研究人员首次成功观察到单层石墨烯的结构。
这一发现为后续的研究奠定了基础。
2004年,安德烈·盖姆和康斯坦丁·诺沃肖洛夫利用胶带剥离法成功制备出单层石墨烯,这一突破性成果使他们荣获2010年诺贝尔物理学奖。
这一发现标志着石墨烯研究进入一个新的阶段。
石墨烯的特性使其在众多领域具有广泛的应用前景。
首先,石墨烯具有极高的机械强度,是迄今为止发现的强度最高的材料。
其次,石墨烯具有良好的导电性和热传导性,可应用于电子器件、散热器和柔性显示屏等领域。
此外,石墨烯还具有优异的光学性能,可用于开发高性能的光学器件。
在我国,石墨烯研究也取得了显著的进展。
众多科研团队在石墨烯的制备、性能研究和应用开发方面取得了世界领先的成绩。
政府也对石墨烯产业给予了高度重视,制定了一系列政策扶持措施。
如今,我国已成为全球石墨烯产业的重要基地。
中国石墨烯的发展

中国石墨烯的发展1.引言1.1 概述石墨烯作为一种具有革命性的二维材料,在科学界引起了广泛的兴趣和关注。
它由只有一个原子厚度的碳原子构成,具有出色的导电性、热传导性和机械强度。
这些优异的性能使得石墨烯在许多领域具有巨大的应用潜力。
中国作为世界上最大的石墨烯生产国之一,在石墨烯领域也取得了长足的发展。
自2004年英国科学家安德鲁·盖门和康斯坦丁·诺沃肖洛夫首次成功分离出石墨烯以来,中国科学家们便开始了对石墨烯的深入研究和应用探索。
中国石墨烯的发展历程可以追溯到2006年,当时中国科学院物理研究所的研究团队成功地在石墨烯的制备和应用方面取得了重要突破。
随后,中国各大高校和科研机构纷纷投入到石墨烯研究中,并在材料制备、性能测试和应用开发等方面取得了一系列的成果。
目前,中国已建立了一批具备自主知识产权的石墨烯制备技术和核心设备。
石墨烯产业链也逐渐形成,包括石墨烯材料的生产、加工、应用等环节。
中国在石墨烯相关领域的科研和产业化水平在国际上处于领先地位。
然而,中国石墨烯产业仍然面临一些挑战和问题。
首先,石墨烯的大规模生产和应用仍然存在技术门槛和成本限制。
其次,石墨烯的应用开发和商业化步伐较慢,需要进一步的市场推广和应用示范。
此外,石墨烯产业还需要加强与其他相关领域的协同创新,以满足实际应用需求。
展望未来,中国石墨烯的发展前景仍然广阔。
可以预见的是,随着石墨烯制备技术的不断成熟和改进,石墨烯将在能源、材料、电子、生物医药等诸多领域得到更广泛的应用。
同时,政府、企业和科研机构需要加强合作,共同推动石墨烯产业的发展,为我国经济转型升级和可持续发展做出更大的贡献。
总之,中国石墨烯的发展已经取得了令人瞩目的成就,但仍然面临一些挑战和机遇。
我们有理由相信,在多方共同努力下,中国石墨烯必将实现更大范围的应用和产业化,为我国科技创新和经济发展注入新的活力。
1.2 文章结构文章结构部分主要用来介绍整篇文章的组成和内容安排。
石墨烯发展历程

石墨烯发展历程石墨烯是一种由碳原子构成的二维晶体结构,具有极高的导电性、导热性和机械强度,被誉为“未来材料之王”。
石墨烯的发现和研究历程可以追溯到20世纪60年代,但直到2004年才被成功分离出来,随后引起了全球科学界的广泛关注和研究。
石墨烯的发现石墨烯的发现可以追溯到20世纪60年代,当时科学家们通过电子显微镜观察到了一种由碳原子构成的薄膜结构,但由于当时技术条件的限制,无法对其进行深入的研究和应用。
直到2004年,英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃肖洛夫成功地将石墨烯从石墨中分离出来,并发现了其独特的物理和化学性质,这一发现被誉为“二十一世纪最重要的科学发现之一”。
石墨烯的研究自石墨烯被发现以来,全球科学界对其进行了广泛的研究和探索。
研究表明,石墨烯具有极高的导电性、导热性和机械强度,可以应用于电子器件、传感器、储能材料等领域。
此外,石墨烯还具有良好的光学性质和化学稳定性,可以应用于光电器件、催化剂等领域。
石墨烯的应用随着石墨烯的研究不断深入,其应用领域也在不断扩展。
目前,石墨烯已经应用于电子器件、传感器、储能材料、光电器件、催化剂等领域。
其中,石墨烯在电子器件领域的应用最为广泛,可以用于制造高性能的晶体管、集成电路等器件。
此外,石墨烯还可以用于制造柔性电子器件,具有广阔的应用前景。
石墨烯的未来石墨烯作为一种具有广泛应用前景的新型材料,其未来发展前景十分广阔。
随着石墨烯的研究不断深入,其应用领域也将不断扩展。
未来,石墨烯有望应用于更多的领域,如生物医学、环境保护等领域。
此外,石墨烯的制备技术也将不断改进和完善,使其在工业化生产中得到更广泛的应用。
总结石墨烯的发现和研究历程可以追溯到20世纪60年代,但直到2004年才被成功分离出来。
自此以后,全球科学界对石墨烯进行了广泛的研究和探索,发现了其独特的物理和化学性质,并将其应用于电子器件、传感器、储能材料、光电器件、催化剂等领域。
石墨烯的发展历程

石墨烯的发展历程
石墨烯是一种由碳构成的单层平面结构材料,具有杰出的物理和化学特性,成为材料科学领域的焦点研究对象。
其发展历程可以追溯到20世纪30年代,但在那个时候由于科技条件的限制,对石墨烯的认识还十分有限。
直到2004年,石墨烯的真正探索才开始。
当时,两位英国科学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫在实验室中通过用胶带撕离石墨结晶体,成功地制备了单层厚度的石墨烯。
他们发现,这种新型材料具有出色的导电性和强韧性,引起了学术界的广泛关注。
2005年,中国科学院的一组科学家也成功制备了石墨烯,他们使用了一种新的方法,将石墨氧化后通过化学还原的方式制备出石墨烯材料。
这种方法相对简单且可大规模生产,为石墨烯的研究和应用提供了更多可能性。
在接下来的几年里,石墨烯的研究迅速发展。
科学家们对其特性进行了深入研究,发现石墨烯具有极高的电子迁移率、热导率和机械强度。
这使得石墨烯有望应用于电子器件、传感器、能源存储等领域。
随着石墨烯的潜力逐渐被认识到,研究热潮越来越高涨。
2007年,两位英国科学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫因为他们在石墨烯研究方面的突破性工作而获得诺贝尔物理学奖,这进一步推动了石墨烯研究的发展。
如今,石墨烯的应用领域已经相当广泛。
除了科学研究领域外,石墨烯还已应用于可穿戴设备、柔性电子器件、环境监测等领域。
科学家们仍在不断研究、探索石墨烯的新特性和新应用,相信它将在未来的科技领域中发挥重要作用。
石墨烯发现的故事

石墨烯发现的故事
摘要:
一、石墨烯的发现背景
二、石墨烯的特性与应用
三、石墨烯发现的意义和前景
正文:
石墨烯是一种只有一个原子层厚的二维材料,具有令人惊叹的物理特性。
它的强度、导电性和透明度等都超越了其他材料。
这个神奇的材料的发现,开启了一个全新的科技时代。
石墨烯的发现源于对石墨的研究。
石墨是一种常见的碳的同素异形体,具有良好的导电性和热稳定性。
科学家们一直对石墨的导电机制感兴趣,希望找到一种能够解释这种现象的理论。
2004年,安德烈·盖姆和康斯坦丁·诺沃肖洛夫成功地在实验中分离出单层石墨,并证实了石墨烯的存在。
这一发现为他们赢得了2010年诺贝尔物理学奖。
石墨烯的特性使其在众多领域具有广泛的应用前景。
首先,石墨烯是一种优秀的导电材料,可用于制造更高效的电子器件。
其高强度和柔韧性使其成为的理想材料,可用于制造柔性显示屏、太阳能电池板等。
此外,石墨烯的超高热导率使其在散热领域具有巨大的潜力。
石墨烯的发现对我国科技发展具有重要意义。
我国政府高度重视石墨烯产业的发展,将其列为战略性新兴产业。
目前,我国在石墨烯研究和应用方面取得了世界领先的成果。
例如,我国科学家成功研发出石墨烯电池,其充电速度
远超传统电池。
此外,石墨烯在医疗、能源、环保等领域也取得了显著的应用。
总之,石墨烯的发现开启了二维材料研究的新篇章。
它所带来的创新技术和应用前景无法估量。
石墨烯发现的故事

石墨烯发现的故事
石墨烯,一种只有一个原子层厚的二维材料,近年来在全球范围内备受关注。
其独特的光滑表面、高强度、导电性和超薄特性使其在科学研究和应用领域具有广泛的前景。
石墨烯的发现故事充满了传奇色彩,今天我们就来回顾一下这一重要的科学历程。
石墨烯的发现可以追溯到2004年,当时安德烈·盖姆和康斯坦丁·诺沃肖洛夫成功实验制得石墨烯。
他们采用胶带剥离法制备出这种只有一个原子层厚的材料,这一突破性成果使他们荣获2010年诺贝尔物理学奖。
石墨烯的发现为全球科学家打开了一个全新的研究领域,激发了人们对二维材料的研究热情。
石墨烯的特性使其在众多领域具有广泛应用。
首先,石墨烯具有极高的强度和韧性,是目前已知强度最高的材料。
这一特性使其在航空航天、汽车制造等高强度结构件领域具有巨大潜力。
其次,石墨烯具有良好的导电性,可以应用于高性能电子器件的制造。
此外,石墨烯还具有优异的热传导性能,有望解决现代电子设备散热问题。
石墨烯的发现对于我国科技发展具有重要意义。
我国政府高度重视石墨烯产业的发展,将其列为战略性新兴产业。
近年来,我国石墨烯研究取得了世界领先的成果,推动了石墨烯材料的产业化进程。
在新能源、智能制造、生物医疗等领域,石墨烯的应用正在逐步改变我们的生活。
总之,石墨烯的发现不仅为科学研究提供了新的方向,也为我国科技发展带来了前所未有的机遇。
石墨烯的研究历史

石墨烯的研究历史石墨烯是一种由碳原子组成的二维材料,具有出色的物理和化学性质,因此引起了广泛的关注和研究。
本文将介绍石墨烯的研究历史。
石墨烯的发现石墨烯最早是由安德烈·赫姆(A.K. Geim)和康斯坦丁·诺沃肖洛夫(K.S. Novoselov)在2004年发现的。
他们使用的方法是利用普通的黏着带,将一些石墨片剥离成非常薄的层,最终得到了一片厚度仅为一个原子的石墨烯。
这项发现因为其高度的新颖性和创新性而获得了2010年的诺贝尔物理学奖。
石墨烯的早期研究石墨烯的发现以后,引起了极大的科学兴趣。
科学家们开始探究这种新型材料的特殊性质和实际应用。
最初,人们主要研究了其电子性质和力学性质。
在2005年,科学家就发现了石墨烯的电导率比银还高,并且在极低的温度下(约为4.2K),其电子运动方式也非常特殊。
此外,人们还发现,尽管石墨烯只有单层,但其刚度比钢还高,同时又具有弹性,展现出了无与伦比的物理特性。
石墨烯的应用研究在石墨烯的研究过程中,科学家们还开始考虑其实际应用。
石墨烯的高导电性能和更广泛的带隙,使其成为新一代电子器件(例如晶体管)的一个有很大潜力的替代品。
石墨烯的力学性质也使其成为用于航空和航天应用的强度材料。
此外,石墨烯的化学稳定性和高比表面积使其成为高效的电池、传感器和催化剂的备选材料。
石墨烯的世界研究热潮自石墨烯发现以来,世界各地的研究人员都投入了大量精力,对石墨烯进行了广泛的研究。
可以说,石墨烯研究的确是一个世界性的热潮。
科学家们不仅在探求石墨烯的性质和应用方面取得了许多重要的成果,还提出了许多新的想法和建议,为后来的石墨烯研究带来了深远的影响。
石墨烯的未来前景石墨烯的研究历史虽然还很短,但是石墨烯已经成为了一个重要的而又有很大前景的研究领域。
未来,科学家们将继续在石墨烯的性质和应用方面进行深入的研究,希望能够更好地利用石墨烯的出色特性,为我们的物质生活和科学研究带来更多的可能性。
石墨烯行业发展历程

石墨烯行业发展历程石墨烯是一种由碳原子构成的二维材料,具有出色的导电性、热导性和机械性能,被公认为是材料科学的突破性发现。
下面将简要介绍石墨烯行业发展历程。
石墨烯的发现源于2004年的一项重要科学研究。
英国曼彻斯特大学的科学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫等人在实验中使用胶带剥离法成功剥离出了最早的石墨烯薄片,并发现了石墨烯的独特性质。
这项研究成果于2004年发表在《科学》杂志上,引起了国际学术界的极大关注和热议,被认为是材料科学的重大突破。
自石墨烯发现后,全球范围内的科学家和工程师投入了大量的研究工作,以探索石墨烯的潜在应用领域。
石墨烯的导电性能使其在电子器件领域具有巨大的应用潜力。
石墨烯可以制备成柔性的薄膜电子器件,如柔性显示屏、柔性太阳能电池等。
石墨烯的高导热性也使其被广泛应用于热管理领域,如散热材料、高效热导材料等。
此外,石墨烯还具有优异的力学性能,可以用于制备轻量、高强度的材料,如复合材料、强化材料等。
在石墨烯的研究和应用过程中,科学家们面临了许多技术难题。
例如,如何大规模制备石墨烯薄片、如何控制石墨烯的结构和性质、如何将石墨烯与其他材料结合等。
经过多年的研究和探索,科学家们逐渐攻克了这些技术难题,并取得了一系列重要的科研成果。
随着石墨烯技术的不断进步,石墨烯产业逐渐开始崛起。
全球范围内涌现了大量的石墨烯技术企业和创业公司。
这些企业通过自主研发或技术引进,推动了石墨烯产业的快速发展。
目前,石墨烯已经得到了广泛应用。
石墨烯薄膜在电子、光电、能源等领域具有重要的应用前景。
石墨烯复合材料可以用于航空航天、汽车制造等高端领域。
此外,石墨烯还可以应用于生物医药领域,如石墨烯纳米药物传输系统、石墨烯生物传感器等。
然而,石墨烯产业的发展也面临一些挑战。
首先,石墨烯的制备工艺相对复杂,制备成本较高,限制了其规模化生产。
其次,石墨烯在某些应用领域的商业化进程较慢,市场需求尚未完全释放出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RANDOM WALK TO GRAPHENENobel Lecture, December 8, 2010byANDRE K. GEIMSchool of Phys i cs and Astronomy, The Un i vers i ty of Manchester, Oxford Road, Manchester M13 9PL, Un i ted K i ngdom.If one wants to understand the beaut i ful phys i cs of graphene, they w i ll be spo i led for cho i ce w i th so many rev i ews and popular sc i ence art i cles now ava i lable. I hope that the reader w i ll excuse me i f on th i s occas i on I recommend my own wr i t i ngs [1–3]. Instead of repeat i ng myself here, I have chosen to descr i be my tw i sty sc i ent ific road that eventually led to the Nobel Pr i ze. Most parts of th i s story are not descr i bed anywhere else, and i ts t i me-l i ne covers the per i od from my PhD i n 1987 to the moment when our 2004 paper, recogn i sed by the Nobel Comm i ttee, was accepted for publ i cat i on. The story naturally gets denser i n events and explanat i ons towards the end. Also, i t prov i des a deta i led rev i ew of pre-2004 l i terature and, w i th the benefit of h i nds i ght, attempts to analyse why graphene has attracted so much i nter-est. I have tr i ed my best to make th i s art i cle not only i nformat i ve but also easy to read, even for non-phys i c i sts.ZOMBIE MANAGEMENTMy PhD thes i s was called “Invest i gat i on of mechan i sms of transport relaxa-t i on i n metals by a hel i con resonance method”. All I can say i s that the stuff was as i nterest i ng at that t i me as i t sounds to the reader today. I publ i shed five journal papers and fin i shed the thes i s i n five years, the offic i al durat i on for a PhD at my i nst i tut i on, the Inst i tute of Sol i d State Phys i cs.Web of Sc i ence so-berly reveals that the papers were c i ted tw i ce, by co-authors only. The subject was dead a decade before I even started my PhD. However, every cloud has i ts s i lver l i n i ng, and what I un i quely learned from that exper i ence was that I should never torture research students by offer i ng them “zomb i e” projects. After my PhD, I worked as a staff sc i ent i st at the Inst i tute of M i cro-electron i cs Technology, Chernogolovka, wh i ch belongs to the Russ i an Academy of Sc i ences. The Sov i et system allowed and even encouraged jun i or staff to choose the i r own l i ne of research. After a year of pok i ng i n d i fferent d i rect i ons, I separated research-w i se from my former PhD superv i sor, V i ctor Petrashov, and started develop i ng my own n i che. It was an exper i mental system that was both new and doable, wh i ch was nearly an oxymoron, tak i ng i nto account the scarce resources ava i lable at the t i me at Sov i et researchi nst i tutes. I fabr i cated a sandw i ch cons i st i ng of a th i n metal film and a super-conductor separated by a th i n i nsulator. The superconductor served only to condense an external magnet i c field i nto an array of vort i ces, and th i s h i ghly i nhomogeneous magnet i c field was projected onto the film under i nvest i ga-t i on. Electron transport i n such a m i croscop i cally i nhomogeneous field (vary i ng on a subm i cron scale) was new research terr i tory, and I publ i shed the first exper i mental report on the subject [4], wh i ch was closely followed by an i ndependent paper from S i mon Bend i ng [5]. It was an i nterest i ng and reasonably i mportant n i che, and I cont i nued study i ng the subject for the next few years, i nclud i ng a spell at the Un i vers i ty of Bath i n 1991 as a postdoctoral researcher work i ng w i th S i mon.Th i s exper i ence taught me an i mportant lesson: that i ntroduc i ng a new exper i mental system i s generally more reward i ng than try i ng to find new phenomena w i th i n crowded areas. The chances of success are much h i gher where the field i s new. Of course, the fantast i c results one or i g i nally hopes for are unl i kely to mater i al i se, but, i n the process of study i ng any new system, someth i ng or i g i nal i nev i tably shows up.ONE MAN’S JUNK, ANOTHER MAN’S GOLDIn 1990, thanks to V i taly Ar i stov, d i rector of my Inst i tute i n Chernogolovka at the t i me, I rece i ved a s i x month v i s i t i ng fellowsh i p from the Br i t i sh Royal Soc i ety. Laurence Eaves and Peter Ma i n from Nott i ngham Un i vers i ty k i ndly agreed to accept me as a v i s i tor. S i x months i s a very short per i od for exper i mental work, and c i rcumstances d i ctated that I could only study de-v i ces read i ly ava i lable i n the host laboratory. Ava i lable were subm i cron GaAs w i res left over from prev i ous exper i ments, all done and dusted a few years earl i er. Under the c i rcumstances, my exper i ence of work i ng i n a poverty-str i cken Sov i et academy was helpful. The samples that my hosts cons i dered pract i cally exhausted looked l i ke a gold ve i n to me, and I started work i ng 100 hours per week to explo i t i t. Th i s short v i s i t led to two Phys. Rev. Letters of decent qual i ty [6,7], and I often use th i s exper i ence to tease my younger colleagues. When th i ngs do not go as planned and people start compla i n i ng, I provoke them by procla i m i ng ‘there i s no such th i ng as bad samples; there are only bad postdocs/students’. Search carefully and you w i ll always find someth i ng new. Of course, i t i s better to avo i d such exper i ences and explore new terr i tor i es, but even i f one i s fortunate enough to find an exper i mental system as new and exc i t i ng as graphene, met i culousness and perseverance allow one to progress much further.The pace of research at Nott i ngham was so relentless and, at the same t i me so i nsp i r i ng, that a return to Russ i a was not an opt i on. Sw i mm i ng through Sov i et treacle seemed no less than wast i ng the rest of my l i fe. So at the age of th i rty-three and w i th an h-i ndex of 1 (latest papers not yet publ i shed), I entered the Western job market for postdocs. Dur i ng the next four years I moved between d i fferent un i vers i t i es, from Nott i ngham to Copenhagen to Bath and back to Nott i ngham. Each move allowed me to get acqua i nted w i thyet another top i c or two, s i gn ificantly broaden i ng my research hor i zons. The phys i cs I stud i ed i n those years could be broadly descr i bed as mesoscop i c and i nvolved such systems and phenomena as two-d i mens i onal electron gases (2DEGs), quantum po i nt contacts, resonant tunnell i ng and the quantum Hall effect (QHE), to name but a few. In add i t i on, I became fam i l i ar w i th GaAlAs heterostructures grown by molecular beam ep i taxy (MBE) and i mproved my expert i se i n m i crofabr i cat i on and electron-beam l i thography, technolog i es I had started learn i ng i n Russ i a. All these elements came together to form the foundat i on for the successful work on graphene a decade later.DUTCH COMFORTBy 1994 I had publ i shed enough qual i ty papers and attended enough con-ferences to hope for a permanent academ i c pos i t i on. When I was offered an assoc i ate professorsh i p at the Un i vers i ty of N i jmegen, I i nstantly se i zed upon the chance of hav i ng some secur i ty i n my new post-Sov i et l i fe. The first task i n N i jmegen was of course to establ i sh myself. To th i s end, there was no start-up and no m i crofabr i cat i on to cont i nue any of my prev i ous l i nes of re-search. As resources, I was offered access to magnets, cryostats and electron i c equ i pment ava i lable at N i jmegen’s H i gh F i eld Magnet Laboratory, led by Jan Kees Maan. He was also my formal boss and i n charge of all the money. Even when I was awarded grants as the pr i nc i pal i nvest i gator (the Dutch fund i ng agency FOM was generous dur i ng my stay i n N i jmegen), I could not spend the money as I w i shed. All funds were d i str i buted through so-called ‘work i ng groups’ led by full professors. In add i t i on, PhD students i n the Netherlands could formally be superv i sed only by full professors. Although th i s probably sounds strange to many, th i s was the Dutch academ i c system of the 1990s. It was tough for me then. For a couple of years, I really struggled to adjust to the system, wh i ch was such a contrast to my joyful and product i ve years at Nott i ngham. In add i t i on, the s i tuat i on was a b i t surreal because outs i de the un i vers i ty walls I rece i ved a warm-hearted welcome from everyone around, i nclud i ng Jan Kees and other academ i cs.St i ll, the research opportun i t i es i n N i jmegen were much better than i n Russ i a and, eventually, I managed to surv i ve sc i ent ifically, thanks to help from abroad. Nott i ngham colleagues (i n part i cular Mohamed Hen i n i) prov i ded me w i th 2DEGs that were sent to Chernogolovka, where Sergey Dubonos, a close colleague and fr i end from the 1980s, m i crofabr i cated requested dev i ces. The research top i c I eventually found and later focused on can be referred to as mesoscop i c superconduct i v i ty. Sergey and I used m i cron-s i zed Hall bars made from a 2DEG as local probes of the magnet i c field around small superconduct i ng samples. Th i s allowed measurements of the i r magnet i sat i on w i th accuracy suffic i ent to detect not only the entry and ex i t of i nd i v i dual vort i ces but also much more subtle changes. Th i s was a new exper i mental n i che, made poss i ble by the development of an or i g i nal techn i que of ball i st i c Hall m i cromagnetometry [8]. Dur i ng the next fewyears, we explo i ted th i s n i che area and publ i shed several papers i n Nature and Phys. Rev. Letters wh i ch reported a paramagnet i c Me i ssner effect, vort i ces carry i ng fract i onal flux, vortex configurat i ons i n confined geometr i es and so on. My w i fe Ir i na Gr i gor i eva, an expert i n vortex phys i cs [9], could not find a job i n the Netherlands and therefore had plenty of t i me to help me w i th conquer i ng the subject and wr i t i ng papers. Also, Sergey not only made the dev i ces but also v i s i ted N i jmegen to help w i th measurements. We establ i shed a very product i ve modus operand i where he collected data and I analysed them w i th i n an hour on my computer next door to dec i de what should be done next.A SPELL OF LEVITYThe first results on mesoscop i c superconduct i v i ty started emerg i ng i n 1996, wh i ch made me feel safer w i th i n the Dutch system and also more i nqu i s i-t i ve. I started look i ng around for new areas to explore. The major fac i l i ty at N i jmegen’s H i gh F i eld Lab was powerful electromagnets. They were a major headache, too. These magnets could prov i de fields up to 20 T, wh i ch was somewhat h i gher than 16 to 18 T ava i lable w i th the superconduct i ng magnets that many of our compet i tors had. On the other hand, the elec-tromagnets were so expens i ve to run that we could use them only for a few hours at n i ght, when electr i c i ty was cheaper. My work on mesoscop i c super-conduct i v i ty requ i red only t i ny fields (< 0.01T), and I d i d not use the electro-magnets. Th i s made me feel gu i lty as well as respons i ble for com i ng up w i th exper i ments that would just i fy the fac i l i ty’s ex i stence. The only compet i t i ve edge I could see i n the electromagnets was the i r room temperature (T) bore. Th i s was often cons i dered as an extra d i sadvantage because research i n condensed matter phys i cs typ i cally requ i res low, l i qu i d-hel i um T. The con-trad i ct i on prompted me, as well as other researchers work i ng i n the lab, to ponder on h i gh-field phenomena at room T. Unfortunately, there were few to choose from.Eventually, I stumbled across the mystery of so-called magnet i c water. It i s cla i med that putt i ng a small magnet around a hot water p i pe prevents format i on of scale i ns i de the p i pe. Or i nstall such a magnet on a water tap, and your kettle w i ll never suffer from chalky depos i ts. These magnets are ava i lable i n a great var i ety i n many shops and on the i nternet. There are also hundreds of art i cles wr i tten on th i s phenomenon, but the phys i cs beh i nd i t rema i ns unclear, and many researchers are scept i cal about the very ex i stence of the effect [10]. Over the last fifteen years I have made several attempts to i nvest i gate “magnet i c water” but they were i nconclus i ve, and I st i ll have noth i ng to add to the argument. However, the ava i lab i l i ty of ultra-h i gh fields i n a room T env i ronment i nv i ted lateral th i nk i ng about water. Bas i cally, i f magnet i c water ex i sted, I thought, then the effect should be clearer i n 20 T rather than i n typ i cal fields of <0.1 T created by standard magnets.W i th th i s i dea i n m i nd and, allegedly, on a Fr i day n i ght, I poured water i ns i de the lab’s electromagnet when i t was at i ts max i mum power. Pour i ngwater i n one's equ i pment i s certa i nly not a standard sc i ent ific approach, and I cannot recall why I behaved so ‘unprofess i onally’. Apparently, no one had tr i ed such a s i lly th i ng before, although s i m i lar fac i l i t i es ex i sted i n several places around the world for decades. To my surpr i se, water d i d not end up on the floor but got stuck i n the vert i cal bore of the magnet. Humberto Carmona, a v i s i t i ng student from Nott i ngham, and I played for an hour w i th the water by break i ng the blockage w i th a wooden st i ck and chang i ng the field strength. As a result, we saw balls of lev i tat i ng water (F i gure 1). Th i s was awesome. It took l i ttle t i me to real i se that the phys i cs beh i nd was good old d i amagnet i sm. It took much longer to adjust my i ntu i t i on to the fact that the feeble magnet i c response of water (~10–5), b i ll i ons of t i mes weaker than that of i ron, was suffic i ent to compensate the earth’s grav i ty. Many colleagues, i nclud i ng those who worked w i th h i gh magnet i c fields all the i r l i ves, were flabbergasted, and some of them even argued that th i s was a hoax.I spent the next few months demonstrat i ng magnet i c lev i tat i on to colleagues and v i s i tors, as well as try i ng to make a ‘non-boffin’i llustrat i on for th i s beaut i ful phenomenon. Out of the many objects that we had float i ng i ns i de the magnet, i t was the i mage of a lev i tat i ng frog (F i gure 1) that started the med i a hype. More i mportantly, though, beh i nd all the med i a no i se, th i s i mage found i ts way i nto many textbooks. However qu i rky, i t has become a beaut i ful symbol of ever-present d i amagnet i sm, wh i ch i s no longer perce i ved to be extremely feeble. Somet i mes I am stopped at conferences by people excla i m i ng “I know you! Sorry, i t i s not about graphene. I start my lectures w i th show i ng your frog. Students always want to learn how i t could fly.” The frog story, w i th some i ntr i cate phys i cs beh i nd the stab i l i ty of d i amagnet i c lev i tat i on, i s descr i bed i n my rev i ew i n Phys i cs Today [11].F i gure 1. Lev i tat i ng moments i n N i jmegen. Left – Ball of water (about 5 cm i n d i ameter) freely floats i ns i de the vert i cal bore of an electromagnet. R i ght – The frog that learned to fly. Th i s i mage cont i nues to serve as a symbol show i ng that magnet i sm of ‘nonmagnet i c th i ngs’, i nclud i ng humans, i s not so negl i g i ble. Th i s exper i ment earned M i chael Berry and me the 2000 Ig Nobel Pr i ze. We were asked first whether we dared to accept th i s pr i ze, and I take pr i de i n our sense of humour and self-deprecat i on that we d i d.FRIDAY NIGHT EXPERIMENTSThe lev i tat i on exper i ence was both i nterest i ng and add i ct i ve. It taught me the i mportant lesson that pok i ng i n d i rect i ons far away from my i mmed i ate area of expert i se could lead to i nterest i ng results, even i f the i n i t i al i deas were extremely bas i c. Th i s i n turn i nfluenced my research style, as I started mak i ng s i m i lar exploratory detours that somehow acqu i red the name ‘Fr i day n i ght exper i ments’. The term i s of course i naccurate. No ser i ous work can be accompl i shed i n just one n i ght. It usually requ i res many months of lateral th i nk i ng and d i gg i ng through i rrelevant l i terature w i thout any clear i dea i n s i ght. Eventually, you get a feel i ng – rather than an i dea – about what could be i nterest i ng to explore. Next, you g i ve i t a try, and normally you fa i l. Then, you may or may not try aga i n. In any case, at some moment you must dec i de (and th i s i s the most d i fficult part) whether to cont i nue further efforts or cut losses and start th i nk i ng of another exper i ment. All th i s happens aga i nst the backdrop of your ma i n research and occup i es only a small part of your t i me and bra i n.Already i n N i jmegen, I started us i ng lateral i deas as under- and post-graduate projects, and students were always exc i ted to buy a p i g i n a poke. Kostya Novoselov, who came to N i jmegen as a PhD student i n 1999, took part i n many of these projects. They never lasted for more than a few months, i n order not to jeopard i se a thes i s or career progress i on. Although the enthus i asm i nev i tably van i shed towards the end, when the pred i ctable fa i lures mater i al i sed, some students later confided that those exploratory detours were i nvaluable exper i ences.Most surpr i s i ngly, fa i lures somet i mes fa i led to mater i al i se. Gecko tape i s one such example. Acc i dentally or not, I read a paper descr i b i ng the mechan i sm beh i nd the amaz i ng cl i mb i ng ab i l i ty of geckos [12]. The phys i cs i s rather stra i ghtforward. Gecko’s toes are covered w i th t i ny ha i rs. Each ha i r attaches to the oppos i te surface w i th a m i nute van der Waals force (i n the nN range), but b i ll i ons of ha i rs work together to create a form i dable attract i on suffic i ent to keep geckos attached to any surface, even a glass ce i l i ng. In part i cular, my attent i on was attracted by the spat i al scale of the i r ha i rs. They were subm i cron i n d i ameter, the standard s i ze i n research on mesoscop i c phys i cs. After toy i ng w i th the i dea for a year or so, Sergey Dubonos and I came up w i th procedures to make a mater i al that m i m i cked a gecko’s ha i ry feet. He fabr i cated a square cm of th i s tape, and i t exh i b i ted notable adhes i on [13]. Unfortunately, the mater i al d i d not work as well as a gecko’s feet, deter i orat i ng completely after a couple of attachments. St i ll, i t was an i mportant proof-of-concept exper i ment that i nsp i red further work i n the field. Hopefully, one day someone w i ll develop a way to repl i cate the h i erarch i cal structure of gecko’s setae and i ts self-clean i ng mechan i sm. Then gecko tape can go on sale.BETTER TO BE WRONG THAN BORINGWh i le prepar i ng for my lecture i n Stockholm, I comp i led a l i st of my Fr i day n i ght exper i ments. Only then d i d I real i se a stunn i ng fact. There were two dozen or so exper i ments over a per i od of approx i mately fifteen years and, as expected, most of them fa i led m i serably. But there were three h i ts: lev i tat i on, gecko tape and graphene. Th i s i mpl i es an extraord i nary success rate: more than 10%. Moreover, there were probably near-m i sses, too. For example, I once read a paper [14] about g i ant d i amagnet i sm i n FeGeSeAs alloys, wh i ch was i nterpreted as a s i gn of h i gh-T superconduct i v i ty. I asked Lamarches for samples and got them. Kostya and I employed ball i st i c Hall magnetometry to check for g i ant d i amagnet i sm but found noth i ng, even at 1 K. Th i s happened i n 2003, well before the d i scovery of i ron pn i ct i de superconduct i v-i ty, and I st i ll wonder whether there were any small i nclus i ons of a supercon-duct i ng mater i al wh i ch we m i ssed w i th our approach. Another m i ss was an attempt to detect “heartbeats” of i nd i v i dual l i v i ng cells. The i dea was to use 2DEG Hall crosses as ultrasens i t i ve electrometers to detect electr i cal s i gnals due to phys i olog i cal act i v i ty of i nd i v i dual cells. Even though no heartbeats were detected wh i le a cell was al i ve, our sensor recorded huge voltage sp i kes at i ts “last gasp” when the cell was treated w i th excess alcohol [15]. Now I attr i bute th i s near-m i ss to the unw i se use of yeast, a very dormant m i cro-organ i sm. Four years later, s i m i lar exper i ments were done us i ng embryon i c heart cells and – what a surpr i se – graphene sensors, and they were successful i n detect i ng such b i oelectr i cal act i v i ty [16].Frankly, I do not bel i eve that the above success rate can be expla i ned by my lateral i deas be i ng part i cularly good. More l i kely, th i s tells us that pok i ng i n new d i rect i ons, even randomly, i s more reward i ng than i s generally perce i ved. We are probably d i gg i ng too deep w i th i n establ i shed areas, leav i ng plenty of unexplored stuff under the surface, just one poke away. When one dares to try, rewards are not guaranteed, but at least i t i s an adventure.THE MANCUNIAN WAYBy 2000, w i th mesoscop i c superconduct i v i ty, d i amagnet i c lev i tat i on and four Nature papers under my belt, I was well placed to apply for a full professorsh i p. Colleagues were rather surpr i sed when I chose the Un i vers i ty of Manchester, decl i n i ng a number of seem i ngly more prest i g i ous offers. The reason was s i mple.M i ke Moore, cha i rman of the search comm i ttee, knew my w i fe Ir i na when she was a very successful postdoc i n Br i stol rather than my co-author and a part-t i me teach i ng lab techn i c i an i n N i jmegen. He suggested that Ir i na could apply for the lecturesh i p that was there to support the professorsh i p. After s i x years i n the Netherlands, the i dea that a husband and w i fe could offic i ally work together had not even crossed my m i nd. Th i s was the dec i s i ve factor. We apprec i ated not only the poss i b i l i ty of sort i ng out our dual career problems but also felttouched that our future colleagues cared. We have never regretted the move.So i n early 2001, I took charge of several d i lap i dated rooms stor i ng anc i ent equ i pment of no value, and a start-up grant of £100K. There were no central fac i l i t i es that I could explo i t, except for a hel i um l i quefier. No problem. I followed the same rout i ne as i n N i jmegen, comb i n i ng help from other places, espec i ally Sergey Dubonos. The lab started shap i ng up surpr i s i ngly qu i ckly. W i th i n half a year, I rece i ved my first grant of £500K, wh i ch allowed us to acqu i re essent i al equ i pment. Desp i te be i ng consumed w i th our one year old daughter, Ir i na also got her start i ng grant a few months later. We i nv i ted Kostya to jo i n us as a research fellow (he cont i nued to be offic i ally reg i stered i n N i jmegen as a PhD student unt i l 2004 when he defended h i s thes i s there). And our group started generat i ng results that led to more grants that i n turn led to more results.By 2003 we publ i shed several good-qual i ty papers i nclud i ng Nature, Nature Mater i als and Phys. Rev. Letters, and we cont i nued beefing up the labora-tory w i th new equ i pment. Moreover, thanks to a grant of £1.4M (research i nfrastructure fund i ng scheme masterm i nded by the then sc i ence m i n i ster Dav i d Sa i nsbury), Ern i e H i ll from the Department of Computer Sc i ences and I managed to set up the Manchester Centre for Mesosc i ence and Nanotechnology. Instead of pour i ng the w i ndfall money i nto br i cks-and-mortar, we ut i l i sed the ex i st i ng clean room areas (~250 m2) i n Computer Sc i ences. Those rooms conta i ned obsolete equ i pment, and i t was thrown away and replaced w i th state-of-the-art m i crofabr i cat i on fac i l i t i es, i nclud i ng a new electron-beam l i thography system. The fact that Ern i e and I are most proud of i s that many groups around the world have more expens i ve fac i l i t i es but our Centre has cont i nuously, s i nce 2003, been produc i ng new structures and dev i ces. We do not have a posh horse here that i s for show, but rather a draft horse that has been work i ng really hard.Whenever I descr i be th i s exper i ence to my colleagues abroad, they find i t d i fficult to bel i eve that i t i s poss i ble to establ i sh a fully funct i onal labora-tory and a m i crofabr i cat i on fac i l i ty i n less than three years and w i thout an astronom i cal start-up grant. If not for my own exper i ence, I would not bel i eve i t e i ther. Th i ngs progressed unbel i evably qu i ckly. The Un i vers i ty was support i ve, but my greatest thanks are reserved spec ifically for the respons i ve mode of the UK Eng i neer i ng and Phys i cal Sc i ences Research Counc i l (EPSRC). The fund i ng system i s democrat i c and non-xenophob i c. Your pos i t i on i n an academ i c h i erarchy or an old-boys network counts for l i ttle. Also, ‘v i s i onary i deas’ and grand prom i ses to ‘address soc i al and econom i c needs’ play l i ttle role when i t comes to the peer rev i ew. In truth, the respons i ve mode d i str i butes i ts money on the bas i s of a recent track record, whatever that means i n d i fferent subjects, and the fund i ng normally goes to researchers who work both effic i ently and hard. Of course, no system i s perfect, and one can always hope for a better one. However, paraphras i ng W i nston Church i ll, the UK has the worst research fund i ng system, except for all the others that I am aware of.THREE LITTLE CLOUDSAs our laboratory and Nanotech Centre were shap i ng up, I got some spare t i me for th i nk i ng of new research detours. Gecko tape and the fa i led attempts w i th yeast and quas i-pn i ct i des took place dur i ng that t i me. Also, Serge Morozov, a sen i or fellow from Chernogolovka, who later became a regular v i s i-tor and i nvaluable collaborator, wasted h i s first two v i s i ts on study i ng magnet i c water. In the autumn of 2002, our first Manchester PhD student, Da J i ang, arr i ved, and I needed to i nvent a PhD project for h i m. It was clear that for the first few months he needed to spend h i s t i me learn i ng Engl i sh and gett i ng acqua i nted w i th the lab. Accord i ngly, as a starter, I suggested to h i m a new lateral exper i ment. It was to make films of graph i te ‘as th i n as poss i ble’ and, i f successful, I prom i sed we would then study the i r ‘mesoscop i c’ propert i es. Recently, try i ng to analyse how th i s i dea emerged, I recalled three badly shaped thought clouds.One cloud was a concept of ‘metall i c electron i cs’. If an external electr i c field i s appl i ed to a metal, the number of charge carr i ers near i ts surface changes, so that one may expect that i ts surface propert i es change, too. Th i s i s how modern sem i conductor electron i cs works. Why not use a metal i nstead of s i l i con? As an undergraduate student, I wanted to use electr i c field effect (EFE) and X-ray analys i s to i nduce and detect changes i n the latt i ce constant. It was naïve because s i mple est i mates show that the effect would be negl i g i ble. Indeed, no d i electr i c allows fields much h i gher than 1V/nm, wh i ch translates i nto max i mum changes i n charge carr i er concentrat i on n at the metal surface of about 1014 per cm2. In compar i son, a typ i cal metal (e.g., Au) conta i ns ~1023 electrons per cm3 and, even for a 1 nm th i ck film, th i s y i elds relat i ve changes i n n and conduct i v i ty of ~1%, leav i ng as i de much smaller changes i n the latt i ce constant.Prev i ously, many researchers asp i red to detect the field effect i n metals. The first ment i on i s as far back as 1902, shortly after the d i scovery of the electron. J. J. Thomson (1906 Nobel Pr i ze i n Phys i cs) suggested to Charles Mott, the father of Nev i ll Mott (1977 Nobel Pr i ze i n Phys i cs), to look for the EFE i n a th i n metal film, but noth i ng was found [17]. The first attempt to measure the EFE i n a metal was recorded i n sc i ent ific l i terature i n 1906 [18]. Instead of a normal metal, one could also th i nk of sem i metals such as b i smuth, graph i te or ant i mony wh i ch have a lot fewer carr i ers. Over the last century, many researchers used B i films (n ~1018 cm–3) but observed only small changes i n the i r conduct i v i ty [19,20]. Aware of th i s research area and w i th exper i ence i n GaAlAs heterostructures, I was cont i nuously, albe i t casually, look i ng for other cand i dates, espec i ally ultra-th i n films of superconductors i n wh i ch the field effect can be ampl ified i n prox i m i ty to the superconduct i ng trans i t i on [21,22]. In N i jmegen, my enthus i asm was once sparked by learn i ng about nm-th i ck Al films grown by MBE on top of GaAlAs heterostructures but, after est i mat i ng poss i ble effects, I dec i ded that the chances of success were so poor i t was not worth try i ng.Carbon nanotubes were the second cloud hang i ng around i n the late。