构造法求数列通项公式(完整资料).doc
(完整版)用构造法求数列的通项公式汇总

用构造法求数列的通项公式上海外国语大学嘉定外国语实验学校 徐红洁在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。
例如:中,若求a n }{n a 数列),(411,211N n a a a nn ∈+==++4,n n nn b b a b ==+1,1则设即=4,n n b b -+1}是等差数列。
n b {∴可以通过等差数列的通项公式求出,然再求后数列{ a n }的通项。
n b 练习:1)数列{ a n }中,a n ≠0,且满足求a n),(,311,2111N n a a a nn ∈+==+2)数列{ a n }中,求a n 通项公式。
,22,111+==+n nn a a a a 3)数列{ a n }中,求a n .),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-⋅+≠=--且二.构造形如的数列。
2n n a b =例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52211∈-==+ 解:设4,4,112-=--==++n n n n n n b b b b a b 即则),71(,429429429)4()1(25254}{2211N n n n a na n nb a b b n n n n ∈≤≤-=∴-=-=-⋅-+=∴==-即,是等差数列,公差是数列练习:已知正数数列{ a n }中,,),2(2,211N n n a a a n n ∈≥==-求数列{ a n }的通项公式。
(完整版)数列通项公式常用求法及构造法

数列通项公式的常用求法构造法求数列通项公式一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例1 在数列{}n a 中,1a =12,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.解析:由313n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。
解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={21138422≥=+--n n n n二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
(完整版)用构造法求数列的通项公式汇总.docx

用构造法求数列的通项公式上海外国语大学嘉定外国语实验学校徐红洁在高中数学教材中,有很多已知等差数列的首项、公比或公差 (或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列 ,给出数列的首项和递推公式 ,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。
例如:数列 { a n} 中,若 a12, 114(n N ), 求a nan 1a n设 b n1,则 b n 1 b n+4,a n即 b n 1b n=4,{ b n}是等差数列。
可以通过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。
练习: 1)数列 { a n}n1, a n 11, (n n中, a ≠ 0,且满足 a121N ), 求a3a n2)数列 { a n } 中,a11,a n 12a n, 求a n通项公式。
a n23)数列 { a n } 中, a11, a n 0, 且a n2a n a n1an10(n2,n N ), 求 a n.二.构造形如 b n a n2 的数列。
例:正数数列 { a n } 中,若 a15, a n12a n24(n N ),求 a n 解:设 b n a n2,则b n1b n4,即 b n1b n4数列 { b n } 是等差数列,公差是4, b1225 a1b n25( n1)(4)294n即 a n 24n29a n294n , (1n7, n N )练习:已知正数数列 { a n } 中, a12, a n2a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。
三.构造形如 b n lg a n的数列。
例:正数数列 { a n}中,若 11lg a n 1 ,( n2, n N ),求 a n.a =10,且lg a n2解:由题意得:lg a n1,可设 b n lg a n,lg a n21即bn1,b n 121b n 是等比数列,公比为1, b 1 lg 10 12b n 1 ( 1) n 1(1) n 1, (n N) .22(1 )n 1即 lg a n( 1) n 1 , a n 10 22练习:(选自 2002 年高考上海卷)数列 { a n 中,若 12 ,n 是正整数,求数列n}的通项公式。
高中数学必修5用构造法求数列的通项公式

用结构法求数列的通项公式在高中数学教材中,有好多已知等差数列的首项、公比或公差 (或许经过计算能够求出数列的首项 ,公比 ),来求数列的通项公式。
但实质上有些数列其实不是等差、等比数列,给出数列的首项和递推公式 ,要求出数列的通项公式。
而这些题目常常能够用结构法,依据递推公式结构出一个新数列,进而间接地求出原数列的通项公式。
关于不一样的递推公式,我们自然能够采纳不一样的方法结构不一样的种类的新数列。
下边给出几种我们常有的结构新数列的方法:一.利用倒数关系结构数列。
比如:数列 { a n } 中,若 a12,114(n N ), 求a n an 1an设b n 1 , 则b n 1b n+4,a n即 b n 1b n=4,{b n}是等差数列。
能够经过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。
练习: 1)数列 { a n } 中, a n≠0,且知足a111N ), 求a n , a n11, (n23a nn}中, a11, a n 2a n n通项公式。
2)数列 { a1a n, 求a 2n}中 , a11, a n0,且a n2a n a n 1a n1 0(nn3)数列 { a2, n N ), 求 a .二.结构形如 b n a n2的数列。
例:正数数列 { a n } 中,若 a15, a n 12a n24(n N ), 求a n解:设 b n a n 2 , 则b n1bn4,即b n1b n4数列 { b n } 是等差数列,公差是4, b1225 a1b n25(n 1)( 4)294n即 a n 24n29a n294n , (1n7, n N )练习:已知正数数列 { a n } 中, a1 2, a n 2 a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。
三.结构形如 b n lg a n的数列。
例:正数数列 { a} 中,若 a =10,且lg a n lg a n 1 , (n2, n N ), 求a .n11n2解:由题意得:lg a n1,可设 b n lg a n,lg a n 12即b n1,bn 12b n是等比数列,公比为1, b1 lg 10 12b n 1 (1) n 1(1)n 1 ,(n N) .22(1) n 1 , a n( 1 )n 1即 lg a n10 22练习:(选自 2002 年高考上海卷)数列 { a n } 中,若 a1=3, a n 1a n2 ,n 是正整数,求数列 { a n } 的通项公式。
(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析:Θ 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析:Θ 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n Λ ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:Q 11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===-gg g g L g g g g L g ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:Q 121n n a a -=+ ∴()1112221n n n a a a --+=+=+ ∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n aQ 1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+Θ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1Θ不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
构造法求递推数列的通项公式

巧用构造法求递推数列的通项公式蒋明权利用递推数列求通项公式,在理论上和实践中均有较高的价值,自从二十世纪八十年代以来,一直是全国高考和高中数学联赛的热点之一。
本文想介绍一下利用构造法求递推数列的通项公式的方法和策略,希望能抛砖引玉。
一、构造等差数列法例1.在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项公式a n 。
解:对原递推式两边同除以n n n ()()++12可得:a n n a n nn n +++=++12112()()()① 令b a n nn n =+()1② 则①即为b b n n +=+12,则数列{b n }为首项是b a 1111132=+=()×,公差是b b n n +-=12的等差数列,因而b n n n =+-=-3221212(),代入②式中得a n n n n =+-12141()()。
故所求的通项公式是a n n n n =+-12141()() 二、构造等比数列法1.定义构造法 利用等比数列的定义q a a n n=+1,通过变换,构造等比数列的方法。
例2.设在数列{a n }中,a a a a n n n 112222==++,,求{a n }的通项公式。
解:将原递推式变形为a a a n n n++=+12222()① a a a n n n+-=-12222()② ①/②得:a a a a n n n n +++-=+-1122222[], 即lg lg[]a a a a n n n n +++-=+-1122222③ 设b a a n n n =+-lg[]22④ ③式可化为a a n n +=12,则数列{b n }是以b 1=lg[]lg lg()a a 11222222221+-=+-=+为首项,公比为2的等比数列,于是b n n n =+=+-22122211lg()lg()×,代入④式得:a a n n +-22=()212+n ,解得a n n n=+++-221121122[()]()为所求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】构造法求数列通项公式求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。
一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例1 在数列{}n a 中,1a =12,1n a +=33n na a +(n N +∈),求数列{}n a 通项公式. 解析:由a n+1=33+n na a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n 评析:本例通过变形,将递推公式变形成为A a a nn =-+111形式,应用等差数列的通项公式,先求出na 1的通项公式,从而求出n a 的通项公式。
例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n≥2),求S n 与a n 。
解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,nS1-11-n S =2,∴{nS 1}是首相为1,公差为2的等差数列∴nS 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1)当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式,∴a n ={21138422≥=+--n n n n评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原数列的通项公式,条件变形是难点。
二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例3在数列{a n }中,a 1=2,a n =a n-12(n ≥2),求数列{a n }通项公式。
解析:∵ a 1=2,a n =a n-12(n ≥2)>0,两边同时取对数得,lg a n =2lg a n-1∴1lg lg -n n a a =2, 根据等比数列的定义知,数列{lg a n }是首相为lg2,公比为2的等比数列,根据等比数列的通项公式得lg a n =2n-1lg2=122lg -n∴数列通项公式为a n =122-n评析:本例通过两边取对数,变形成1log 2log -=n n a a 形式,构造等比数列{}log n a ,先求出n a log 的通项公式,从而求出n a 的通项公式。
例4在数列{a n }中,a 1=1,a n+1=4a n +3n+1,求数列{a n }通项公式。
解析:设a n+1+A (n+1)+B=4(a n +An+B ),(A 、B 为待定系数),展开得a n+1=4a n +3An+3B-A ,与已知比较系数得{1333=-=A B A∴{321==B A∴a n+1+(n+1)+32=4(a n +n+32),根据等比数列的定义知, 数列{a n +n+32}是首项为38,公比为q=3的等比数列,∴a n +n+32=38×3n-1∴数列通项公式为a n =38×3n-1-n-32评析:待定系数法是构造数列的常用方法。
例5 在数列{a n }中,a 1=1 ,a n+1a n =4n ,求数列{a n }通项公式。
解析:∵a n+1a n =4n ∴a n a n-1=4 n-1 两式相除得11-+n n aa =4 ,∴a 1,a 3,a 5……与a 2,a 4 ,a 6 ……是首相分别为a 1,a 2 ,公比都是4的等比数列, 又∵a 1=1,a n+1a n =4n ,∴a 2=4 ∴a n ={nn n n 22144-练习:1.已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴2. 数列{a n }满足a 1=1,a n =21a 1-n +1(n ≥2),求数列{a n }的通项公式。
解:由a n =21a 1-n +1(n ≥2)得a n -2=21(a 1-n -2),而a 1-2=1-2=-1,∴数列{ a n -2}是以21为公比,-1为首项的等比数列∴a n -2=-(21)1-n ∴a n =2-(21)1-n 3. 数列{}n a 中,n n n a a a a a +===++122123,2,1,求数列{}n a 的通项公式。
解:由n n n a a a +=++1223得,313212n n n a a a +=++设)(112n n n n ka a h ka a -=-+++ 比较系数得3132=-=+kh h k ,,解得31,1-==h k 或1,31=-=h k若取31,1-==h k ,则有)(31112n n n n a a a a --=-+++∴}{1n n a a -+是以31-为公比,以11212=-=-a a 为首项的等比数列∴11)31(-+-=-n n n a a由逐差法可得112211)()()(a a a a a a a a n n n n n +-++-+-=---=11)31()31()31()31(232++-+-++-+--- n n =1311)31(11++---n =11)31(43471)31(143---⨯-=+⎥⎦⎤⎢⎣⎡--n n4. 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n ,都有等式:n n n S a a 422=+成立,求{}n a 的通项an. 解:n n n S a a 422=+⇒112142---=+n n n S a a , ∴n n n n n n n a S S a a a a 4)(42211212=-=-+----0)2)((11=--+--n n n n a a a a ,∵01≠+-n n a a ,∴21=--n n a a . 即{}n a 是以2为公差的等差数列,且24211121=⇒=+a a a a . ∴n n a n 2)1(22=-+=(1)通过分解常数,可转化为特殊数列{a n +k }的形式求解。
一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k =q ,即k=1-p q,从而得等比数列{a n +k }。
(2)通过分解系数,可转化为特殊数列}{1--n n a a 的形式求解。
这种方法适用于n n n qa pa a +=++12型的递推式,通过对系数p 的分解,可得等比数列}{1--n n a a :设)(112n n n n ka a h ka a -=-+++,比较系数得q hk p k h =-=+,,可解得k h ,。
3、构造法构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,联想出一种适当的辅助模型,进行命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式. (1)构造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.(2)构造差式与和式解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式. (3)构造商式与积式构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种常用方法。
(4)构造对数式或倒数式有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.。