数列通项公式常用求法及构造法

数列通项公式常用求法及构造法
数列通项公式常用求法及构造法

数列通项公式的常用求法

构造法求数列通项公式

一、构造等差数列求数列通项公式

运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。

例1 在数列{}n a 中,1a =1

2

,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.

解析:由31

3n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,

=-+n n a a 11

1

31

设b n =n a 1

,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,

根据等差数列的通项公式得b n =2+31(n-1)=31n +35

∴数列通项公式为a n =53

+n

例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1

2

22-n n S S (n ≥2),

求S n 与a n 。

解析:当n ≥2时,a n =S n -S n-1 代入a n =12

22-n n S S 得,S n -S n-1=12

22-n n S S ,变形整理得S n -S n-1= S n S n-1?两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列

∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={2

11

3

8422

≥=+--n n n n

二、构造等比数列求数列通项公式

运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。

例3在数列{a n }中,a 1=2,a n =a n-12(n ≥2),求数列{a n }通项公式。

解析:∵ a 1=2,a n =a n-12(n ≥2)>0,两边同时取对数得,lg a n =2lg a n-1

∴1

lg lg -n n

a a =2, 根据等比数列的定义知,数列{lg a n }是首相为lg2,公比为2的等比数列,根据等比数列的通项公式得lg a n =2n-1

lg2=1

22lg -n

∴数列通项公式为a n =1

22

-n

评析:本例通过两边取对数,变形成1log 2log -=n n a a 形式,构造等比数列

{}log n a ,先求出n a log 的通项公式,从而求出n a 的通项公式。

例4在数列{a n }中,a 1=1,a n+1=4a n +3n+1,求数列{a n }通项公式。 解析:设a n+1+A (n+1)+B=4(a n +An+B ),(A 、B 为待定系数),展开得a n+1=4a n +3An+3B-A ,与已知比较系数得{

1

333=-=A B A ∴{

3

2

1

==B A ∴a n+1+(n+1)+32=4(a n +n+32

),根据等比数列的定义知, 数列{a n +n+32}是首项为38,公比为q=3的等比数列,∴a n +n+32=

3

8

×

3n-1

∴数列通项公式为a n =

3

8×3n-1-n-32

例5 在数列{a n }中,a 1=1 ,a n+1a n =4n ,求数列{a n }通项公式。

解析:∵a n+1a n =4n ∴a n a n-1=4 n-1 两式相除得1

1

-+n n a a =4 , ∴a 1,a 3,a 5……与a 2,a 4 ,a 6 ……是首相分别为a 1,a 2 ,公比都是4的等比数列,

又∵a 1=1,a n+1a n =4n ,∴a 2=4 ∴a n ={

n

n n n 2

214

4

-

三、等差等比混合构造法

数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以

,1

1

-n n a a 先求出

.,1

n n

a a 再求得 例6.设数列}{n a 满足,21=a ),N (3

1∈+=

+n a a a n n

n 求.n a 解:原条件变形为.311n n n n a a a a =?+?++两边同乘以

,1

1

+?n n a a 得

1

1131+=?

+n n a a . ∵1132

1

1,211)2113-+=+∴+=+n n n n a a a (

∴.1

322

1

-?=

-n n a 四、辅助数列法

有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。

例7.在数列{}n a 中,11=a ,22=a ,n n n a a a 3

1

3212+=++,求n a 。

解析:在n n n a a a 313212+=++两边减去1+n a ,得)(3

1

112n n n n a a a a --=-+++

∴ {}n n a a -+1是以112=-a a 为首项,以3

1

-为公比的等比数列,

∴11)3

1

(-+-=-n n n a a ,由累加法得

n a =112211)()()(a a a a a a a n n n n +-+???+-+----

=+--2)31(n +--3

)3

1(n …11)31(++-=

3

11)31

(11

+---n =1])31(1[431+---n =

1)3

1(4347---n

练习

1、在数列{a n }中,a 1=1,a n+1=3a n +2n (n ∈N *),求数列{a n }通项公式。 解:由a n+1=3a n +2n (n ∈N *)得,a n+1+2n+1=3(a n +2n )(n ∈N *),

设b n = a n +2n 则b n+1=3b n ,∴n

n b b 1+=3,根据等比数列的定义知, 数列{b n }是首相b 1=3,公比为q=3的等比数列, 根据等比数列的通项公式得b n =3n ,即a n +2n =3n ,

由逐差法可得112211)()()(a a a a a a a a n n n n n +-++-+-=---

=11)31

()31()31()31(232++-+-++-+--- n n

=13

11)31(11

++---n =11)31(43471)31(143---?-=+??????--n n

6. 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n ,都有等式:

n n n S a a 422

=+成立,求{}n a 的通项an.

解:n n n

S a a 422

=+?112142---=+n n n S a a , ∴n n n n n n n a S S a a a a 4)(42211212=-=-+---- 0)2)((11=--+--n n n n a a a a ,∵01≠+-n n a a ,∴21=--n n a a . 即{}n a 是以2为公差

的等差数列,且24211121=?=+a a a a . ∴n n a n 2)1(22=-+=

7. 设{}n a 是首项为1的正项数列,且01212=-----n n n n na na a a ,

(n ∈N*),求数列的通项公式an.

解:由题设得0))((11=--+--n a a a a n n n n . ∵0>n a ,01>-n a ,∴01>+-n n a a . ∴n a a n n =--1

2

)

1(321)()()(123121+=

++++=-+-+-+=-n n n a a a a a a a a n n n 8. 数列{}n a 中,2

1

1=

a ,前n 项的和n n a n S 2=,求1+n a . 解:1221221)1()1()1(----=-?--=-=n n n n n n n a n a n a n a n S S a

11

1+-=?-n n a a n n ,

∴112211a a a a a a a a n n n n n ??=--- )

1(1

2131211+=?-?+-=n n n n n n

∴)

2)(1(1

1++=+n n a n

9.设正项数列{}n a 满足11=a ,2

12-=n n a a (n ≥2).求数列{}n a 的通项公式.

解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n a n b , 则12-=n n b b

{}n b 是以2为公比的等比数列,11log 121=+=b .

11221--=?=n n n b ,1221log -=+n a n ,12

log 12-=-n a n

, ∴1

21

2--=n n a

总结

而运用待定系数法变换递推式中的常数就是一种重要的转化方法。递推式一般为:()n f pa a n n +=+1;n n n q pa a +=+1

(1)通过分解常数,可转化为特殊数列{a n +k }的形式求解。一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k =q ,即k=1

-p q

,从而得等比数列{a n +k }。

(2)通过分解系数,可转化为特殊数列}{1--n n a a 的形式求解。这种方法适用于

n n n qa pa a +=++12型的递推式,通过对系数p 的分解,可得等比数列}{1--n n a a :

设)(112n n n n ka a h ka a -=-+++,比较系数得q hk p k h =-=+,,可解得k h ,。 3、构造法

构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,联想出一种适当的辅助模型,进行命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式.

(1)构造等差数列或等比数列

由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法. (2)构造差式与和式

解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式. (3)构造商式与积式

构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简 (4)构造对数式或倒数式

有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.

补充一般方法:

一、定义法

直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.

例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,

2

5

5a S =.求数列}a {n 的通项公式

解:设数列}a {n 公差为)0d (d >

∵931a ,a ,a 成等比数列,∴912

3a a a =,

即)d 8a (a )d 2a (1121+=+,得d a d 12

= ∵0d ≠,∴d a 1=……………………① ∵2

55S a =

∴211)d 4a (d 24

5a 5+=??+

…………②

由①②得:

53a 1=,53d =

n

5353)1n (53a n =?-+= 二、累加法

求形如a n -a n-1=f(n)(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。

例2.已知数列{a n

}中,a 1

=1,对任意自然数n 都有11

(1)n n a a n n -=+

+,求n a .

解:由已知得

11

(1)n n a a n n --=

+, 121

(1)n n a a n n ---=

-,

……,

321

34a a -=

?, 211

23a a -=

?,

以上式子累加,利用 111

(1)1n n n n =-

++得

n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++?---+=1121n -+,

31

21n a n ∴=

-

+

三、累乘法

对形如1

()n n a f n a +=的数列的通项,可用累乘法,即令n=2,3,…n —1得到

n —1个式子累乘求得通项。

例3.已知数列{}n a 中,311

=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-=,求通项公式n a .

解:由n n a n n S )12(-=得11(1)(23)n n S n n a --=--

两式相减得:1(21)(23),n n n a n a -+=-,

12321n n a n a n --∴=

+,

1221251

,,215n n a a n a n a ---∴

==-

将上面n —1个等式相乘得:

1(23)(25)(27)31(21)(21)(23)75n a n n n a n n n ---?=+--?3(21)(21)n n =

+-

1

.

(21(21)n a n n ∴=+-

四、公式法

若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式??

?≥-==-211n S S n S a n n n n 求解。

例4.已知数列{}n a 的前n 项和n S 满足

1,)1(2≥-+=n a S n

n n .求数列{}n a 的通项公式;

解:由.1,121111=-==a a S a 得

当2≥n 时,有

,)1(2)(211n

n n n n n a a S S a -?+-=-=-- 1122(1),n n n a a --∴=+?- ,

)1(22221----?+=n n n a a

……,

.2212-=a a

11221122(1)2(1)2(1)n n n n n a a ----∴=+?-+?-++?-

].)1(2[3

2

3

])2(1[2)

1(2

)]2()2()2[()1(21211

211--------+=----=-++-+--+=n n n n

n n n n n

经验证1a 1=也满足上式,所以212

[2(1)]

3n n n a --=+-

点评:利用公式

??

?≥-==-21

1n S S n S a n n n n 求解时,要注意对n 分类讨论,但若能合写时一定要合并. 五、“归纳—猜想—证明”法

直接求解或变形都比较困难时,先求出数列的前面几项,猜测出通项,然后用数学归纳法证明的方法就是“归纳—猜想—证明”法.

例5.若数列{}n a 满足:

,232,11

11-+?+==n n n a a a 计算a 2

,a 3

,a 4

的值,由此归纳出a n 的公式,并证明你的结论.

解:∵a 2=2 a 1+3×2°=2×1+3×2°,

a 3=2(2×1+3×2°)+3×21=22×1+2×3×21, a 4=2(22×1+2×3×21)+3×22=23×1+3×3×22; 猜想a n =2n -1+(n -1)×3×2n -2=2n -2(3n -1); 用数学归纳法证明:

1°当n=1时,a 1=2-1×=1,结论正确; 2°假设n=k 时,a k =2k -2(3k -1)正确, ∴当n=k+1时,

111123)13(2232---+?+-=?+=k k k k k k a a

=

)23(21

+-k k ],1)1(3[21)1(-+=-+k k 结论正确; 由1°、2°知对n ∈N*有

).13(22

-=-n a n n 点评:利用“归纳—猜想—证明”法时要小心猜测,切莫猜错,否则前功尽

弃;用数学归纳法证明时要注意格式完整,一定要使用归纳假设.

求数列通项公式的常用方法(有答案)

求数列通项公式的常用方法 一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之 一。 2.解题步骤:若1()n n a a f n +-=(2)n ≥, 则 21321(1) (2) () n n a a f a a f a a f n +-=-=-= 两边分别相加得 111 ()n n k a a f n +=-= ∑ 例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++ +?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2 n a n =。 练习. 已知数列 } {n a 满足31=a , ) 2()1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式. 答案:裂项求和 n a n 1 2- = 评注:已知a a =1,) (1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函

数、指数函数、分式函数,求通项 n a . ①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和; ③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。 二、累乘法 1. 适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之 二。 2.解题步骤:若 1()n n a f n a +=,则31212(1)(2)()n n a a a f f f n a a a +===,,, 两边分别相乘得,1 11 1()n n k a a f k a +==?∏ 例2 已知数列{}n a 满足112(1)53n n n a n a a +=+?=,,求数列{}n a 的通项公式。 解:因为112(1)53n n n a n a a +=+?=,,所以0n a ≠,则 1 2(1)5n n n a n a +=+,故1 32 112 21 12211(1)(2)21 (1)1 2 [2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53 32 5 ! n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--= ??? ??=-+-+??+?+??=-?????=??? 所以数列{}n a 的通项公式为(1)1 2 325 !.n n n n a n --=??? 练习. 已知 1 ,111->-+=+a n na a n n ,求数列{an}的通项公式 答案: =n a ) 1()!1(1+?-a n -1.

高中数学必修5 用构造法求数列的通项公式

用构造法求数列的通项公式 在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。下面给出几种我们常见的构造新数列的方法: 一.利用倒数关系构造数列。 例如:}{n a 数列中,若),(41 1, 21 1N n a a a n n ∈+= =+求a n n n n n b b a b == +1,1 则设+4, 即n n b b -+1=4, n b {∴}是等差数列。 可以通过等差数列的通项公式求出n b ,然再求后数列{ a n }的通项。 练习:1)数列{ a n }中,a n ≠0,且满足),(,311 ,2 111N n a a a n n ∈+==+求a n 2)数列{ a n }中,,2 2,111+= =+n n n a a a a 求a n 通项公式。 3)数列{ a n }中,),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-?+≠=--且求a n . 二.构造形如2 n n a b =的数列。 例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52 2 11∈-==+ 解:设4,4,112 -=--==++n n n n n n b b b b a b 即则 ) ,71(,429429429)4()1(25254}{2 2 11N n n n a n a n n b a b b n n n n ∈≤≤-=∴-=-=-?-+=∴==-即,是等差数列,公差是数列 练习:已知正数数列{ a n }中,),2(2,211N n n a a a n n ∈≥==-, 求数列{ a n }的通项公式。 三.构造形如n n a b lg =的数列。 例:正数数列{ a n }中,若a 1=10,且),,2(,lg 2 1 lg 1N n n a a n n ∈≥=-求a n . 解:由题意得: n n n n a b a a lg 2 1 lg lg 1=∴=-可设,, 即 ,2 1 1=-n n b b 110lg 2 1 1==∴b b n ,是等比数列,公比为 )(,)2 1 ()21(111N n b n n n ∈=?=∴--. 即1)21 (1 10,)2 1(lg -=∴=-n n n n a a 练习:(选自2002年高考上海卷) 数列{ a n }中,若a 1=3,2 1n n a a =+,n 是正整数,求数列{ a n }的通项公式。 四.构造形如m a b n n +=的数列。 例:数列{ a n }中,若a 1=6,a n+1=2a n +1, 求数列{ a n }的通项公式。 解:a n+1+1=2a n +2, 即a n+1+1=2(a n +1) 设 b n = a n +1, 则b n = 2 b n-1 则数列{ b n }是等比数列,公比是2,首项b 1= a 1+1=7, 11271,27--?=+?=∴n n n n a b 即 1271-?=∴-n n a ,)(N n ∈ 构造此种数列,往往它的递推公式形如: 的形式和2)1(,1+=+≠+?=+n a S c d a c a n n n n 。 如:a n+1=c a n +d,设可化成a n+1+x=c(a n +x), a n+1=c a n +(c-1)x 用待定系数法得: (c-1)x =d

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

构造数列总结

构造数列 林森 本文主要淡淡构造法在高中数列问题的应用。 一、型如 ( 为常数且 , )的数列,其本身并不是等 差或等比数列,但经过适当的变形后,即可构造出一个新数列,利用这个数列可求其通项公式。 1. (为常数),可构造等比数列求解. 例1 已知数列满足,(),求通项. 解 由,得,又,所以数列 是首项为,公比为的等比数列,∴. 注:一般地,递推关系式 (p 、q 为常数,且p ≠0,p ≠1)可等价 地改写成 ,则{}为等比数列,从而可求. 2. 为等比数列,可构造等差数列、等比数列求解。如 (为常 数) ,两边同除以,得,令,则可转化为的 形式求解. 例2 (1)已知数列{a n }中,, ,求通项. (2)已知数列 满足 , ,求通项 . 解 (1)由条件,得,令,则,即 ,又,,∴数列为等比数列,故有

,即,∴. (2)由条件,得,即,故数列是以为 首项,以为公差的等差数列,∴,故.3.为等差数列,如型递推式,可构造等比数列求解. 例3已知数列满足,(),求 . 解令,则,∴,代入已知条件,得,即, 令,,解得=-4,=6,所以,且,∴是以3为首项、以为公比的等比数列,故,故.注此例通过引入一些尚待确定的系数,转化命题结构,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 4.为非等差、非等比数列,可构造等差、等比数列求解. 法一、构造等差数列求解: 例4在数列中,(1)若,其中 ,求数列的通项公式;(2)若,求通项. 解(1)由条件可得,∴数列是首 项为0,公差为1的等差数列,故,∴. (2)由条件可得:,∴数列是首项为

,公差为2的等差数列,∴. 法二、构造等比数列求解: 例5已知数列满足,,求数列的通项公式.解设,将已知条件代入此式,整理后得 ,令,解得,∴有,又, 且,故数列是以为首 项,以3为公比的等比数列,∴,故. 二、形如的复合数列,可先构造等差数列或等比数列,再用叠加法、叠乘法、迭代法等方法求解. 例6在数列中,,,,求. 解由条件可得,∴数列是以为首 项,以为公比的等比数列,∴, 故==… === . 例7已知数列满足,,(),求. 解由已知可得:,又,所以数 列是首项为、公比为的等比数列,∴,即

数列之 求通项公式之 构造新数列之 其他方法

数列之 求通项公式之 构造新数列之 其他方法 1.已知数列{}n a 满足n n n a a n n a a 求,1 ,3211+==+ 2.设{a n }是首项为1的正项数列,且(n +1)a n +12-na n 2+a n +1a n =0(n ∈N *),则它的通项公式a n =_______________ 4.()n f pa a n n +=+1 ())(b kn n f +=。 解法(待定系数法):只需把原递推公式转化为:)1(1+++n g a n =p [)(n g a n +],其中s tn n g +=)(,再构造等比数列)}({n g a n +求解。 4.已知数列{}n a 中,11=a ,1231-+=+n a a n n ,求n a . 5.n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 解法:一般地,要先在原递推公式两边同除以1+n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 11+=+再待定系数法解决。 5.在数列{}n a 中,11a =,122n n n a a +=+,求n a 。 6.已知数列{}n a 满足321=a ,n n a n n a 1 1+=+,求n a 。 7.已知数列{a n }满足a 1=1,且1n n a a +=1n n +,则a 2012=() A.2010 B.2011 C.2012 D.2013 8.已知各项均不为零的数列{}n a ,定义向量()1,+=n n n a a c ,()1,+=n n d n ,n ∈*N . 下列命题中真命题是( ) A .若n ?∈*N 总有n n d c ⊥成立,则数列{}n a 是等差数列 B .若n ?∈*N 总有n n d c ⊥成立,则数列{}n a 是等比数列 C .若n ?∈*N 总有n n d c //成立,则数列{}n a 是等差数列 D .若n ?∈*N 总有n n d c //成立,则数列{}n a 是等比数列 答案 1.解:由条件知,1 1+=+n n a a n n 分别令n=1,2,3, ……(n-1), 代入上式得(n-1) 个等式累乘之,即 n a a n n a a a a a a a a n n n 1143322111342312=?-??????????=????????- 又∵,321=a ∴n a n 32= 2.n 1

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

构造法求数列通项公式

构造法求数列通项公式 求数列通项公式就是高考考察的重点与热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为 (1)()f n f n +-=A(其中A 为常数)形式,根据等差数列的定义知)(n f 就是等差数列,根据等 差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 12 ,1n a +=33n n a a +(n N + ∈),求数列{}n a 通项公式、 解析:由a n+1=33+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,= -+n n a a 11 13 1 , 设b n =n a 1 ,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }就是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为 A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求出n a 的通项公式。 例2 在数列{a n }中,S n 就是其前n 项与,且S n ≠0,a 1=1,a n =12 22-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =1 2 22-n n S S 得,S n -S n-1= 1 222-n n S S ,变形整理得S n -S n-1= S n S n-1两 边除以S n S n-1得,n S 1-11-n S =2,∴{ n S 1}就是首相为1,公差为2的等差数列 ∴ n S 1=1+2(n-1)=2n-1, ∴ S n = 121 -n (n ≥2),n=1 也适合,∴S n = 1 21-n (n ≥1) 当n ≥2时,a n =S n -S n-1= 1 21-n -321-n =- 3 8422+-n n ,n=1不满足此式, ∴a n = { 2 11 3 8422 ≥=+--n n n n 评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

求数列通项公式的十种方法

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 1 1==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解 : 22(1) 4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--… …2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等 比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.(2006年全国卷I )设数列{}n a 的前n 项的和

求数列通项公式常用的八种方法

求数列通项公式常用八种方法 一、 公式法: 已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解. 二、前n 项和法: 已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步) 三、n s 与n a 的关系式法: 已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步) 四、累加法: 当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时, 就可以用这种方法. 五、累乘法:它与累加法类似 ,当数列{}n a 中有()1 n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法. 六、构造法: ㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面 形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的 方法:------+常数P

㈡、取倒数法:这种方法适用于1 1c --=+n n n Aa a Ba ()2,n n N * ≥∈(,,k m p 均为常数 0m ≠) ,两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子. ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a 分析:由()2113,2n n a a a n -==≥知0n a > ∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a a a --== 即1 lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列 故1 12lg 2lg3lg3n n n a --== ∴123n n a -= 七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。 八、形如21a n n n pa qa ++=+型,可化为211a ()()n n n n q xa p x a a p x ++++=+++ ,令x=q p x + ,求x 的值来解决。 除了以上八种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这8种方法是经常用的,将其总结到一块,以便于学生记忆和掌握。

(精选)构造法待定系数法求一类递推数列通项公式

构造法、待定系数法求一类递推数列通项公式 陕西省周至中学 尚向阳 邮编710400 摘要:求数学通项公式是学习数列时的一个难点,在教学过程中,笔者发现求解递推数列通项公式是学生学习的难点,这也是高考考查的重点、热点问题,如何来突破这个难点,很好的解决这个问题,其核心思想是构造新的数列,转化为学生熟悉的等差数列或等比数列来解决,下面笔者重点介绍用构造法和待定系数法来求下列六类递推数列模型通项公式的解决策略。 关键字:数列、数列通项、构造法、待定系数法、叠加法 由等差数列联想推广到的递推数列模型: 【模型一】b ka a n n +=+1 (0≠kb )。 (1) 当1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2) 当1≠k 时,采用待定系数法,构造新的数列---等比数列 }1{-+k b a n 解:由已知1≠k 时,可设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-=k b m ∴构造 新的数列 }1{-+k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n 例1:已知}{n a 满足31=a ,121+=+n n a a 求通项公式。 解:设)(21m a m a n n +=++ m a a n n +=+21 ∴ 1=m ∴ }1{1++n a 是以4为首项,2为公比为等比数列 ∴ 1241-?=+n n a ∴ 121-=+n n a 【模型二】叠加法(或迭代法)求解)(1n f a a n n =-+ 由已知)(1n f a a n n =-+,若)(n f 可求和,则可用叠加(或迭代法)消项的方法求解。 例2:已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5; (II )求{ a n }的通项公式.

常见数列通项公式的求法

常见数列通项公式的求法-中学数学论文 常见数列通项公式的求法 邹后林 (会昌中学,江西赣州342600) 摘要:数列的通项求法灵活多样,需要充分利用化归与转化思想。非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。现举数例。 关键词:数列;通项公式;求法 中图分类号:G633文献标识码:A文章编号:1005-6351(2013)-12-0031-01 例1:已知数列{an}的前n项和为Sn,a1=1,an+1=2Sn+1 (n∈N*),等差数列{bn}中,bn0 (n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列。 (1)求数列{an}、{bn}的通项公式; (2)求数列{an·bn}的前n项和Tn。 解:(1)∵a1=1,an+1=2Sn+1 (n∈N*), ∴an=2Sn-1+1 (n∈N*,n1), ∴an+1-an=2(Sn-Sn-1), 即an+1-an=2an,∴an+1=3an (n∈N*,n1)。 而a2=2a1+1=3,∴a2=3a1。 ∴数列{an}是以1为首项,3为公比的等比数列,∴an=3n-1 (n∈N*)。∴a1=1,a2=3,a3=9,

在等差数列{bn}中,∵b1+b2+b3=15, ∴b2=5。 又∵a1+b1、a2+b2、a3+b3成等比数列,设等差数列{bn}的公差为d,则有(a1+b1)(a3+b3)=(a2+b2)2。 ∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,∵bn0 (n∈N*),∴舍去d =-10,取d=2,∴b1=3,∴bn=2n+1 (n∈N*)。 (2)由(1)知Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①∴3Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)3n,② ∴①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n=3+2(3+32+33+…+3n-1)-(2n+1)3n

构造法求数列通项公式(完整资料).doc

【最新整理,下载后即可编辑】 构造法求数列通项公式 求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。 一、构造等差数列求数列通项公式 运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。 例1 在数列{}n a 中,1a = 1 2,1n a +=33n n a a +(n N +∈),求数列{}n a 通 项公式. 解析:由a n+1= 3 3+n n a a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131, 设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列, 根据等差数列的通项公式得b n =2+31(n-1)=31 n +35 ∴数列通项公式为a n =53 +n 评析:本例通过变形,将递推公式变形成为A a a n n =- +1 11 形式,应用等差数列的通项公式,先求出 n a 1 的通项公式,从而求 出n a 的通项公式。 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1 2 22-n n S S (n ≥2),求S n 与a n 。 解析:当n ≥2时,a n =S n -S n-1 代入a n =1 2 22-n n S S 得,S n -S n-1=1 2 22-n n S S , 变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-1 1-n S =2,∴{n S 1}是首相为1,公差为2的等差数列 ∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

常见递推数列通项公式的求法典型例题及习题

1 【典型例题】 [例 1] a n 1 (1)k (2) k 比较系数: {a n a n [例 2] a n 1 (1)k 例: 已知 解: a n a n a 3 a n 常见递推数列通项公式的求法典型例题及习题 ka n b 型。 1 时,a n 1 1时,设a n km m ka n 1 时, a n } 是等比数列, (a i f (n) 型。 a n 1 a n {a n }满足a i a n a n a n a 2 对这(n b {a n } 是等差数列, a n b n 佝 b) k(a n m) a n 1 ka n km 公比为 1) k ”1 f(n) k ,首项为 a n 1 a n a i a n (a 1 k n1 f (n )可求 和, 则可用累加消项的方 法。 n (n 1)求{a n }的通项公 式。 1 n(n 1 ) a 2 a n 1 a n a 1 1 个式子求和得: a n a 1 a n 2 - n

(2) k1时, 当f(n) an b则可设a n A(n 1) B k(a n An B) a n 1 ka n (k 1)A n (k 1)B A (k (k 1)A 1)B 解得: a 2 (k 1) ,? {a n An B}是 以 a1 B为首项, k为公比的等比数列 a n An (a1 B) k n1 a n (a1 B) k n1An B将A、B代入即可 (3) f(n) 0, 1) 等式两边同时除以 a n 1 1 c n 1 得q a n n q C n 令C n 1 {C n}可归为a n 1 ka n b型 [例3] a n f(n) a n型。 (1)f(n)是常数时, 可归为等比数 列。 f(n)可求积,可用累积约项的方法化简求通项。 例:已知: a1 2n 1 a n 1 2n 1 2)求数列{a n}的通项。 解: a n a n a n 1 a n 1 a n 2 a n a 1 a n 2 a n 3 k m a n 1 m a n 1 型。a3 a2 a2 a1 2n 1 2n 2n 1 2n 3 2n 5 5 3 3 2n 1 2n 3 7 5 2n 1 [例4]

数列构造法

构造法求数列的通项公式 在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法。这里我向大家介绍一种解题方法——构造等比数列或等差数列求通项公式。 构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉. 供参考。 1、构造等差数列或等比数列 由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法. ,对于任意正整数n,都有等式:例1设各项均为正数的数列的前n项和为S n 成立,求的通项a n. 解:,∴ ,∵,∴. 即是以2为公差的等差数列,且. ∴ 例2数列中前n项的和,求数列的通项公式. 解:∵ 当n≥2时, 令,则,且 是以为公比的等比数列, ∴. 2、构造差式与和式 解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式. 例3设是首项为1的正项数列,且,(n∈N*),求数列的通项公式a n. 解:由题设得. ∵,,∴. ∴

. 例4数列中,,且,(n∈N*),求通项公式a n. 解:∵ ∴(n∈N*) 3、构造商式与积式 构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法. 例5数列中,,前n项的和,求. 解: , ∴ ∴ 4、构造对数式或倒数式 有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决. 例6设正项数列满足,(n≥2).求数列的通项公式. 解:两边取对数得:,,设,则 是以2为公比的等比数列, ,,, ∴ 例7已知数列中,,n≥2时,求通项公式. 解:∵,两边取倒数得. 可化为等差数列关系式. ∴

相关文档
最新文档