(完整版)用构造法求数列的通项公式汇总

合集下载

构造法求数列通项公式

构造法求数列通项公式
——构造法(待定系数法)
作者:刘高峰 2016.10 北京师范大学东莞石竹附属学校
复习回顾
一、观察法:如数列 二、公式法:
1, 1 , 1 , 1 , 1 , 3579
1、等差数列:an a1 (n 1)d
2、等比数列:an a1qn1
3、an Sn Sn1 (n 2) ——(作差法)
巩固练习
练习2:已知数列{an }中,a1

3 2
,2an

an1


6n

3,
求an .
课后思考
1、形如 an1 pan an2 bn c 如何求通项公式? 已知数列{an} 满足:a1 1, an1 2an 3n2 4n 5, 求an .
2、形如 an1 pan qn 如何求通项公式? 已知数列{an}满足:a1 1, an1 3an 2n , 求 an .
课后作业
1、已知数列an中,a1 1 ,an1 2an 3,求 an .
2、已知数列an 中,a1 1, an 4an1 n 1, (n 2),
求 an .
再见!
巩固练习
练习1:已知数列{an }中,a1

2
,an1

1 2
an

1 2

求数列的通项an .
知识延伸
例2、已知数列{an} 中,a1 , 1 an1 3an 2n , 求 an .
规律总结
an1 pan kn b
an1 x(n 1) y p(an xn y)
问题探究
例1、已知数列{an}满足:a1 1 ,且an1 2an 1 , (1)证明:数列{an 1} 是等比数列; (2)求 an .

(完整版)数列通项公式常用求法及构造法

(完整版)数列通项公式常用求法及构造法

数列通项公式的常用求法构造法求数列通项公式一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。

例1 在数列{}n a 中,1a =12,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.解析:由313n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。

解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={21138422≥=+--n n n n二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

构造法求数列通项公式系列图表

构造法求数列通项公式系列图表

专题:构造法求数列通项公式系列图表已知数列{a n }的首项a 1及如下的递推公式,求此数列的通项公式。

方法:①常数列;②等差数列公式法;③等比数列公式法;④叠加法;⑤叠乘法;⑥构造法(构造等比数列);⑦构造法(待定系数);⑧迭代法(递推法);⑨迭代法(更多由特殊情 注:⑦中f (n )常见的是一次函数(待定系数构造等比)、指数函数(两边同除构造等比)一、公式法:1、已知数列{a n }满足:a 1=2,a n +1=a n +3,求此数列的通项公式a n .2、已知数列{a n }满足:a 1=2,a n +1=3a n ,求此数列的通项公式a n .二、叠加法、叠乘法:3、已知数列{a n }满足:a 1=2,a n +1=a n +n +1,求此数列的通项公式a n .4、已知数列{a n }满足:a 1=2,a n +1= n +1n a n ,求此数列的通项公式a n .三、构造法(待定系数法):5、已知数列{a n }满足:a 1=2,a n +1=2a n +3,求此数列的通项公式a n .6、已知数列{a n }满足:a 1=2,a n +1=3a n +3n ,求此数列的通项公式a n .7、已知数列{a n }满足:a 1=2,a n +1=2a n +3n ,求此数列的通项公式a n .8、已知数列{a n }满足:a 1=2,a n +1=2a n +n +1,求此数列的通项公式a n .四、取倒数法:⑨9、已知数列{a n }满足:a 1=2,a n +1= 3a n 3+a n,求此数列的通项公式a n . 10、已知数列{a n }满足:a 1=2,a n +1= 3a n 2+a n,求此数列的通项公式a n . 五、方程(或方程组)法:11、已知数列{a n }满足:a n ≥0,a n = 3na n+1 ,求此数列的通项公式a n . 12、已知正项数列{a n }中,a 1=2, (n+1)a n +12+a n a n -1-na n 2=0, 求此数列的通项公式a n .六、a n 与S n 的关系法:a n = ⎩⎨⎧S 1 (n=1),S n -S n-1 (n ≥2),13、已知S n 为数列{a n }的前n 项和,且S n =-n 2+3n ,求此数列的通项公式a n .14、已知S n 为数列{a n }的前n 项和,且S n =-n 2+3n +4,求此数列的通项公式a n .15、已知S n 为数列{a n }的前n 项和,且S n =2·3n -2求此数列的通项公式a n .16、已知S n 为数列{a n }的前n 项和,且a 1=2,a n +1 =2S n +n ,求此数列的通项公式a n .七、能力提升:17、(必修五课本第69页第6题:已知数列{a n }中,a 1=5,a 2=2,a n =2a n -1+3a n -2 ,(n ≥3),对于这个数列的通项公式作一研究,能否写出它的通项公式?。

构造法求数列通项

构造法求数列通项

构造法求数列通项
构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,联想出一种适当的辅助模型,进行命题转换,产生新的解题方法,这种思维方法的特点就是“构造”。

若已知条件给的是数列的递推公式要求出该数列的通项公式。

运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f(n+1)=Af(n)(其中A为非零常数)形式,根据等比数列的定义知f(n)是等比数列,根据等比数列的通项公式,先求出f(n)的通项公式,再根据f(n)与an,从而求出an的通项公式。

(完整版)数列通项公式及其求和公式

(完整版)数列通项公式及其求和公式

一、数列通项公式的求法(1)已知数列的前n 项和n S ,求通项n a ; (2)数学归纳法:先猜后证;(3)叠加法(迭加法):112211()()()n n n n n a a a a a a a a ---=-+-++-+L ;叠乘法(迭乘法):1223322111a a a a a a a a a a a a n n n n n n n ⋅⋅⋅=-----ΛΛ. 【叠加法主要应用于数列{}n a 满足1()n n a a f n +=+,其中()f n 是等差数列或等比数列的条件下,可把这个式子变成1()n n a a f n +-=,代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出n a ,从而求出n s 】(4)构造法(待定系数法):形如1n n a ka b -=+、1nn n a ka b -=+(,k b 为常数)的递推数列;【用构造法求数列的通项或前n 项和:所谓构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的通项或前n 项和.】 (5)涉及递推公式的问题,常借助于“迭代法”解决.【根据递推公式求通项公式的常见类型】 ①1+1=,()n n a a a a f n =+型,其中()f n 是可以和数列,用累加法求通项公式,即1思路(叠加法)1(1)n n a a f n --=-,依次类推有:12(2)n n a a f n ---=-、23(3)n n a a f n ---=-、…、21(1)a a f -=,将各式叠加并整理得111()n n i a a f n -=-=∑,即111()n n i a a f n -==+∑例题1:已知11a =,1n n a a n -=+,求n a解:∵1n n a a n -=+ ∴1n n a a n --=,依次类推有:122321122n n n n a a n a a n a a -----=--=--=、、…∴将各式叠加并整理得12n n i a a n =-=∑,121(1)2n nn i i n n a a n n ==+=+==∑∑ 思路(转化法)1(1)n n a pa f n -=+-,递推式两边同时除以np 得11(1)n n n n na a f n p p p ---=+,我们令n n n a b p =,那么问题就可以转化为类型一进行求解了.例题: 已知12a =,1142n n n a a ++=+,求n a解:∵1142n n n a a ++=+ ∴142nn n a a -=+,则111442nn n nn a a --⎛⎫=+ ⎪⎝⎭, ∵令4n n na b =,则112nn n b b -⎛⎫-= ⎪⎝⎭,依此类推有11212n n n b b ---⎛⎫-= ⎪⎝⎭、22312n n n b b ---⎛⎫-= ⎪⎝⎭、…、22112b b ⎛⎫-= ⎪⎝⎭∴各式叠加得1212nnn i b b =⎛⎫-= ⎪⎝⎭∑,即122111*********n n n n n n n n i i i b b ===⎛⎫⎛⎫⎛⎫⎛⎫=+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑ ∴1441422n nnn n n n a b ⎡⎤⎛⎫=⋅=⋅-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦②1+1=,()n n a a a a f n =⋅型,其中()f n 是可以求积数列,用累乘法求通项公式,即1(2)(1)f f a思路(叠乘法):1(1)n n a f n a -=-,依次类推有:12(2)n n a f n a --=-、23(3)n n a f n a --=-、…、21(1)af a =, 将各式叠乘并整理得1(1)(2)(3)na f f f a =⋅⋅⋅…(2)(1)f n f n ⋅-⋅-,即(1)(2)(3)n a f f f =⋅⋅⋅…1(2)(1)f n f n a ⋅-⋅-⋅例题:已知11a =,111n n n a a n --=+,求n a . 解:∵111n n n a a n --=+ ∴111n n a n a n --=+,依次类推有:122n n a n a n ---=、2331n n a n a n ---=-、…、3224a a =、2113a a = ∵11a =∴将各式叠乘并整理得112311n a n n n a n n n ---=⋅⋅⋅+-…2143⋅⋅,即12311n n n n a n n n ---=⋅⋅⋅+- (212)43(1)n n ⋅⋅=+ ③1+1=,n n a a a pa q =+型(其中p q 、是常数),可以采用待定系数法、换元法求通项公式,即1()11n n q q a p a p p +-=---,设1n n qba p=--,则1n n b pb +=.利用②的方法求出n b 进而求出n a 当1p =时,数列{}n a 是等差数列;当0,0p q ≠=时,数列{}n a 是等比数列; 当0p ≠且1,0p q ≠≠时,可以将递推关系转化为111n n q q a p a p p +⎛⎫+=+ ⎪--⎝⎭,则数列1nq a p ⎧⎫+⎨⎬-⎩⎭是以11qa p +-为首项,p 为公比的等比数列.思路(构造法):设()1n n a p a μμ++=+,即()1p q μ-=得1qp μ=-,数列{}n a μ+是以1a μ+为首项、p 为公比的等比数列,则1111n n q q a a p p p -⎛⎫+=+ ⎪--⎝⎭,即1111n nq qa a p p p -⎛⎫=++ ⎪--⎝⎭ 例题:已知数列{}n a 满足123n n a a -=+且11a =,求数列{}n a 的通项公式 解:设()12n n a a μμ++=+,即3μ=∵11a =∴数列{}3n a +是以134a +=为首项、2为公比的等比数列∴113422n n n a -++=⋅=,即123n n a +=-④1+1=,n n n a a a pa q =+型,其中p q 、是常数且0,1q q ≠≠,111n n n n a a p q q q q ++=⋅+,设n n n a b q =,则11n np b b q q+=⋅+思路(构造法):11n n n a pa rq --=+,设11n n n n a a q q μλμ--⎛⎫+=+ ⎪⎝⎭,则()11n n q p q rq λμλ-=⎧⎪⎨-=⎪⎩,从而解得p q r p q λμ⎧=⎪⎪⎨⎪=⎪-⎩那么n na r qp q ⎧⎫+⎨⎬-⎩⎭是以1a r q p q +-为首项,p q 为公比的等比数列 例题:已知11a =,112n n n a a --=-+,求n a 。

构造法求数列通项公式

构造法求数列通项公式

构造法求数列通项公式求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。

一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。

例1 在数列{}n a 中,1a =12,1n a +=33n n a a +(n N +∈),求数列{}n a 通项公式.解析:由a n+1=33+n n a a 得,a n+1a n =3a n+1-3a n =0,两边同除以a n+1a n 得,=-+n n a a11131,设b n =n a 1,则b n+1-b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n评析:本例通过变形,将递推公式变形成为A a a nn =-+111形式,应用等差数列的通项公式,先求出na 1的通项公式,从而求出n a 的通项公式。

例2在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。

解析:当n ≥2时,a n =S n -S n-1代入a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1=S n S n-1两边除以S n S n-1得,nS 1-11-n S =2,∴{nS 1}是首相为1,公差为2的等差数列∴nS 1=1+2(n-1)=2n-1,∴S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1)当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式,∴a n ={21138422≥=+--n n n n评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原数列的通项公式,条件变形是难点。

(完整版)高中数学构造法求数列通

(完整版)高中数学构造法求数列通

构造法求数列通项例题分析型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a n+1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例1、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠, 所以数列{1}n a -是首项为12,公比为12-的等比数列, ∴11111(1)()1()22n n n a a -=---=+-.练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n n a .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nnn n q a p q a q, 令nnna b q =,则可转化为b n+1=pb n +q 的形式求解. 例1、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 na n )+1,令b n =2 n a n , 则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =nn 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a . 答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例1、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--, ∴11(1)n n a b A n B --=---,代入已知条件,得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B+-=,解得A =-4,B=6, 所以112n n b b -=,且46n n b a n =-+,∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462nn a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解.练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n n n-+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A =-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n -+=69912·().(4) f(n)为非等差数列,非等比数列 法一、构造等差数列法例1、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭, ∴数列2nn n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21n n n a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+.练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用构造法求数列的通项公式上海外国语大学嘉定外国语实验学校 徐红洁在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。

但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。

而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。

对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。

下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。

例如:中,若求a n }{n a 数列),(411,211N n a a a nn ∈+==++4,n n nn b b a b ==+1,1则设即=4,n n b b -+1}是等差数列。

n b {∴可以通过等差数列的通项公式求出,然再求后数列{ a n }的通项。

n b 练习:1)数列{ a n }中,a n ≠0,且满足求a n),(,311,2111N n a a a nn ∈+==+2)数列{ a n }中,求a n 通项公式。

,22,111+==+n nn a a a a 3)数列{ a n }中,求a n .),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-⋅+≠=--且二.构造形如的数列。

2n n a b =例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52211∈-==+ 解:设4,4,112-=--==++n n n n n n b b b b a b 即则),71(,429429429)4()1(25254}{2211N n n n a na n nb a b b n n n n ∈≤≤-=∴-=-=-⋅-+=∴==-即,是等差数列,公差是数列练习:已知正数数列{ a n }中,,),2(2,211N n n a a a n n ∈≥==-求数列{ a n }的通项公式。

三.构造形如的数列。

n n a b lg =例:正数数列{ a n }中,若a 1=10,且求a n .),,2(,lg 21lg 1N n n a a n n ∈≥=-解:由题意得:,n n n n a b a a lg 21lg lg 1=∴=-可设,即,211=-n n b b110lg 211==∴b b n ,是等比数列,公比为. )(,)21(21(111N n b n n n ∈=⋅=∴--即1)21(110,)21(lg -=∴=-n n n n a a 练习:(选自2002年高考上海卷)数列{ a n }中,若a 1=3,,n 是正整数,求数列{ a n }的通项公式。

21n n a a =+四.构造形如的数列。

m a b n n +=例:数列{ a n }中,若a 1=6,a n+1=2a n +1, 求数列{ a n }的通项公式。

解:a n+1+1=2a n +2, 即a n+1+1=2(a n +1)设 b n = a n +1, 则b n = 2 b n-1则数列{ b n }是等比数列,公比是2,首项b 1= a 1+1=7,11271,27--⋅=+⋅=∴n n n n a b 即,1271-⋅=∴-n n a )(N n ∈构造此种数列,往往它的递推公式形如:。

的形式和2)1(,1+=+≠+⋅=+n a S c d a c a n n n n 如:a n+1=c a n +d,设可化成a n+1+x=c(a n +x),a n+1=c a n +(c-1)x用待定系数法得: (c-1)x =d∴ x=.1-c d又如:Sn +a n =n+2, 则 Sn-1+a n-1=n+1,二式相减得:Sn -Sn-1 +a n -a n-1 =1,即a n +a n -a n-1 =1,∴ 2 a n -a n-1=1,a n =a n-1+.2121如上提到b n = a n + d = a n –111-c 练习:1.数列{ a n }满足a n+1=3a n +2, 求a n2.数列{ a n }满足Sn +a n =2n+1,求a n 五.构造形如的数列。

n n n a a b -=+1例:数列{ a n }中,若a 1=1,a 2=3,a n+2 + 4 a n+1 - 5a n =0 (n N),求a n 。

∈解: a n+2 + 4 a n+1 - 5a n =0得: a n+2 - a n+1 = - 5(a n +1 - a n ) 设b n = a n +1 -a n ,则数列{ b n }是等比数列,公比是-5,首项b 1= a 2- a 1=2,∴a n +1 -a n =2•(-5)n-1即a 2 -a 1=2•(-5)a 3 -a 2=2•(-5)2a 4 -a 3=2•(-5)3┄a n -a n -1=2•(-5)n-2以上各式相加得:a n -a 1=2•[(-5)+(-5)2+(-5)3+┄+(-5)n-1]即:a n -a 1=2•)5(1511-----n )(,即,(n 3)5(111---+=∴n n a 3)5(41---=n n a )N ∈当递推公式中,a n +1与a n 的系数相同时,我们可构造b n = a n +1 -a n ,然后用叠加法得:b 1+b 2+b 3+b 4+┄+b n = a n -a 1通过求出数列{b n }前n-1项和的方法,求出数列{ a n }的通项公式。

1)当递推公式中形如:a n+1=a n +an+b ; a n+1=a n +q n (q ≠1) ; a n+1=a n +q n +an+b 等情形时,可以构造b n = a n +1-a n ,得: b n = an+b ; b n = q n ; b n =q n +an+b 。

求出数列前n-1项的和T n-1,T n-1=; b n nn a )1(2)1(-+-T n-1=;qq q n ---1)1(1T n-1=+q q q n ---1)1(1b n nn a )1(2)1(-+-即:a n -a 1=; b n nn a )1(2)1(-+-a n -a 1=;q q q n ---1)1(1 a n -a 1=+b n nn a )1(2)1(-+-q q q n ---1)1(1从而求出a n =a 1+; b n nn a )1(2)1(-+-a n = a 1+;qq q n ---1)1(1a n =a 1++。

b n nn a )1(2)1(-+-q q q n ---1)1(12)当递推公式中形如:a n+1=a n +;a n+1=a n +;a n+1=a n +等情形)1(1+n n )12(121+-n n )(11++n n 可以构造b n = a n +1-a n ,得::b n =;b n =;b n =)1(1+n n )12(121+-n n )(11++n n 即b n =;b n =;b n =111+-n n 121121(21+--n n n n -+1从而求出求出数列前n-1项的和T n-1,T n-1=;T n-1=;T n-1=n 11-1211(21--n 1-n即:a n -a 1=; n11-a n -a 1=;)1211(21--n a n -a 1=1-n 从而求出 a n =a 1+;n 11-a n = a 1+;1211(21--n a n =a 1+1-n 练习:1)数列{ a n }中,若a 1=1,a n+1-a n =2n, 求通项a n.2)数列{ a n }中,若a 1=1,a n+1-a n =2n , 求通项a n.3) 数列{ a n }中,若a 1=2,,求通项a n.n a a n n n -+=+21六.构造形如的形式。

nn n a a b 1+=例:数列{ a n }中,若a 1=1,,求a n.n n na a n =++1)1(解:由得:n n na a n =++1)1(11+=+n na a n n ∴, , ,…2112=a a 3223=a a 4334=a a nn a a n n 11-=-用累乘法把以上各式相乘得:na a n 11=∴。

na n 1=当递推公式形如:;;等形式,n n n a q a =+n n na a n =++1)1(n n a n na )1(1+=+我们可以构造。

nn n a a b 1+=可得:;;.n n q b =1+=n n b n n n b n 1+=然后用叠乘法得:。

11321a ab b b b n n =- 令数列{b n }的前n-1项的积为A n-1,则;;2)1(1--=n n n q A n A n 11=-nA n 11=-从而得到:;;=1a a n 2)1(-n n q =1a a n n 1=1a a n n1 ;;。

1a a n =2)1(-n n qn a a n 11⋅=na a n 11⋅=练习:1)数列{ a n }中,若a 1=2,,求a n.n n n a a 2=+七.构造形如的形式。

n n n ma a b -=+1例:数列{ a n }中,a 1=2,S n =4a n-1+1,求a n.解:S n=4a n-1+1,S n-1=4a n-2+1二式相减:S n-S n-1=4a n-1-4a n-2a n =4a n-1-4a n-2a n -2a n-1=2(a n-1-a n-2)设b n=a n+1-2a n,当递推公式形如S n+1=4a n+2;a n+2=pa n+1+qa n(p+q=1) 等形式时,因a n-2a n+1=2(a n+1-2a n);a n+2-a n+1=(p-1)(a n+1-a n),我们构造b n=a n+1-2a n; b n=a n+1-a n,由等比数列知识得b n=(a2-a1)·2n-1; b n=(a2-a1)·(p-1)n-1从而得到a n+1=2a n+(a2-a1)2n-1;a n+1=a n(a2-a1)(1-q)n-1由类型四求出a n。

总之,对于很多数列,我们都可以由递推公式构造新数列的方法求出他们的通项公式。

当然,在教学中我们应当充分调动学生的积极性,努力培养学生的创造能力,让学生自己去构造,自己去探索,使学生亲尝到成功乐趣,激起他们强烈的求知欲和创造欲。

相关文档
最新文档