数列通项公式的求法(类型总结)

合集下载

数列通项公式的九种求法

数列通项公式的九种求法

1数列通项公式的九种求法各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强 的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

笔者总结出九种求解 数列通项公式的方法,希望能对大家有帮助。

一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法, 类型的题目.2例1 .等差数列{an}是递增数列,前n 项和为S1,且引,*3,a9成等比数列,S 5^*5.求 数列{a n}的通项公式 解:设数列{an}公差为d(d >0)2•/a1,a 3,a 9 成等比数列,••• a 3 =a1a9 ,2 2即 @1 +2d)=印@1 +8d),得 d =a 1d...d H0 a1=d--S s = a](n -1)n ,1a3 -a2 = ---这种方法适应于已知数列5a 1 +5*4d =⑻ +4d)2a1=3 —5 =3 -5 由①②得:3 •••an —5点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再 写出通项。

二、累加法求形如a n -a n 」= f(n) (f(n)为等差或等比数列或其它可求和的数列)的数列通项, …n — 1得到n — 1个式子累加求得通项。

+ (n-1)3 =-n 5可用累加法,即令 n=2, 3,例2.已知数列{a n }中, an _an4解:由已知得a 1=1,对任意自然数 1an = an4 中n 都有n(n+1),求 an .—n(n+1),an ~ an-2 1a 2y,13^4 ,丄+ an_ q _ 2x3+■(n-2)(n —1) (n —1)n n(n+1)31…a=2 n +1 ,点评:累加法是反复利用递推关系得到n —=丄n(n+1) nn +1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n—1项的和,要注意求和的技巧.三、迭代法求形如a n* =q a n +d(其中q,d为常数)的数列通项,可反复利用递推关系迭代求出。

求数列通项公式常用的七种方法

求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a .三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a .注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a .注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

(完整版)求数列的通项公式方法总结

(完整版)求数列的通项公式方法总结

题型四:求数列的通项公式一.公式法:当题中已知数列是等差数列或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。

二.当题中告诉了数列任何前一项和后一项的递推关系即:n a 和a n-1的关系时我们可以根据具体情况采用下列方法1、叠加法:一般地,对于型如)(1n f a a n n +=+类的通项公式,且)()2()1(n f f f +++Λ的和比较好求,我们可以采用此方法来求n a 。

即:11221()()()n n n n n a a a a a a a ---=-+-++-L 1a +(2)n ≥;【例1】已知数列{}n a 满足11211,2n n a a a n n +==++,求数列{}n a 的通项公式。

解:(1)由题知:121111(1)1n n a a n n n n n n +-===-+++ 112211()())n n n n n a a a a a +(a -a a ---∴=-+-++……1111111()()()121122n n n n =-+-++-+---…… 312n=- 2、叠乘法:一般地对于形如“已知a 1,且n1n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。

即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅L (2)n ≥; 【例2】在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式。

解:由(n+1)·1+n a =n ·n a 得11+=+n n a a n n , 1a a n =12a a ·23a a ·34a a …1-n n a a =n n n 11433221=-⋅⋅Λ 所以n a n 1= 3、构造法:当数列前一项和后一项即n a 和a n-1的递推关系较为复杂时,我们往往对原数列的递推关系进行变形,重新构造数列,使其变为我们学过的熟悉的数列(等比数列或等差数列)。

数列通项公式的求解方法总结

数列通项公式的求解方法总结

数列通项公式的求解方法总结求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学。

一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。

累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f(n)可求前n项和).例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。

解:由an+1=an+2n+1得an+1-an=2n+1则an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1=2[(n-1)+(n-2)+…+2+1]+(n-1)+1=2+(n-1)+1=(n-1)(n+1)+1=n2所以数列an的通项公式为an=n2。

例2:在数列{an}中,已知an+1= ,求该数列的通项公式.备注:取倒数之后变成逐差法。

解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).例3.已知数列{an}中a1=,an=·an-1(n?叟2)求数列{an}的通项公式。

解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。

注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

求数列的通项公式的八种方法(强烈推荐)

求数列的通项公式的八种方法(强烈推荐)

怎样由递推关系式求通项公式一、基本型:(1)a n =pa n-1+q (其中pq ≠0 ,p ≠1,p 、q 为常数)型:——运用代数方法变形,转化为基本数列求解.利用待定系数法,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x ⇒a 1+n + x = p(a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p(a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例1. 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.-1练1.已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n ∈ N +,求通项a n .a n = 2 -2n-1 ,n ∈N + 练2.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.21nn a ∴=- 二、可化为基本型的数列通项求法: (一)指数型:a n=ca n-1+f(n)型 1、a 1=2,a n =4a n-1+2n (n ≥2),求a n .2、a 1=-1,a n =2a n-1+4〃3n-1(n ≥2),求a n .3、已知数列{}n a 中,1a =92,113232+-+=n n n a a (n ≥2),求n a .∴ n a =13)21(2+--n n(二)指数(倒数)型 1、a 1=1,2a n -3a n-1=(n ≥2),求a n .2、a 1=,a n+1=a n +()n+1,求a n . (三)可取倒数型:将递推数列1nn n ca a a d+=+(0,0)c d ≠≠,1、(2008陕西卷理22)(本小题满分14分)已知数列{a n }的首项135a =,1321n n n a a a +=+,12n = ,,. (Ⅰ)求{a n }的通项公式; 332nn n a ∴=+2、已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.∴121n a n =-. 3、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . a n =4、 若数列{n a }中,1a =1,n S 是数列{n a }的前n 项之和,且nnn S S S 431+=+(n 1≥),求数列{n a }的通项公式是n a . 131-=n n S ⎪⎩⎪⎨⎧+⋅-⋅-=123833212n n n n a )2()1(≥=n n 三、叠加法:a n=a n-1+f(n)型:1.已知数列{a n }中, 11a =,1n-13n n a a -=+(2)n ≥。

数列求通项公式方法大全

数列求通项公式方法大全

数列求通项公式方法大全数列是由一系列按特定规律排列的数字组成的序列。

求解数列的通项公式是找出数字之间的规律,从而可以用一个公式表示出数列中第N个数字与N的关系。

这样可以方便地计算数列中的任意项,而不需要逐个计算或列出所有的项。

以下是数列求通项公式的方法大全:1. 等差数列的通项公式:等差数列是指数列中相邻两项之间的差值保持恒定的数列。

根据等差数列的性质,可以得到通项公式为:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差,n表示项数。

2. 等比数列的通项公式:等比数列是指数列中相邻两项之间的比值保持恒定的数列。

根据等比数列的性质,可以得到通项公式为:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比,n表示项数。

3. 斐波那契数列的通项公式:斐波那契数列是指数列中每一项都等于前两项之和的数列。

斐波那契数列的通项公式为:an = (phi^n - (-phi)^(-n)) / sqrt(5)其中,phi = (1 + sqrt(5)) / 2,an表示第n项。

4. 幂次数列的通项公式:幂次数列是指数列中每一项都是某个常数的指数函数。

幂次数列的通项公式为:an = a1 * (b^(n - 1))其中,an表示第n项,a1表示首项,b表示底数,n表示项数。

请注意,以上是一些常见的数列类型和其通项公式。

但实际上,还存在其他更复杂的数列类型,可能需要使用其他方法求解通项公式。

另外,在某些特定的数列中,可能无法找到通项公式,只能通过递推关系计算每一项。

举例说明:以等差数列为例,假设有一个等差数列的首项为2,公差为3。

现在需要求解数列中第10项的值。

根据等差数列的通项公式,可以得到:a10 = 2 + (10 - 1) * 3= 2 + 27= 29在这个例子中,我们利用等差数列的通项公式直接计算出了第10项的值。

如果没有通项公式,我们可能需要逐个计算前10项,而通项公式可以极大地简化计算过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

构造法在数列中的应用——数列通项公式的求法一、形如)(1n f a a n n +=+(其中f (n )不是常数函数)型数列(累加法)一般地,对于形如)(1n f a a n n +=+(其中f (n )不是常数函数)类的通项公式,且)()2()1(n f f f +++ 的和比较好求,我们可以采用此方法来求n a 。

即:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥;〖例1〗.(2015江苏理数11).数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 。

二、形如n1n a a +=f (n )(f (n )为可求积的数列)型数列(累乘法) 一般地对于形如“已知a 1,且n1n a a +=f (n )(f (n )为可求积的数列)”的形式可通过叠乘法求数列的通项公式。

即:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅(2)n ≥; 〖例2〗.在数列{n a }中,1a =1, (n+1)·1+n a =n·n a ,求n a 的表达式。

〖练1〗.在数列{an}中,a1=1,(n+2)•an+1=(n+1)•an ,则an=〖练2〗.数列{}n a 中,211=a ,前n 项的和n n a n S 2=,求1+n a .三、形如1n n a pa q +=+型数列构造的思路有两种: (1)是待定系数法构造,设1()n n a m p a m ++=+,展开整理1n n a pa pm m+=+-,比较系数有pm m b -=,所以1b m p =-,所以1nb a p +-是等比数列,公比为p ,首项为11ba p +-。

(2)是用作差法直接构造,1n n a pa q +=+,1n n a pa q -=+,两式相减有11()n n n n a a p a a +--=-,所以1n n a a +-是公比为p 的等比数列。

〖例3〗、已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.〖例4〗、在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。

四、形如 C Bn Aa a n n ++=+1型数列, 一般地,对于型如CBn Aa a n n ++=+1型数列可化为])1([21211λλλλ+-+=+++n a A n a n n 的形式来求通项。

〖例5〗、设数列{}n a 中,111,321n n a a a n +==++,求{}n a 的通项公式。

五、形如 B Aa a n n +=+1nC ⋅(A 、B 、C 为常数,)型数列一般地,对于型如B Aa a n n +=+1nC ⋅(A 、B 、C 为常数,)型数列,可化为11++⋅+n n C a λ=n n C a A ⋅+λ()的形式.构造出一个新的等比数列,然后再求n a ,当A=C 时,我们往往也会采取另一种方法,即左右两边同除以C n +1,重新构造数列,来求n a 。

〖例6〗设0a 为常数,且1123---=n n n a a (*N n ∈),证明:对任意n≥1,02)1(]2)1(3[51a a n n n nn ⋅⋅-+⋅-+=〖练习〗已知数列{}n a 满足1111,32n n n a a a ++==+,求n a .六、形如 11n n n a a ka b--=+或n n n n a a a a -=⋅--11型数列一般地形如11n n n a a ka b--=+、n n n n a a a a -=⋅--11等形式的递推数列可以用倒数法将其变形为我们熟悉的形式来求通项公式。

〖例7〗.已知数列{}n a 满足:1111,31n n n a a a a --==+,求{}n a 的通项公式。

〖练1〗在数列{}n a 中,1a =12,1n a +=33n n a a +(n N +∈),求数列{}n a 通项公式.〖练2〗 已知数列{a n }的前n 项和为S n ,且满足a n +2S n S n-1=0(n≥2);a 1=21,求通项a n .〖练3〗 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n≥2),求S n 与a n 。

八、形如rn n pa a =+1)0,0(>>n a p 型数列这种类型我们一般采用对数法,等式两边分别取对数,进行降次等式两边取对数后转化为q pa a n n +=+1,再利用构造新数列(待定系数法)求解。

〖例8〗若数列{n a }中,1a =3且21n n a a =+(n 是正整数),则它的通项公式是n a =▁▁▁〖练习〗:已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a 。

九、形如n n n qa pa a +=++12(其中p ,q 均为常数)型数列。

对于由递推公式n n n qa pa a +=++12,有βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。

若21,x x 是特征方程的两个根, 当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。

〖例9〗: 数列{}n a 满足),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求na十、形如)0(a 1≠+++=+D Ca DCa BAa n n n n 型数列一般我们用分离常数法〖例10〗、已知数列}a {n 满足2a 3a 22a 7a 1n n 1n =+-=+,,求数列}a {n 的通项公式。

十一、配凑构造法〖例11〗 数列{a n }的前n 项和记为S n ,已知a 1=1,a n+1=nn 2+S n (n=1,2,3……),求a n .教师用书一、形如)(1n f a a n n +=+(其中f (n )不是常数函数)型数列(累加法) 〖例1〗.(2015江苏理数11).数列}{n a 满足11=a ,且11+=-+n a a n n (*N n ∈),则数列}1{na 的前10项和为 。

二、形如n1n a a +=f (n )(f (n )为可求积的数列)型数列(累乘法) 〖例2〗.在数列{n a }中,1a =1, (n+1)·1+n a =n·n a ,求n a 的表达式。

解:由(n+1)·1+n a =n·n a 得11+=+n na a n n , 1a a n =12a a ·23a a ·34a a …1-n n a a=n n n 11433221=-⋅⋅ 所以n a n 1= 〖练1〗.在数列{an}中,a1=1,(n+2)•an+1=(n+1)•an ,则an=〖练2〗.数列{}n a 中,211=a ,前n 项的和n n a n S 2=,求1+n a .解:1221221)1()1()1(----=-⇒--=-=n n n n n n n a n a n a n a n S S a111+-=⇒-n n a a n n , ∴112211a a a a a a a a n n n n n ⋅⋅=--- )1(12131211+=⨯-⋅+-=n n n n n n∴)2)(1(11++=+n n a n三、形如1n n a pa q +=+型数列〖例3〗、已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.解:利用1()2()n n a x a x -+=+,求得112(1)n n a a -+=+,∴{}1na +是首项为112a +=,公比为2的等比数列,即12n n a +=,21n n a ∴=-〖例4〗、在数列{}n a 中,11a =,当2n ≥时,有132n n a a -=+,求{}n a 的通项公式。

解:由已知递推式,得1132,32,(2)n n n n a a a a n +-=+=+≥,上述两式相减,得113()n n n n a a a a +--=-,因此,数列1{}n n a a +-是以214a a -=为首项,以3为公比的等比数列。

所以1143n n n a a -+-=⋅,即13243n n n a a -+-=⋅,所以1231n n a -=⋅-。

四、形如 C Bn Aa a n n ++=+1型数列,〖例5〗、设数列{}n a 中,111,321n n a a a n +==++,求{}n a 的通项公式。

解:设1(1)3()n n a A n B a An B ++++=++1322n n a a An B A +∴=++-与原式比较系数得:221211A AB A B ==⎧⎧⇒⎨⎨-==⎩⎩即1(1)13(1)n n a n a n ++++=++ 令1,n n b a n =++n+1n 11则b =3b 且b =a +1+1=3 {}n b ∴1是b =3为首项,公比q=3的等比数列133331n n n nn b a n -∴=⋅==--即:五、形如 B Aa a n n +=+1nC ⋅(A 、B 、C 为常数,)型数列 〖例6〗设0a 为常数,且1123---=n n n a a (*N n ∈),证明:对任意n≥1,02)1(]2)1(3[51a a n n n nn ⋅⋅-+⋅-+=证明:设)3(2311--⋅--=⋅-n n nn t a t a 用1123---=n n n a a 代入可得51=t ∴{}53nn a -是公比为2-,首项为531-a 的等比数列,∴ 10)2()5321(53--⋅--=-n n n a a (*N n ∈),即:012)1(52)1(3a a n n nn n n ⋅⋅-+⋅-+=-〖练习〗已知数列{}n a 满足1111,32n n n a a a ++==+,求n a .解:将已知递推式两边同除以12n +得1131222n n n n a a ++=⨯+,设2nn na b =,故有132(2)2n n b b ++=⨯+,15322n n nb -⨯=-,从而11532n n n a -+=⨯-. 六、形如 11n n n a a ka b--=+或n n n n a a a a -=⋅--11型数列〖例7〗.已知数列{}n a 满足:1111,31n n n a a a a --==+,求{}n a 的通项公式。

相关文档
最新文档