数列通项公式的求解方法归纳
数列通项公式的九种求法

1数列通项公式的九种求法各种数列问题在很多情形下,就是对数列通项公式的求解。
特别是在一些综合性比较强 的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。
笔者总结出九种求解 数列通项公式的方法,希望能对大家有帮助。
一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法, 类型的题目.2例1 .等差数列{an}是递增数列,前n 项和为S1,且引,*3,a9成等比数列,S 5^*5.求 数列{a n}的通项公式 解:设数列{an}公差为d(d >0)2•/a1,a 3,a 9 成等比数列,••• a 3 =a1a9 ,2 2即 @1 +2d)=印@1 +8d),得 d =a 1d...d H0 a1=d--S s = a](n -1)n ,1a3 -a2 = ---这种方法适应于已知数列5a 1 +5*4d =⑻ +4d)2a1=3 —5 =3 -5 由①②得:3 •••an —5点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再 写出通项。
二、累加法求形如a n -a n 」= f(n) (f(n)为等差或等比数列或其它可求和的数列)的数列通项, …n — 1得到n — 1个式子累加求得通项。
+ (n-1)3 =-n 5可用累加法,即令 n=2, 3,例2.已知数列{a n }中, an _an4解:由已知得a 1=1,对任意自然数 1an = an4 中n 都有n(n+1),求 an .—n(n+1),an ~ an-2 1a 2y,13^4 ,丄+ an_ q _ 2x3+■(n-2)(n —1) (n —1)n n(n+1)31…a=2 n +1 ,点评:累加法是反复利用递推关系得到n —=丄n(n+1) nn +1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n—1项的和,要注意求和的技巧.三、迭代法求形如a n* =q a n +d(其中q,d为常数)的数列通项,可反复利用递推关系迭代求出。
求数列通项公式的十种方法

求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。
下面将列举十种常见的方法来求解数列的通项公式。
方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。
通项公式可以直接通过公式计算得出。
方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。
可以通过求和公式推导出等差数列的通项公式。
方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。
通项公式可以直接通过公式计算得出。
方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。
可以通过求和公式推导出等比数列的通项公式。
方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。
例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。
方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。
例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。
方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。
例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。
方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。
例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。
方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。
求数列通项公式常用的八种方法

求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。
数列求通项公式方法大全

数列求通项公式方法大全数列是由一系列按特定规律排列的数字组成的序列。
求解数列的通项公式是找出数字之间的规律,从而可以用一个公式表示出数列中第N个数字与N的关系。
这样可以方便地计算数列中的任意项,而不需要逐个计算或列出所有的项。
以下是数列求通项公式的方法大全:1. 等差数列的通项公式:等差数列是指数列中相邻两项之间的差值保持恒定的数列。
根据等差数列的性质,可以得到通项公式为:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差,n表示项数。
2. 等比数列的通项公式:等比数列是指数列中相邻两项之间的比值保持恒定的数列。
根据等比数列的性质,可以得到通项公式为:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比,n表示项数。
3. 斐波那契数列的通项公式:斐波那契数列是指数列中每一项都等于前两项之和的数列。
斐波那契数列的通项公式为:an = (phi^n - (-phi)^(-n)) / sqrt(5)其中,phi = (1 + sqrt(5)) / 2,an表示第n项。
4. 幂次数列的通项公式:幂次数列是指数列中每一项都是某个常数的指数函数。
幂次数列的通项公式为:an = a1 * (b^(n - 1))其中,an表示第n项,a1表示首项,b表示底数,n表示项数。
请注意,以上是一些常见的数列类型和其通项公式。
但实际上,还存在其他更复杂的数列类型,可能需要使用其他方法求解通项公式。
另外,在某些特定的数列中,可能无法找到通项公式,只能通过递推关系计算每一项。
举例说明:以等差数列为例,假设有一个等差数列的首项为2,公差为3。
现在需要求解数列中第10项的值。
根据等差数列的通项公式,可以得到:a10 = 2 + (10 - 1) * 3= 2 + 27= 29在这个例子中,我们利用等差数列的通项公式直接计算出了第10项的值。
如果没有通项公式,我们可能需要逐个计算前10项,而通项公式可以极大地简化计算过程。
求数列通项公式的十种办法

求数列通项公式的十种办法求数列的通项公式是数学中的一项重要工作。
下面列举了十种常用的求解数列通项公式的方法:1.递推法:这是最常见的一种方法。
通过观察数列中的规律,找出前一项与后一项之间的关系,并将其表达成递推公式,从而求得数列的通项。
例如斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项,F(n-1)表示第n-1项,F(n-2)表示第n-2项。
2.数列差法:如果数列的前后两项之间的差值有规律可循,可以通过观察差的变化规律来得到通项公式。
例如等差数列:a(n)=a(1)+(n-1)d,其中a(n)表示第n项,a(1)表示首项,d表示公差。
3.数列比法:如果数列的前后两项之间的比值有规律可循,可以通过观察比的变化规律来得到通项公式。
例如等比数列:a(n)=a(1)*r^(n-1),其中a(n)表示第n项,a(1)表示首项,r表示公比。
4.代数方程法:数列中的数可以看作方程中的未知数,通过列方程组求解,得到方程的解即为数列的通项公式。
例如斐波那契数列可以通过矩阵的特征值和特征向量求得。
5.数列求和法:如果数列是由一个个项的和组成的,可以通过数列的求和公式求得通项公式。
例如等差数列的前n项和:S(n)=[n/2]*[2a(1)+(n-1)d],其中[n/2]表示n除以2的整数部分,a(1)表示首项,d表示公差。
6.数列积法:如果数列可以表达为一系列项的连乘积的形式,可以通过求取连乘积的对数,再利用对数运算得到通项公式。
例如等比数列的前n项积:P(n)=a(1)^n*(r^n-1)/(r-1),其中a(1)表示首项,r表示公比。
7.查表法:如果数列的部分项已知,可以通过列出表格的方式观察规律,推测出通项公式。
例如自然数列:1,2,3,...,通过观察可得到通项公式:a(n)=n。
8.数学归纳法:数学归纳法是一种证明方法,但也可以用来求数列的通项公式。
首先证明数列的通项公式对n=1成立,然后假设对n=k也成立,通过数学归纳法证明对n=k+1也成立,从而得到通项公式。
求数列通项公式的8种方法

求数列通项公式的8种方法一、公式法(定义法)根据等差数列、等比数列的定义求通项 二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-2、累乘法 适用于: 1()n n a f n a +=若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 两边分别相乘得,1111()nn k a a f k a +==⋅∏例3 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
史上最全的数列通项公式的求法13种

最全的数列通项公式的求法数列是高考取的要点内容之一,每年的高考题都会观察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中特别重要。
本文给出了求数列通项公式的常用方法。
一、直接法依据数列的特点,使用作差法等直接写出通项公式。
二、公式法①利用等差数列或等比数列的定义求通项② 若 已 知 数 列 的 前 n项 和 S n 与 a n 的 关 系 , 求 数 列 a n的 通 项 a n 可 用 公 式a n S 1 n 1S nSn 1n 求解 .2(注意:求完后必定要考虑归并通项)( 1) n , n 1 .求数列 a n 的通项公式 .例 2.①已知数列 a n 的前 n 项和 S n 知足 S n 2a n②已知数列 a n 的前 n 项和 S n 知足 S nn2n 1,求数列 a n 的通项公式 .③ 已知等比数列 a n 的首项 a 1 1,公比 0 q 1,设数列 b n 的通项为 b na n 1 a n2,求数列b n 的通项公式。
③ 分析:由题意, b n 1 a n 2 a n 3 ,又 a n 是等比数列,公比为 q∴bn 1an 2an 3q ,故数列 b n 是等比数列, b 1 a 2 a 3a 1q a 1q 2 q(q 1) ,b na n 1 a n 2∴ b nq(q 1) q n 1 q n (q 1)三、概括猜想法假如给出了数列的前几项或能求出数列的前几项,我们能够依据前几项的规律,概括猜想出数列的通项公式,而后再用数学概括法证明之。
也能够猜想出规律,而后正面证明。
四、累加(乘)法关于形如 a n 1an f ( n) 型或形如 a n 1 f (n)a n 型的数列,我们能够依据递推公式,写出n取 1 到 n 时的全部的递推关系式,而后将它们分别相加(或相乘)即可获得通项公式。
例 4.若在数列 a n 中, a 1 3 , a n 1 a n n ,求通项 a n 。
求数列通项公式的13种方法

求数列通项公式的13种方法在数学中,数列是一组按照一定规律依次排列的数字集合。
求数列的通项公式是对该数列的每一项都能找到一个通用的公式来描述。
这篇文档将介绍13种求解数列通项公式的方法。
1. 模式观察法通过观察数列中数字的变化模式,尝试找出递推关系,并通过推测整理出数列的通项公式。
2. 公式转化法通过对数列进行一系列数学运算,如加减乘除、取幂次等,将数列转化成已知的常见数列,再推导出通项公式。
3. 递推法通过已知的前几项数值,推导出当前项和下一项之间的关系,进而获得数列的通项公式。
4. 二项展开法借助二项展开公式,将数列展开成多项式形式,从而得到数列的通项公式。
5. 求解差分方程法将数列转化为差分方程,通过求解差分方程得到数列的通项公式。
6. 系数法利用多项式系数之间的关系,通过观察系数之间的规律,推导出数列的通项公式。
7. 利用等差数列和等比数列性质对于满足等差数列或等比数列性质的部分数列,可以直接应用等差数列或等比数列的通项公式。
8. 利用级数展开对于部分数列,可以将其展开成级数形式,从而得到数列的通项公式。
9. 奇偶性分析法通过分析数列中数字的奇偶性规律,推导出数列的通项公式。
10. 利用生成函数通过构造数列的生成函数,将数列转化成幂级数形式,再求解得到数列的通项公式。
11. 递归关系法对于一些特殊的数列,可以通过递归关系推导出数列的通项公式。
12. 利用数学归纳法利用数学归纳法证明数列的通项公式的正确性。
13. 利用数值计算方法拟合通过计算机软件等数值计算方法,根据数列的前几项数值进行拟合,得到数列的通项公式。
以上是13种常用的求解数列通项公式的方法。
根据具体的数列情况和求解需要,选择合适的方法进行计算和推导。
> 注意:此文档中的内容仅供参考。
在确定数列的通项公式时,请务必进行独立决策,不要直接引用未经验证的内容。
---以上是对「求数列通项公式的13种方法」的介绍文档。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列通项公式的解法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
小结:除了熟悉以上常见求法以外,对具体的数列进行适当的变形,一边转化为熟知的数列模型更是突破数列通项的关键。
做题时要不断总结经验,多加琢磨。
总结方法比做题更重要!方法产生于具体数学内容的学习过程中.1.直接法2.公式法3.归纳猜想法4.累加(乘)法5.取倒(对)数法6.迭代法7.待定系数法8.特征根法9.不动点法10.换元法11.双数列12.周期型13.分解因式法14.循环法15.开方法◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211 (3) ,52,21,32,1 (4) ,54,43,32,21-- ◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解.(注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21n S n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
也可以猜想出规律,然后正面证明。
例3.已知点的序列*),0,(N n x A n n ∈,其中01=x ,)0(2>=a a x ,3A 是线段21A A 的中点,4A 是线段32A A 的中点,…,n A 是线段12--n n A A 的中点,…(1) 写出n x 与21,--n n x x 之间的关系式(3≥n )。
(2) 设n n n x x a -=+1,计算321,,a a a ,由此推测{}n a 的通项公式,并加以证明。
变式:设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,… (Ⅰ)求a 1,a 2; (Ⅱ){a n }的通项公式◆四、累加(乘)法对于形如)(1n f a a n n +=+型或形如n n a n f a )(1=+型的数列,我们可以根据递推公式,写出n 取1到n 时的所有的递推关系式,然后将它们分别相加(或相乘)即可得到通项公式。
例4. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a 。
例5. 在数列{}n a 中,11=a ,n n n a a 21=+(*N n ∈),求通项n a 。
◆五、取倒(对)数法a 、rn n pa a =+1这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解b 、数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以,11-n n a a 先求出.,1n na a 再求得c 、)()()(1n h a n g a n f a n nn +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。
例6..设数列}{n a 满足,21=a ),N (31∈+=+n a a a n nn 求.n a例7 、 设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.变式:1.已知数列{a n }满足:a 1=32,且a n =n 1n 13na n 2n N 2a n 1*≥∈--(,)+-求通项a n .2、若数列的递推公式为11113,2()n na n a a +==-∈,求通项a n .3、已知数列{n a }满足2,11≥=n a 时,n n n n a a a a 112--=-,求通项a n .4、已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求通项a n .5、若数列{an }中,a1=1,a1+n=22+nnaa n∈N+,求通项an.◆六、迭代法迭代法就是根据递推式,采用循环代入计算.例8、设a 0为常数,且a n=3 n -1-2 a n -1(n为正整数)证明对任意n≥1 ,an= [ 3 n+(-1)n -1· 2 n ]+(-1)n· 2 n a0◆七、待定系数法:求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。
通常可对递推式变换,转化成特殊数列(等差或等比数列)来求解,该方法体现了数学中化未知为已知的化归思想,运用待定系数法变换递推式中的常数就是一种重要的转化方法。
1、通过分解常数,可转化为特殊数列{an +k}的形式求解。
一般地,形如a1+n=p an+q(p≠1,pq≠0)型的递推式均可通过待定系数法对常数q分解法:设a1+n +k=p(an+k)与原式比较系数可得pk-k=q,即k=1-pq,从而得等比数列{an+k}。
例9、数列{an }满足a1=1,an=21a1-n+1(n≥2),求数列{an}的通项公式。
练习、数列{an }满足a1=1,0731=-++nnaa,求数列{an}的通项公式。
2、已知数列{}n a 满足11=a ,且132n n a a +=+,求n a .2、递推式为11+++=n n n q pa a (p 、q 为常数)时,可同除1+n q ,得111+⋅=++n n n n q a q p q a ,令nnn qa b =从而化归为q pa a n n +=+1(p 、q 为常数)型.、例10.已知数列{}n a 满足11=a ,123-+=n nn a a )2(≥n ,求n a .3、形如b an pa a n n ++=+1)001(≠≠,a 、p解法:这种类型一般利用待定系数法构造等比数列,即令)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。
例11:设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .变式:已知数列{na }中,11122n n a n a a +=-、点(、)在直线y=x 上,其中n=1,2,3…(Ⅰ)令{}是等比数列;求证数列n n n n b a a b ,31--=- (Ⅱ)求数列{}的通项;n a4、形如21n n a pa an bn c +=+++)001(≠≠,a 、p 解法:这种类型一般利用待定系数法构造等比数列,即令221(1)(1)()n n a x n y n c p a xn yn c ++++++=+++,与已知递推式比较,解出y x ,,z.从而转化为{}2na xn yn c +++是公比为p 的等比数列。
例12:设数列{}n a :2114,321,(2)n n a a a n n -==+-≥,求n a .5. 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。
先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中s ,t 满足⎩⎨⎧-==+qst pt s例13:已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。
变式: 1.已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式; (III )若数列{}n b 满足12111*44...4(1)(),nnb b b b n a n N ---=+∈证明{}n b 是等差数列2.已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a3.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n,求证:数列{}n b 是等比数列;⑵设数列),2,1(,2==n a c n nn ,求证:数列{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和。
◆八:特征根法。
1、设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。
作出一个方程,d cx x +=则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +=≠=时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.2.对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。
若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n nBx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。
例14:(1)已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式。
◆九:不动点法,形如hra qpa an n n ++=+1解法:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程h rx qpx x ++=,当特征方程有且仅有一根0x 时,则01n a x ⎧⎫⎨⎬-⎩⎭是等差数列;当特征方程有两个相异的根1x 、2x 时,则12n n a x a x ⎧⎫-⎨⎬-⎩⎭是等比数列。