非线性约束优化
非线性约束最优化

⾮线性约束最优化CanChen ggchen@讲完了⼆次线性规划,这节课主要是讲了⼀般的⾮线性约束最优化怎么解。
等式约束-Lagrange-Newton先列Lagrange⽅程:然后⽤⽜顿法求⽅程的根(这个迭代⼜被称为Newton-Raphson迭代):Sequential Quadratic Programming这个问题是最泛化的优化问题了,先看看怎么根据KT条件写出原始优化问题这⼀步实际上是把⼀般的优化问题,转化成了多个⼆次函数优化问题,循环求解。
对于每个⼦问题,需要采⽤active set⽅法,每次只考虑等式约束,根据具体情况添加或者删除约束。
罚函数法实际中总是逐渐增⼤罚因⼦,求解⽆约束问题。
这种通过求解⼀系列⽆约束问题来获得约束最优化问题的最优解,称之为序贯⽆约束极⼩化技术。
罚函数经典三引理:这⾥的引理1是关键,其实也很好证明,就是根据两个x分别是最优解,得到两个不等式,简单处理⼀下就⾏了。
三个引理刻画了罚函数法动态变化的过程。
其中,第三个引理就是说,我迭代到⼀步,不想迭代了,这个时候实际上得到的解是把定义域扩⼤了之后的解。
乘⼦罚函数这⾥实际上就是⽬标函数,加朗格朗⽇项,加罚项。
使⽤罚函数,必须要求罚因⼦趋于⽆穷⼤,然⽽这在实际中很难办到。
这⾥引⼊朗格朗⽇项,让罚因⼦不⽤趋于⽆穷,就能得到结果。
本质是就是将乘⼦罚函数在迭代中寻找和拉格朗⽇函数的关系,从⽽将带约束问题转化为⽆约束问题。
这⾥给出了带约束问题的⼆阶充分条件,⾮常⽜逼,之前只是必要条件。
障碍函数法这个实际上通过⽆限限制边界,将有约束问题转化为⽆约束问题。
内点法这个实际上是改变互补松弛条件,sz=u>0, 所以s>0,所以⼀定是内点。
本质上还是在求解KT系统,把不等式改造成等式,还在内部,这个⽐较野蛮。
后⾯凸优化就是⼲这个。
障碍函数法和内点法本质是⼀样的。
最优化方法第八章约束非线性优化

( 3)
15
i gi ( x*) 0 , i 1 , 2 , , l i 0 , gi ( x*) 0 ; i 0, i 1 , 2 , , l i 0 , gi ( x*) 0 ;
定理4(K-T条件): 设 x* Q ,f ( x) 和 g i ( x) (i I ( x*) ) 在x * 处可微,
g1 ( x) 4 x1 x2
g1 ( x ) [ 1 , 1 ]T
g2 ( x ) x1 , g2 ( x ) [ 1 , 0 ]T 。
g3 ( x ) x2 , g3 ( x ) [ 0 , 1 ]T 。
18
由 K T条件得
x1 3 1 1 0 x 3 1 1 2 0 3 1 0 2
s.t. ф(x,y)=0
引入Lagrange乘子:λ Lagrange函数 L(x,y;λ)= f(x,y)+ λ ф(x,y)
4
若(x*,y*)是条件极值,则存在λ* ,使 fx(x*,y*)+ λ* фx (x*,y*) =0 fy(x*,y*)+ λ* фy(x*,y*) =0 Ф (x*,y*)=0 推广到多元情况,可得到对于等式约束的情况: min f(x) 分量形式: s.t. hj(x)=0 j=1,2, …,l 若x*是其的最优解 , 则存在υ*∈ Rl 使
x1 d 1 d2
①可行方向与积极约束: 可行方向:
g2 ( x ) 0
设 x0 Q, d 为一个向量。如果存在 实数 0ቤተ መጻሕፍቲ ባይዱ 使得对任意的 [ 0 , ] 有 x 0 d Q , 则称 d 为 x 0 处的 一个可行方向。
数学中的非线性优化算法

数学中的非线性优化算法非线性优化算法是一类应用于非线性优化问题的算法。
这类算法的优化目标函数通常是一个非线性函数,因此,在进行非线性优化时,需要考虑到函数本身的非线性性质,而不像线性优化问题那样只简单地寻找合适的线性方案即可。
在实际应用中,非线性优化算法与线性规划算法同样具有重要的地位。
例如,在工程中,我们经常需要通过优化非线性目标函数来寻找最优的工艺流程、产品材料、资源分配和生产布局等方案。
在金融领域,也需要使用非线性优化算法来找到投资组合中最理想的比例分配,以最大化收益并降低风险。
非线性优化算法的几类基本模型在非线性优化算法中,存在着多种基本模型。
这里简要介绍其中几种:1. 无约束优化模型无约束优化模型是指当目标函数的变量不受任何约束限制时所求的最优解。
在数学中,这种模型通常用以下形式表示:min f(x),x∈R^n其中,x是自变量向量,f(x)是目标函数。
尽管看起来这是一个简单的问题,但实际情况并非如此。
在很多情况下,目标函数都是非线性函数,而且非常复杂,无法直接求出最小值。
因此,需要使用非线性优化算法来解决这个问题。
2. 约束优化模型与无约束优化模型相比,约束优化模型多出了一些约束条件。
在数学中,它通常会表示为以下形式:min f(x),x∈R^ns.t. g_i(x)≤0,i=1,…,m其中,g_i(x)是约束函数,表示限制x必须满足的条件。
在这种情况下,我们需要使用不同的非线性优化算法来寻找满足约束条件的最小值。
常用的算法包括SQP算法、罚函数法等。
3. 二次规划模型另一个常见的优化问题是二次规划模型。
在这种情况下,目标函数和约束条件都是二次函数。
通常,二次规划模型会用以下形式表示:min 0.5x'Qx+px,x∈R^ns.t. Gx≤h其中,Q、p、G和h是矩阵或向量,表示二次函数的系数和约束条件。
在解决二次规划问题中,最常见的算法是内点法。
这个算法的核心思想是在可行空间的内部进行搜索,而不是沿着表面“爬山”。
非线性约束优化问题的数值解法

非线性约束优化问题的数值解法在实际问题中,我们经常会遇到一类非线性约束优化问题,即在一定约束条件下,最小化或最大化一个非线性目标函数。
这类问题的数学模型可以表示为:$$\begin{aligned}\min_{x} \quad & f(x) \\\text{s.t.} \quad & g_i(x) \leq 0, \quad i=1,2,\ldots,m \\& h_j(x) = 0, \quad j=1,2,\ldots,n\end{aligned}$$其中,$x$是决策变量,$f(x)$是目标函数,$g_i(x)$和$h_j(x)$是约束函数。
有时候,这类问题的解析解并不容易求得,因此需要借助数值方法来找到近似解。
本文将介绍几种常用的非线性约束优化问题的数值解法。
一、拉格朗日乘子法拉格朗日乘子法是最基础的非线性约束优化问题求解方法之一。
它将原始问题转化为等价的无约束问题,并通过引入拉格朗日乘子来建立求解函数。
具体而言,我们将原始问题改写成拉格朗日函数的形式:$$L(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m}\lambda_ig_i(x) +\sum_{j=1}^{n}\mu_jh_j(x)$$其中,$\lambda_i$和$\mu_j$是拉格朗日乘子。
然后,我们对拉格朗日函数求取对$x$的梯度,并令其等于零,得到一组等式约束:$$\nabla_x L(x,\lambda,\mu) = \nabla f(x) +\sum_{i=1}^{m}\lambda_i\nabla g_i(x) + \sum_{j=1}^{n}\mu_j\nablah_j(x) = 0$$再加上约束条件 $g_i(x) \leq 0$ 和 $h_j(x) = 0$,我们可以得到原始问题的一组等价条件。
二、内点法内点法是解决非线性约束优化问题的一种有效算法。
该方法通过将约束条件转化为惩罚项,将原问题转化为无约束的目标函数最小化问题。
非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法非线性优化问题是在目标函数和约束条件中包含非线性项的优化问题。
约束优化问题是在目标函数中加入了一些约束条件的优化问题。
解决这些问题在实际应用中具有重要意义,因此研究非线性优化和约束优化问题的求解方法具有重要的理论和实际意义。
一、非线性优化问题的求解方法非线性优化问题的求解方法有很多,下面介绍几种常见的方法:1. 黄金分割法:黄金分割法是一种简单但有效的搜索方法,它通过不断缩小搜索范围来逼近最优解。
该方法适用于目标函数单峰且连续的情况。
2. 牛顿法:牛顿法利用目标函数的一阶和二阶导数信息来逼近最优解。
该方法收敛速度较快,但在计算高阶导数或者初始点选取不当时可能产生不稳定的结果。
3. 拟牛顿法:拟牛顿法是对牛顿法的改进,它通过逼近目标函数的Hessian矩阵来加快收敛速度。
拟牛顿法可以通过不同的更新策略来选择Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法或者DFP方法。
4. 全局优化方法:全局优化方法适用于非凸优化问题,它通过遍历搜索空间来寻找全局最优解。
全局优化方法包括遗传算法、粒子群优化等。
二、约束优化问题的求解方法约束优化问题的求解方法也有很多,下面介绍几种常见的方法:1. 等式约束问题的拉格朗日乘子法:等式约束问题可以通过引入拉格朗日乘子来转化为无约束优化问题。
通过求解无约束优化问题的驻点,求得原始约束优化问题的解。
2. 不等式约束问题的罚函数法:不等式约束问题可以通过引入罚函数来转化为无约束优化问题。
罚函数法通过将违反约束条件的点处添加罚项,将约束优化问题转化为无约束问题。
3. 逐次二次规划法:逐次二次规划法是一种常用的求解约束优化问题的方法。
该方法通过依次处理逐个约束来逼近最优解,每次处理都会得到一个更小的问题,直至满足所有约束条件。
4. 内点法:内点法是一种有效的求解约束优化问题的方法。
该方法通过向可行域内部逼近,在整个迭代过程中都保持在可行域内部,从而避免了外点法需要不断向可行域逼近的过程。
15非线性约束最优化算法

ci ( xk )T p c ( x k )
i
0, i 0, i I
ci ( xk )T p c ( x k )
i
15.13
非线性规划内点法
第19章,讨论非线性规划内点法(interior-point) 相对在14章讨论的线性规划来说,这种方法可以看做是原始对偶内点法 (primal-dual interior-point)的拓展,也可以看做是障碍法。
这个问题说明了用非线性消去变量,可能导致很难追踪错误的结果。 基于这个原因,大多数最优化算法中不用非线性消去法。相反,许多 约束条件的线性的算法会用到消去法去解一些简单问题。现在就系统 的概述下用线性约束去得到变量消除的目的。
15.32
用线性约束简单消去
思考线性函数的约束条件的最小化问题,约束条件是线性等式约束:
AP B N
N表示A矩阵n-m剩余列。(这里的注释和第13章一致,讨论线性规划背 景的相似概念)
定义下面形式下的子向量 :
x B PT x xN
(15.8)
xB为基变量,B为基矩阵。注意PPT=I可以将约束条件Ax=b改写如下:
b Ax Ap
15.12 连续二次规划方法
第18章,讨论序列二次规划方法(sequential quadratic programming) 简称SQP. 基本的SQP方法中定义Pk在(xk,λ k)迭代的方向,从而得到解
min
p
1 2
P
T
2 xx
L( xk ,k )
P
f ( xk )
T
p
约束条件:
非线性优化的基本理论

非线性优化的基本理论引言非线性优化是数学和计算机科学领域的一个重要研究方向。
它研究的是在给定约束条件下,如何寻找某个目标函数的最优解。
与线性优化问题不同,非线性优化问题涉及非线性函数的优化,更具有挑战性。
基本概念1.目标函数(Objective Function):非线性优化问题中需要优化的目标函数,通常表示为f(x),其中x表示自变量。
2.约束条件(Constraints):非线性优化问题中限制目标函数的函数或等式,通常表示为g(x) <= 0和h(x) = 0。
3.最优解(Optimal Solution):非线性优化问题中使目标函数取得最小(或最大)值的自变量的取值。
4.局部最优解(Local Optimum):非线性优化问题中某个点附近的最优解,但不一定是全局最优解。
5.全局最优解(Global Optimum):非线性优化问题中使目标函数取得最小(或最大)值的自变量的取值,是优化问题的最优解。
基本原理非线性优化的基本原理是寻找目标函数在给定约束条件下的最优解。
常用的方法包括梯度下降法、牛顿法和拟牛顿法等。
1. 梯度下降法(Gradient Descent)梯度下降法是一种基于目标函数梯度信息的迭代优化方法。
它的基本思想是通过不断迭代调整自变量的取值,使目标函数逐渐收敛到最优解。
具体步骤如下:1. 初始化自变量的取值。
2. 计算目标函数在当前自变量取值下的梯度。
3. 根据梯度的方向和步长,更新自变量的取值。
4. 重复步骤2和步骤3,直到满足停止准则。
2. 牛顿法(Newton’s Method)牛顿法是一种基于目标函数二阶导数信息的迭代优化方法。
它的基本思想是通过将目标函数进行二阶泰勒展开,以二阶导数的倒数作为步长,调整自变量的取值。
具体步骤如下: 1.初始化自变量的取值。
2. 计算目标函数在当前自变量取值下的一阶导数和二阶导数。
3. 根据一阶导数和二阶导数,更新自变量的取值。
带约束的非线性优化问题解法小结

(1)带约束的非线性优化问题解法小结考虑形式如下的非线性最优化问题(NLP):min f(x)「g j (x )“ jI st 彳 g j (x)=O j L其 中, ^(x 1,x 2...x n )^ R n, f : R n > R , g j :R n > R(j I L) , I 二{1,2,…m }, L ={m 1,m 2...m p}。
上述问题(1)是非线性约束优化问题的最一般模型,它在军事、经济、工程、管理以 及生产工程自动化等方面都有重要的作用。
非线性规划作为一个独立的学科是在上世纪 50年 代才开始形成的。
到70年代,这门学科开始处于兴旺发展时期。
在国际上,这方面的专门性 研究机构、刊物以及书籍犹如雨后春笋般地出现,国际会议召开的次数大大增加。
在我国, 随着电子计算机日益广泛地应用,非线性规划的理论和方法也逐渐地引起很多部门的重视。
关于非线性规划理论和应用方面的学术交流活动也日益频繁,我国的科学工作者在这一领域 也取得了可喜的成绩。
到目前为止,还没有特别有效的方法直接得到最优解,人们普遍采用迭代的方法求解: 首先选择一个初始点,利用当前迭代点的或已产生的迭代点的信息,产生下一个迭代点,一 步一步逼近最优解,进而得到一个迭代点列,这样便构成求解( 1)的迭代算法。
利用间接法求解最优化问题的途径一般有:一是利用目标函数和约束条件构造增广目标 函数,借此将约束最优化问题转化为无约束最优化问题,然后利用求解无约束最优化问题的 方法间接求解新目标函数的局部最优解或稳定点,如人们所熟悉的惩罚函数法和乘子法;另 一种途径是在可行域内使目标函数下降的迭代点法,如可行点法。
此外,近些年来形成的序 列二次规划算法和信赖域法也引起了人们极大的关注。
在文献[1]中,提出了很多解决非线性 规划的算法。
下面将这些算法以及近年来在此基础上改进的算法简单介绍一下。
1. 序列二次规划法序列二次规划法,简称SQ 方法.亦称约束变尺度法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例42求解不等式约束问题的K-T点,并判断是否为局部极小
2 f ( X ) ( x1 1) x2 2 g1( X ) x1 x2 / 5 2 2 2 解: L( X , ) ( x1 1) x2 { x1 x2 / 5} 2
min 例 s.t.
f f g g 2( x1 1), 2 x2 , 1, 2 x2 / 5 x1 x2 x1 x2
* 2 2 * x22 x2 * * * 2( x1 1) * 0; 2 x2 0; * ( x1 ) 0; 0; x1 0 5 5 5
2 i 1 j 1 m l
这里( M k , g ( X ), h( X ))是惩罚项: k CM k 1 M 0, 满足约束 ( M k , g ( X ), h( X )) 0, 不满足约束
例题4-3用外点法求解
2 min f ( X ) x12 x2 , s.t. 2x1 x2 4, x1 , x2 0
解: 令 极大点的必要条件:
L( X ) x12 x2 1 ( 2 x12 2 x1x2 24 )
* * * * * (L / x1 ) x*, * 2 x1 x2 41 x1 21* x2 0 x1 2 * *2 * * x2 4 (L / x2 ) x*, * x1 21 x1 0 * *2 * * * (L / 1 ) x*, * (2 x1 x2 2 x1 x2 24 ) 0 1 1
k 1 2
.............
3)假设X D
求P( X , M k )驻点
3
2 , 则P( X , M k ) x12 x2 M k ( x1 x2 4) 2 ,以M k 为参数,
gi ( X *)T Y 0, i I1 ( X *) {i | gi ( X *) 0, i* 0} gi ( X *)T Y 0, i I 2 ( X *) {i | gi ( X *) 0, i* 0} gi ( X *)T Y 0, i 1, 2,..., I
g2(x)=0 x* g1(x)=0
g1(x*)=0, g1为起作用约束, 约束集已知时回归到含等式优化问题
问题: 事先并不知道约束集=?
定理(任意情况的最优性必要条件):(K-T条件) 问题(fg), 设D={x|gi(x) 0,i 1 ~ m; hj ( x) 0, j 1 ~ l }, x*∈D, I为x*点处的起作用集,设f, gi(x) ,i ∈I在x*点可微, gi(x) ,i I在x*点连续。 向量组{▽gi(x*), i ∈I}线性无关。 m l * L 构造拉日函数: ( X , , ) f ( x) i 1 i gi ( X ) i 1 i hi ( X )
第
四
章
约束最优化方法
问题
(fgh)
min f(x)
s.t. g(x) ≤0 h(x)=0
约束集 S={x|g(x) ≤0 , h(x)=0}
高等数学中所学的条件极值:
一、等式约束性问题的最优性条件: 考虑 min f(x) s.t. h(x)=0
问题: 在ф(x,y)=0的条件下, 求z=f(x,y)极值. min f(x,y) 。 s.t. ф(x,y)=0 引入Lagrange乘子:λ Lagrange函数 L(x, y;λ)= f(x,y)+ λф(x,y)
不可行域
1)假设X D
求P( X , M k )驻点
1
2 , 则P( X , M k ) x12 x2 M k x12 ,以M k 为参数,
P / x1 2 x1 (1 M k ) 0 P / x2 2 x2 0 M >0, x =0,x =0不满足假设条件,因此该解无效
2.二阶充分条件 设拉格朗日函数为
L( X , , ) f ( x) i 1 gi ( X ) i 1 i hi ( X )
m * i l
x*
为非线性规划的严格局部极小点的充分条件: 1) x* 为K-T点; 2) x* 拉日函数的海瑟矩阵在Y方向正定,并且 Y方向满足下列等式:
i 1 j 1 m 2 ij ij
c m
c
n
2 ij
c
i 1 ij
u 1, j 1 ~ n
c
构造拉日函数: L i 1 (uij ) d (i 1 uij 1) 最优化的一阶必要条件为
c L ( i 1 uij 1) 0;
代回上式进入到约束条件: 1 c c 得 u ( )1/(m1) [ ]1/(m1) ( )1/(m1)
ㄡ ▽h(ㄡ )
最优性条件即:
▽h(*)
f ( x*) *h j ( x*) j
j 1
h
一 等式约束下的拉格朗日乘子算法 考虑等式约束问题:
min f ( X ), s.t. hi ( X ) 0, i 0,1,2,...,l
L( X , ) f ( X ) i 1 i hi ( X )
对于得到的三个根。 使用充分条件检验如下:
计算:
2 L( X * , * ) * * 2x2 41 4 x12 2 L( X * , * ) * * 2x1 21 2 x1 x2 4 z 2 16 2 L( X * , * ) 0 2 0 z 4 0 2 x2 16 4 0 h ( X * ) * * 1 4x1 2x2 16 x1 h1 ( X * ) * 2x1 4 x2
L [m(uij ) m 1 dij2 ] 0; uij [ 2 ]1/( m 1) uij mdij
i 1 ij
i 1
m
2 dij
m
i1[
c
1 1/(m1) ] 1 2 dij
所以
uij
[ l 1
c
1 dij dlj
]2/( m2)
FCM的中心迭代过程
D1 { X | 2 x1 x2 4 0, x1 0, x2 0} 2 D { X | 2 x1 x2 4 0, x1 0, x2 0} D 3 { X | 2 x x 4 0, x 0, x 0} 1 2 1 2 4 D { X | 2 x1 x2 4 0, x1 0, x2 0} D 5 { X | 2 x x 4 0, x 0, x 0} 1 2 1 2 D 6 { X | 2 x1 x2 4 0, x1 0, x2 0}
充分条件: 如果 L( X *, ) 0 且行列式方程:
所有根Zj>0(j=1,2,…,n-l),则X*为局部极小点;反 之所有Zj<0,为局部极大点;有正有负非极值点
例题4-1用拉格朗日乘子算法求解:
max f ( X ) x12 , s.t. h1 ( x) 2x12 2x1x2 24 0
解:都是不等式约束。定义外部罚函数 1.解法一
P( X , Mk ) x x M k [min(0, 2x1 x2 4)] [min(0, x1)] [min(0, x2 )]
2 1 2 2 2 2 2
可行域
D {X | 2 x1 x2 4 0, x1 0, x2 0}
f ( x ) *h j ( x* ) 0 j
* l
以及
hj(x)=0, j=1,2, …,l
j 1
一、等式约束性问题的最优性条件: (续) 几何意义是明显的:考虑一个约束的情况:
-▽f(x*)
-▽f(ㄡ )
h(x)
这里 x* ---l.opt. ▽f(x*)与 ▽h(x*) 共线,而ㄡ非l.opt. ▽f(ㄡ )与▽h(ㄡ )不共线。
一、等式约束性问题的最优性条件: (续) 若(x*,y*)是条件极值,则存在λ* ,使 fx(x*,y*)+ λ* фx (x*,y*) =0 fy(x*,y*)+ λ* фy(x*,y*) =0 Ф (x*,y*)=0
推广到多元情况,可得到对于(fh)的情况: min f(x) s.t. hj(x)=0 j=1,2, …,l 若x*是(fh)的l.opt. , 则存在*∈ Rl使
2)不等式约束问题的Khun-Tucker条件:
考虑问题 min f(x) s.t. gi(x) 0
i=1,2, …,m
设 x*∈S={x|gi(x) 0 i=1,2, …,m} , 并令 I={i| gi(x*) =0, i=1,2, …,m} 称I为 x*点处的起作用集(紧约束集)。 如果x*是l.opt. ,对每一个约束函数来说,只有当它是起作用约 束时,才产生影响,如:
如果x*----l.opt. 那么,u*i≥0, 使得 m l f ( x ) i 1 i*gi ( X * ) j 1 j h j ( X * ) 0 1)驻点条件: 2)互补条件: 3)非负条件: ui* 0 i 1, 2, , m gi ( x ) 0 i 1, 2, , m 4)不等式约束: 5)等式约束: hi ( X *) 0, i 1,2,...,l 说明: 1)如果是max问题等,要改变叙述。 2)在一定条件下上面叙述变成充要条件。
l
令拉格朗日函数:
则等式约束下规划问题转化成无约束问题: min L(X, ) 该问题有极值点的必要条件为:
h ( X *) f ( X *) l L | X X *, * i 1 * i 0, j 1,2,...,n i x x j x j j L | h ( X *) 0, i 1,2..,l i X X *, * i