非线性约束优化问题的数值解法

合集下载

带约束的非线性优化问题解法小结

带约束的非线性优化问题解法小结

(1)带约束的非线性优化问题解法小结考虑形式如下的非线性最优化问题(NLP):min f(x)「g j (x )“ jI st 彳 g j (x)=O j L其 中, ^(x 1,x 2...x n )^ R n, f : R n > R , g j :R n > R(j I L) , I 二{1,2,…m }, L ={m 1,m 2...m p}。

上述问题(1)是非线性约束优化问题的最一般模型,它在军事、经济、工程、管理以 及生产工程自动化等方面都有重要的作用。

非线性规划作为一个独立的学科是在上世纪 50年 代才开始形成的。

到70年代,这门学科开始处于兴旺发展时期。

在国际上,这方面的专门性 研究机构、刊物以及书籍犹如雨后春笋般地出现,国际会议召开的次数大大增加。

在我国, 随着电子计算机日益广泛地应用,非线性规划的理论和方法也逐渐地引起很多部门的重视。

关于非线性规划理论和应用方面的学术交流活动也日益频繁,我国的科学工作者在这一领域 也取得了可喜的成绩。

到目前为止,还没有特别有效的方法直接得到最优解,人们普遍采用迭代的方法求解: 首先选择一个初始点,利用当前迭代点的或已产生的迭代点的信息,产生下一个迭代点,一 步一步逼近最优解,进而得到一个迭代点列,这样便构成求解( 1)的迭代算法。

利用间接法求解最优化问题的途径一般有:一是利用目标函数和约束条件构造增广目标 函数,借此将约束最优化问题转化为无约束最优化问题,然后利用求解无约束最优化问题的 方法间接求解新目标函数的局部最优解或稳定点,如人们所熟悉的惩罚函数法和乘子法;另 一种途径是在可行域内使目标函数下降的迭代点法,如可行点法。

此外,近些年来形成的序 列二次规划算法和信赖域法也引起了人们极大的关注。

在文献[1]中,提出了很多解决非线性 规划的算法。

下面将这些算法以及近年来在此基础上改进的算法简单介绍一下。

1. 序列二次规划法序列二次规划法,简称SQ 方法.亦称约束变尺度法。

3-第三章 非线性方程的数值解法

3-第三章 非线性方程的数值解法

到小数点后第三位小数,需要二分多少次? 解:设 f ( x) x6 x 1,由于 f (1) f (2) 0, f ( x) 0(1 x 2), 所以在区间 [1,2]内方程 f ( x) 0 有唯一实根。
ba 1 令 k 1 10 3 ,求得所需对分次数至少是10次。 2 2
x* xk ba k 1 2
时,停止计算。
§1 根的搜索与二分法
3 2 x 4 x 10 0 在 [1,2] 内的根的近似 例:用二分法求方程 1 2 值,要求绝对误差不超过 10 。 2 3 2 解: f ( x) x 4x 10 f ( x) 3x2 8x 0, x [1,2] 即 f ( x) 严格单调增加,又 f (1) f (2) 0 ,所以方程在[1,2]上有 唯一实根。 ba 1 2 令 2k 1 2 10 ,得到 k 6.64 ,取 k 7 ,即至少二分7次 。计算过程如下:
由 f ( x) 0 转化为 x ( x) 时,迭代函数 ( x) 不是唯一的, ( x) 不同,会产生不同的序列{xk } ,从而收敛情况也不 一样。
§2 迭代法及其迭代收敛的加速方法
几何意义: * x x ( x ) 求方程 的根 ,在几何上就是求直线 y x与曲线 y ( x) 交点 P* 的横坐标,如图所示。从图中可以看出, * ( x ) ( x ) x 当迭代函数 的导数 在根 处满足不同条件时,迭
特点:运算简单,方法可靠,对函数只要求在区间上连续 ;但收敛速度慢,不能用来求复数根及偶数重根。常用于为 其它求根方法提供较好的近似初始值。
§2 迭代法及其迭代收敛的加速方法
迭代法(逐次逼近)

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法

数值分析非线性方程的数值解法数值分析是一种应用数学方法来分析和解决数学问题的领域。

非线性方程是数值分析中一类重要的问题,其解法包括了迭代法、牛顿法、割线法等。

本文将详细介绍这些数值解法及其原理和应用。

一、迭代法迭代法是解非线性方程的一种常用数值方法。

该方法的基本思想是通过不断迭代逼近方程的根,直到达到所需精度或满足停止准则为止。

迭代法的求根过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = g(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

常用的迭代法有简单迭代法、弦截法和牛顿法。

简单迭代法的迭代公式为xn+1 = f(xn),其中f(x)为原方程的一个改写形式。

该方法的收敛性要求函数f(x)在解附近有收敛性且导数在一个区间内收敛。

弦截法的迭代公式为xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

牛顿法的迭代公式为xn+1 = xn - f(xn) / f'(xn),其中f'(x)为f(x)的导数。

该方法通过用切线来逼近方程的根。

二、牛顿法牛顿法是解非线性方程的一种常用迭代法。

该方法通过使用方程的导数来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0。

2. 利用迭代公式xn+1 = xn - f(xn) / f'(xn),计算下一个近似根。

3.重复步骤2,直到满足停止准则为止。

牛顿法的收敛速度较快,但要求方程的导数存在且不为0。

三、割线法割线法是解非线性方程的另一种常用迭代法。

该方法通过连接两个点上的函数值的割线来逼近方程的根。

迭代过程如下:1.选择适当的初始值x0和x12. 计算下一个近似根xn+1 = xn - f(xn) * (xn-xn-1) / (f(xn)-f(xn-1))。

3.重复步骤2,直到满足停止准则为止。

割线法的收敛速度介于简单迭代法和牛顿法之间。

非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法

非线性优化与约束优化问题的求解方法非线性优化问题是在目标函数和约束条件中包含非线性项的优化问题。

约束优化问题是在目标函数中加入了一些约束条件的优化问题。

解决这些问题在实际应用中具有重要意义,因此研究非线性优化和约束优化问题的求解方法具有重要的理论和实际意义。

一、非线性优化问题的求解方法非线性优化问题的求解方法有很多,下面介绍几种常见的方法:1. 黄金分割法:黄金分割法是一种简单但有效的搜索方法,它通过不断缩小搜索范围来逼近最优解。

该方法适用于目标函数单峰且连续的情况。

2. 牛顿法:牛顿法利用目标函数的一阶和二阶导数信息来逼近最优解。

该方法收敛速度较快,但在计算高阶导数或者初始点选取不当时可能产生不稳定的结果。

3. 拟牛顿法:拟牛顿法是对牛顿法的改进,它通过逼近目标函数的Hessian矩阵来加快收敛速度。

拟牛顿法可以通过不同的更新策略来选择Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法或者DFP方法。

4. 全局优化方法:全局优化方法适用于非凸优化问题,它通过遍历搜索空间来寻找全局最优解。

全局优化方法包括遗传算法、粒子群优化等。

二、约束优化问题的求解方法约束优化问题的求解方法也有很多,下面介绍几种常见的方法:1. 等式约束问题的拉格朗日乘子法:等式约束问题可以通过引入拉格朗日乘子来转化为无约束优化问题。

通过求解无约束优化问题的驻点,求得原始约束优化问题的解。

2. 不等式约束问题的罚函数法:不等式约束问题可以通过引入罚函数来转化为无约束优化问题。

罚函数法通过将违反约束条件的点处添加罚项,将约束优化问题转化为无约束问题。

3. 逐次二次规划法:逐次二次规划法是一种常用的求解约束优化问题的方法。

该方法通过依次处理逐个约束来逼近最优解,每次处理都会得到一个更小的问题,直至满足所有约束条件。

4. 内点法:内点法是一种有效的求解约束优化问题的方法。

该方法通过向可行域内部逼近,在整个迭代过程中都保持在可行域内部,从而避免了外点法需要不断向可行域逼近的过程。

非线性规划的解法

非线性规划的解法

非线性规划的解法非线性规划是一类重要的数学规划问题,它包含了很多实际应用场景,如金融市场中的资产配置问题,工程界中的最优设计问题等等。

由于非线性目标函数及约束条件的存在,非线性规划问题难以找到全局最优解,面对这样的问题,研究人员提出了众多的解法。

本文将从梯度法、牛顿法、共轭梯度法、拟牛顿法等方法进行介绍,着重讨论它们的优劣性和适用范围。

一、梯度法首先介绍的是梯度法,在非线性规划中,它是最简单的方法之一。

梯度法的核心思想是通过寻找函数的下降方向来不断地优化目标函数。

特别是在解决单峰函数或弱凸函数方面优势明显。

然而,梯度算法也存在一些不足之处,例如:当函数的梯度下降速度过慢时,算法可能会陷入局部最小值中无法跳出,还需要关注梯度方向更新的频率。

当目标函数的梯度非常大,梯度法在求解时可能会遇到局部性和发散性问题。

因此,它并不适合解决多峰、强凸函数。

二、牛顿法在牛顿法中,通过多项式函数的二阶导数信息对目标函数进行近似,寻找下降方向,以求取第一个局部极小值,有时还可以找到全局最小值。

牛顿法在计算方向时充分利用二阶导数的信息,使梯度下降速度更快,收敛更快。

因此,牛顿法适用于单峰性函数问题,同时由于牛顿法已经充分利用二阶信息,因此在解决问题时更加精确,准确性更高。

但牛顿法的计算量比梯度法大,所以不适合大规模的非线性规划问题。

此外,当一些细节信息不准确时,牛顿法可能会导致计算数值不稳定和影响收敛性。

三、共轭梯度法共轭梯度法是非线性规划的另一种解法方法。

共轭梯度法沿预定义的方向向梯度下降,使梯度下降的方向具有共轭性,从而避免了梯度下降法中的副作用。

基于共轭梯度的方法需要存储早期的梯度,随着迭代的进行,每个轴线性搜索方向的计算都会存储预定的轴单位向量。

共轭梯度方法的收敛速度比梯度方法快,是求解非线性规划的有效方法。

四、拟牛顿法拟牛顿法与牛顿法的思路不同,它在目标函数中利用Broyden、Fletcher、Goldfarb、Shanno(BFGS)算法或拟牛顿法更新的方法来寻找下降方向。

5-非线性方程组的数值解法及最优化方法

5-非线性方程组的数值解法及最优化方法

1 4 0
非线性方程组的数值解法
x10=0; x20=0; k=0; while 1 k=k+1; x1k=(1+x20-0.1*exp(x10))/4; x2k=(x10-x10^2/8)/4; %雅克比迭代法 %x2k=(x1k-x1k^2/8)/4; %高斯-赛德尔迭代法 err1=abs(x1k-x10); err2=abs(x2k-x20); err=max(err1,err2); if err<=0.00000000005 break; end x10=x1k; x20=x2k; end
0.0000055305 0.0000001511 0.0000000041 0.0000000001
非线性方程组的数值解法
牛顿迭代法:根据求解非线性方程的牛顿迭代法,如果已经 k k T ,则 ,, xn 给出方程组 Fx 0 的一个近似根 xk x1k , x2 可把函数 Fx 的分量 fi x, i 1,2,, n 在 x k 处按多元函数泰 勒公式展开,取其线性部分做近似,得
(0.2325668498,0.0564514831) (0.2325670008,0.0564515487) (0.2325670050,0.0564515196) (0.2325670051,0.0564515197) (0.2325670051,0.0564515197)
0.0002023950


所以有
1 x φx 1 2 x1
0
T
取初值 x 代公式收敛。
T 0 x 0 , 0 附近 φx 1,所以迭 0,0 ,在
1 1 x 1 e 40 x2 2 1 1 x1 x2 4 16

非线性约束优化.ppt

非线性约束优化.ppt
gi (X *)T Y 0, i 1, 2,..., I
例42求解不等式约束问题的K-T点,并判断是否为局部极小
例min s.t.
f ( X )(x11)2 x22 g1( X )x1 x22 / 5
解: L( X , ) (x1 1)2 x22 {x1 x22 / 5}
f x1
构造拉日函数:L(X ,, ) f (x)
m i1
i*
gi
(
X
)
l i1
i
hi
(
X
)
如果x*----l.opt. 那么,u*i≥0, 使得
1)驻点条件:f (x)
m i 1
i*gi
(
X
*
)
l j 1
jhj
(
X
*)
0
2)互补条件:
3)非负条件: ui* 0 i 1, 2, , m 4)不等式约束:gi (x) 0 i 1, 2, , m
j 1, 2,..., l
P( X , M k ) f ( X ) (M k , g( X ), h( X ))
m
l
f ( X ) M k { [min(0, gi ( X ))]2 [(hj ( X ))]2}
i 1
j 1
这里(M k , g( X ), h( X ))是惩罚项:M k CM k1
2L( X *, * )
x12
2x2*
41*
4
2L( X *, * )
x1 x2
2x1*
21*
2
2L( X *, * )
x22
0
h1
(
Xx1*) Nhomakorabea4x1*

非线性方程组数值解法

非线性方程组数值解法

非线性方程组数值解法

非线性方程组数值解法是通过数值方法解决非线性方程组问题的一种解法。

非线性方程组不像普通的线性方程组,它们往往没有普遍的解析解,一般只有数值解。

因此,非线性方程组的数值解法非常重要。

非线性方程组数值解法的基本思想是,将非线性方程组分解为多个子问题,并采用一种迭代算法求解这些子问题。

最常见的数值方法有牛顿法、拟牛顿法和共轭梯度法等。

牛顿法是利用曲线上的点的二次近似,将非线性方程分解为两个子问题,转换为求解一个简单的一元方程的问题来求解非线性方程组的数值解。

拟牛顿法利用有限差分方法来求解非线性方程组的数值解,共轭梯度法利用解的搜索方向,进行有效的搜索,通过解的最优性条件收敛到解。

非线性方程组数值解法是目前应用最广泛的数值解法,它能很好地求解非线性方程组。

不仅能有效求解复杂的非线性方程组,还能求出较精确的数值解。

此外,非线性方程组数值解法运算速度快,可以对模型进行实时定位和跟踪,非常适合模拟复杂的动态系统。

总之,非线性方程组数值解法是一种求解复杂非线性方程组的有效解法,它的准确性高,运算速度快,广泛应用于现实世界中的多种工程与科学计算问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性约束优化问题的数值解法在实际问题中,我们经常会遇到一类非线性约束优化问题,即在一定约束条件下,最小化或最大化一个非线性目标函数。

这类问题的数学模型可以表示为:
$$
\begin{aligned}
\min_{x} \quad & f(x) \\
\text{s.t.} \quad & g_i(x) \leq 0, \quad i=1,2,\ldots,m \\
& h_j(x) = 0, \quad j=1,2,\ldots,n
\end{aligned}
$$
其中,$x$是决策变量,$f(x)$是目标函数,$g_i(x)$和$h_j(x)$是约束函数。

有时候,这类问题的解析解并不容易求得,因此需要借助数值方法来找到近似解。

本文将介绍几种常用的非线性约束优化问题的数值解法。

一、拉格朗日乘子法
拉格朗日乘子法是最基础的非线性约束优化问题求解方法之一。

它将原始问题转化为等价的无约束问题,并通过引入拉格朗日乘子来建立求解函数。

具体而言,我们将原始问题改写成拉格朗日函数的形式:
$$
L(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m}\lambda_ig_i(x) +
\sum_{j=1}^{n}\mu_jh_j(x)
$$
其中,$\lambda_i$和$\mu_j$是拉格朗日乘子。

然后,我们对拉格朗日函数求取对$x$的梯度,并令其等于零,得到一组等式约束:$$
\nabla_x L(x,\lambda,\mu) = \nabla f(x) +
\sum_{i=1}^{m}\lambda_i\nabla g_i(x) + \sum_{j=1}^{n}\mu_j\nabla
h_j(x) = 0
$$
再加上约束条件 $g_i(x) \leq 0$ 和 $h_j(x) = 0$,我们可以得到原始问题的一组等价条件。

二、内点法
内点法是解决非线性约束优化问题的一种有效算法。

该方法通过将约束条件转化为惩罚项,将原问题转化为无约束的目标函数最小化问题。

内点法中的核心思想是,通过选取合适的初始点构造路径,使得路径上的点逐渐逼近可行域内,从而找到可行解。

具体而言,内点法将约束转化为罚函数,并通过求取罚函数的鞍点
来逼近原问题的最优解。

其基本思路是在迭代过程中,使迭代点逐渐
趋向可行域内的解,并保持约束残差满足一定的准确度要求。

三、序列二次规划法
序列二次规划法是一种常用的非线性约束优化问题求解方法。

它将
非线性约束优化问题转化为一系列二次规划子问题,并通过求解这些
子问题逐步逼近原问题的最优解。

具体而言,序列二次规划法通过近似原问题的目标函数和约束条件,将其转化为一个二次规划问题。

然后,通过求解这个二次规划问题,
得到一个近似解。

接着,使用这个近似解来构造一个负梯度方向,并
将其作为下一次迭代的搜索方向。

四、粒子群优化算法
粒子群优化算法是一种启发式的求解非线性约束优化问题的方法。

它模拟了鸟群觅食的过程,通过粒子之间的信息交流和位置调整来搜
索最优解。

具体而言,粒子群优化算法使用一组粒子来表示候选解空间,并通
过不断迭代更新粒子的位置和速度来搜索最优解。

在每次迭代中,粒
子会根据自身的历史最优位置和群体最优位置,来调整自己的速度和
位置。

总结
以上介绍了几种常用的非线性约束优化问题的数值解法,包括拉格朗日乘子法、内点法、序列二次规划法和粒子群优化算法。

这些方法在实际应用中都有着广泛的应用,并且在不同的问题类型和约束条件下,其效果也有所差异。

因此,在具体问题求解过程中,需要根据实际情况选择合适的数值解法。

通过合理的模型构建和参数调节,我们可以得到满足约束条件的近似最优解。

通过深入理解这些数值解法的原理和实现细节,我们可以更好地应对实际问题,提高求解效率和准确性。

希望本文对您理解非线性约束优化问题的数值解法有所帮助。

相关文档
最新文档