数学建模大赛国奖论文
全国大学生数学建模国 家奖优秀论文

全国大学生数学建模国家奖优秀论文在当今高度数字化和信息化的时代,数学建模已经成为解决各种实际问题的重要工具。
全国大学生数学建模竞赛作为一项具有高度影响力的赛事,每年都吸引着众多优秀学子参与,而能够获得国家奖的优秀论文更是代表着学生在数学建模领域的卓越成就。
数学建模的本质是将实际问题转化为数学问题,并通过建立数学模型来求解,从而为实际问题提供有效的解决方案。
这些获奖论文通常具有一些显著的特点。
首先,它们能够准确地把握问题的关键。
在面对复杂的实际问题时,参赛学生需要迅速理清问题的核心,明确问题的约束条件和目标。
例如,在研究城市交通拥堵问题时,关键可能在于分析车流量、道路容量、信号灯设置等因素之间的关系,并确定如何优化交通流量以减少拥堵。
其次,优秀论文中的模型建立具有创新性和合理性。
学生们不会拘泥于传统的模型和方法,而是敢于尝试新的思路和技术。
他们可能会结合多种数学方法,如概率论、线性规划、微分方程等,构建一个综合性的模型,以更精确地描述问题。
再者,数据处理和分析能力也是至关重要的。
为了验证模型的有效性,需要收集大量的数据,并进行有效的清洗、整理和分析。
在这个过程中,学生们需要运用统计学知识,判断数据的可靠性和代表性,运用合适的方法对数据进行拟合和预测。
以一篇关于电商平台商品推荐系统的数学建模论文为例。
在这篇论文中,学生们深入研究了用户的购买历史、浏览行为、评价等数据,通过构建协同过滤模型和基于内容的推荐模型,为用户提供个性化的商品推荐。
他们不仅考虑了用户的兴趣偏好,还考虑了商品的热门程度、时效性等因素,使得推荐结果更加准确和实用。
在模型求解方面,他们采用了高效的算法和计算工具,如 Python 中的相关库和机器学习框架,快速得到模型的解。
并且,通过大量的实验和对比分析,验证了模型的性能和优越性。
此外,优秀的论文还注重结果的解释和应用。
模型求解得到的结果不是孤立的数字,而是需要结合实际情况进行合理的解释和分析。
全国研究生数学建模竞赛获奖论文

全国研究生数学建模竞赛获奖论文一、概要《全国研究生数学建模竞赛获奖论文》是对全国范围内研究生数学建模竞赛的优胜者论文的集结和展示。
该竞赛旨在鼓励研究生群体深入探究数学建模理论与实践,挖掘科研潜力,锻炼解决实际问题的能力。
本书收录的论文,均为经过激烈竞争,展现出色创新思维、建模能力和问题解决能力的佳作。
这些论文涉及的领域广泛,包括物理、化学、生物、工程、经济、社会科学等多个学科。
本次竞赛的获奖论文展示了中国研究生在数学建模领域的最新研究成果和前沿思考。
通过对这些论文的研读,可以了解当前研究生数学建模的总体水平,以及未来的发展趋势和研究方向。
这些论文对于推动相关领域的研究进展,提供新的研究思路和方法,具有重要的参考价值和实践指导意义。
本书的一大部分内容是对获奖论文的高度概括和深入分析,包括问题的提出、建模过程、解决方法、结果讨论等各个方面。
通过详尽的阐述,让读者可以全面理解每一篇论文的研究思路和方法。
书中还会介绍各篇论文的创新点、难点及解决策略,以展现研究生们在面对复杂问题时所展现出的科研能力和创新思维。
还将介绍全国研究生数学建模竞赛的背景、发展历程以及未来的发展方向,为读者提供一个全面的视角来理解和参与这一重要的学术活动。
1. 介绍全国研究生数学建模竞赛的背景和意义全国研究生数学建模竞赛是一项针对全国范围内研究生的重要学术竞赛活动,旨在激发研究生在数学建模领域的创新精神和研究热情。
该竞赛不仅为研究生提供了一个展示自身才华的舞台,更是推动数学建模技术发展和应用的重要途径。
其背景源于数学建模在各个领域中的广泛应用,包括工程、经济、金融、生物、医学等多个领域。
随着科技的进步和学科交叉的加深,数学建模已经成为解决复杂问题不可或缺的工具。
全国研究生数学建模竞赛的举办,对于提高研究生的综合素质,培养创新思维和解决问题的能力,推动数学建模技术的研究和发展,具有十分重要的意义。
促进学术交流与合作。
全国研究生数学建模竞赛为来自全国各地的研究生提供了一个交流和学习的平台,促进了学术上的交流与合作,推动了数学建模技术的不断进步。
全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度摘要由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。
设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。
用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。
对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。
发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。
其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。
最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。
建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。
此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。
如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。
对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。
得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。
D、E、F区分别需新增4、2、2个平台。
利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。
其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。
在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。
最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。
全国数模优秀论文

全国数模优秀论文摘要:数学建模竞赛是我国高校和科研机构之间最具影响力的竞赛之一。
在每年的比赛中,数模优秀论文成为了评选标杆。
本文将介绍一些全国数模优秀论文的典型案例以及其独特之处,以期为今后的数学建模竞赛提供参考和借鉴。
第一部分:背景介绍数学建模竞赛在我国的高校和科研机构之间已经有着悠久的历史。
每年,大量的参赛团队通过精心准备和协作,在赛场上展示自己的数学建模能力。
然而,仅有少部分论文能够被评为全国数模优秀论文。
这些论文具有出色的创新性、严谨的研究方法和对实际问题的深入理解。
第二部分:案例分享2.1 实时监测系统优化某团队在2019年的数学建模竞赛中提出了一种实时监测系统的优化方案。
该方案通过改进数据采集与传输方式、优化算法和提高系统的稳定性,使实时监测系统的准确性和效率得到了极大的提升。
这项优化方案在实际应用中显著降低了监测数据的延迟和误差,为实时监测领域的相关研究提供了有益的参考。
2.2 路径优化及决策支持系统另一团队的研究成果是关于路径优化及决策支持系统。
他们利用数学模型和优化算法,对城市交通拥堵问题进行了研究,并提出了一种有效的路径优化策略,能够帮助驾驶员避开拥堵路段,减少交通时间和燃料消耗。
该论文的创新之处在于结合实时交通数据、地理信息和优化算法,为城市交通领域提供了新的思路和解决方案。
2.3 物流网络规划在2020年的数学建模竞赛中,一支团队针对物流网络规划问题进行了深入研究。
他们结合了图论、运筹学和网络优化方法,提出了一种高效的物流网络规划模型,并利用实际数据进行验证。
该模型不仅考虑了用户需求和运输成本,还考虑了不同供应商之间的协同与共享,使物流网络的效率和资源利用率得到了极大的提高。
第三部分:独特之处3.1 创新性全国数模优秀论文的独特之处在于具有创新性。
这些论文通过对现有问题的重新思考,提出了新的解决方法和思路。
创新性不仅体现在算法和模型的设计上,更是在问题的选取和实际应用中的独特性。
数学建模获奖论文模板范文

数学建模获奖论文模板范文在我国倡导素质教育的今天,数学建模受到的关注与日俱增,数学建模已经被应用于数学的教学中了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高职院校数学建模竞赛的思考与建议》一、我校学生数学建模现状1.高职生的数学基础相当薄弱,学习习惯不好,然而数学知识理论性强,计算繁琐,并要求学生有足够的耐心和较强的理性思维能力,这就会让学生在学习数学相关知识时感觉有一定的难度。
而另一方面,高职院校的课时量在尽量压缩,数学应用方面的内容只是蜻蜓点水,根本无法广泛而深入的涉及到位。
例如,我校很多专业只开一个学期64课时的数学课,还有些专业甚至不开数学课,要建立一些比较高等的数学模型,高职学生的数学知识显然不够。
2.高职院校目前的教学方法多表现为填鸭式的教学法,过分强调严格的定理和抽象的逻辑思维,特别是运算技巧的训练讲得过于精细,考试形式单一。
对于高职生来说,只要求他们会套用现成的公式及作一些简单的计算就行,但是目前的教学不能使学生发挥自己的主观能动性,也调动不了学生学习数学的兴趣。
3.目前我校只开设了一门数学方面的公共选修课《数学建模》,一共16次课,仅仅靠课堂上讲的内容让学生来参加数学建模竞赛远远不够,另外,学生又要同时兼顾其他专业课程,因此学习效果不好。
4.组织数学建模赛前培训的师资队伍理论薄弱,只靠一两个青年教师承担培训指导任务,缺乏参赛经验丰富的老教师。
5.我校学生参加数学建模的积极性不高,我校已经连续参加几年的数学建模竞赛,但最多的也就5个队,仍有多数学生称未听过有这项比赛,说明宣传不是很到位。
6.目前组队参赛的任务是交给基础部来完成,而基础部没有学生,这就会造成找队员困难的问题。
二、参加数学建模比赛的意义1.有利于培养学生综合解决问题的能力因为数学建模最后提交的成果是交一篇完整的论文,对于大多数学生来说,都是第一次,它可以提高学生如何把数学知识用到实际生活中的能力,提高学生合理利用网络查阅资料的能力,提高学生的创新意识和团队协作能力等。
全国大学生数学建模竞赛优秀论文

5.1 问题 1 的分析与求解 5.1.1 绝对瓦斯涌出量与相对瓦斯涌出量的计算公式
由问题的分析,鉴定矿井是属于“低瓦斯矿井”还是“高瓦斯矿井”,需算出该矿的绝对瓦斯量 与相对瓦斯涌出量值,与分类标准值进行鉴别。由绝对瓦斯涌出量与相对瓦斯涌出量的定义,结合 相关的符号约定,可知
风量为风速在 1 分钟传播的距离乘以相应巷道横断面面积,公式为:
得出最佳总通风量为1415.062m3 / min ,采煤工作面 的风量为 476.1359m3 / min ,采煤工作面
的风量为 548.5541m3 / min ,局部通风机的额定风量 331.8158m3 / min 。
同时,本文还作了误差分析,对模型进行了评价及推广,并在做出相应简化假设情况下,对模 型作了进一步的改进。
需根据《煤矿安全规程》第一百三十三条的分类标准,鉴别该矿是属于“低瓦斯矿井”还是“高 瓦斯矿井”。由分类标准可知,须考察出该矿的相对瓦斯涌出量和绝对瓦斯涌出量的值,与其分类标 准值进行鉴别。由附表 2 所给监测值,可根据绝对瓦斯涌出量与相对瓦斯涌出量的计算公式,算出 各监测点的绝对瓦斯涌出量与相对瓦斯涌出量。如果经考察出的监测点的相对瓦斯量有小于或等于
二、问题的分析
2.1 背景的分析 煤矿安全生产是目前社会重点关注的热点问题之一,尤其是在能源紧张,对煤碳的需求量不断
增加的情况下,煤矿的安全生产问题更是值得我们关注,这也是建设平安和谐社会的重要组成部分。 根据统计资料,可知大部分煤矿事故的罪魁祸首都是瓦斯或煤尘爆炸。因此,矿井下的瓦斯和煤尘 对煤矿的安全生产构成了重大威胁,做好井下瓦斯和煤尘的监测与控制是实现煤矿安全生产的关键 环节。 2.2 基本预备知识 2.2.1 《煤矿安全规程》第一百三十三条中,矿井瓦斯等级根据矿井相对瓦斯涌出量和矿井绝对瓦 斯涌出量划分为:
数学建模国家二等奖论文

摘要
近年来,随着经济的发展,重金属已给城市土壤带来了一定程度的污染,本文通 过数据分析、建立模型来对城市各区内的土壤重金属污染进行评价和确定污染源等。 针对问题一:第一问,用附件一中给出的数据,用 Matlab 插值法建立三维模型, 总共有 9 个图,一个是取样地点的地形图,另外八个是八种重金属元素的在空间内不 区域的不同采样点的浓度分布图,用不同样色的不同符号代表不同区域内的点,通过 模型图我们可以清楚的看到各种元素不同的空间分布。第二问:模型一利用瑞典科学 家 Hakanson 提出的潜在生态指数法。建立区域重金属的潜在生态指数比例和模型,借 助 Excel 得到不同区域的污染程最终排名:交通区>工业区>生活区>山区>公园绿地区。 在模型一的基础上进一步建立模型二:采用尼梅罗综合污染指数法,建立尼梅罗综合 污染指数模型, 利用 Matlab 软件得到综合污染指数, 根据综合污染指数得到污染等级, 借助 Excel 对污染等级样本数量进行统计,求出轻污染、中污染、重污染这三个污染等 级的样本点总数量在该区总样本点中所占的比例并排名,最终得到该城区内不同区域 重金属的污染程度:工业区>交通区>生活区>公园绿地区>山区。 针对问题二:采用因子分析法和系统聚类分析,将相关性较高的污染指标聚为一 类; 同时建立单因素指数模型。 借助 Excel 求出各区域内的 8 个污染指标的污染指数的 平均值,根据平均值的大小确定该区域内主要的重金属污染元素,再结合实际情况以 及重金属污染物的主要来源进行分析,得出各区域重金属污染的主要原因。 针对问题三:结合问题二中主要重金属污染源的主要原因和生活实际情况来分析 出重金属污染物具有扩散的传播特征。由此我们建立微分方程扩散模型,通过付立叶 变换,将偏微分方程转化为常微分方程,通过方程的求解,可以确定出城市土壤中总 共有 16 种污染源,位置坐标分别为:2 区: (8629,12086,1) 、 (12644,14943,43) , 3 区: (25361,6423,49) 、 (20261,7586,29) 、 (18467,17001,308) 、 (22046,17634, 171) 、 (26852,16114,225) ,4 区: (2708,2295,22) 、 (6869,7286,18) 、 (10685, 5528,34) 、 (22304,10527,40) 、 (13694,2357,33) 、16872,2789,10) 、 (11529, 11243,16) 、 (15248,9106,16)5 区: (9095,16414,29) 针对问题四:对于模型的的优缺点,只需综合问题一、问题二、问题三的模型的 优缺点。要更好地研究城市地质环境的演变模式,我们结合问题一、问题二、问题三, 搜集了不同时期的地质环境条件的基础性和地球化学的的脆弱性两方面的内容进行评 价,建立了区域评价模型, j 单元内城市地质环境条件基础性指数:W基j , j 单元地球 化学脆弱性评价指数: W脆j ,跟据不同时间 R j = ω1 j ⋅W基 j + ω2 j ⋅W脆j 的变化值确定城市 地质环境的演变模式
高校数学建模竞赛获奖论文范文赏析

高校数学建模竞赛获奖论文范文赏析(正文开始)在当今的教育体制中,数学建模竞赛作为一项重要的学术竞赛,已经逐渐受到了高校学生的重视。
这一竞赛不仅考察了学生的数学知识和思维能力,同时也鼓励学生动手实践、独立思考和合作交流的能力。
因此,高校数学建模竞赛获奖论文具有一定的学术研究价值和借鉴意义。
本文将选取一篇高校数学建模竞赛获奖论文进行赏析,以期探索优秀论文的写作技巧和论述思路,对广大数学建模竞赛参赛者提供借鉴和参考。
选取的论文题目为《基于XXX模型的高校教学质量评价研究》。
一、引言在引言部分,作者首先介绍了高校教学质量的重要性和当前存在的问题。
随后,论述了研究的目的和意义,明确了本文的研究要点和方法。
值得注意的是,作者通过对前人研究成果的概述,补充了相关理论和实证研究对于本文的支持。
二、理论基础与模型构建在理论基础与模型构建部分,作者详细介绍了相关理论的背景和意义,并为本研究构建了合适的数学模型。
作者在此部分运用了数学符号、公式等来清晰地表达模型的定义和假设,并给出了相应的解释和推导过程。
此外,作者还结合实际情况,灵活运用了图表等可视化工具,提高了论文的可读性和可理解性。
三、实证研究与数据分析在实证研究与数据分析部分,作者描述了研究方法和实证数据的来源与收集方式,并对数据进行了详细的分析和论证。
作者可以运用适当的表格、图表和统计学方法,对数据进行量化和可视化处理,以便读者更加直观地理解分析结果。
同时,作者在此部分还展示了对实证结果的科学解释和讨论,提出了相应的结论和建议。
四、结论与展望在结论与展望部分,作者总结了研究的主要发现和成果,并针对研究中存在的不足之处提出了进一步深入研究的设想和方向。
作者在此部分可以对研究的局限性进行说明,并提出可行的改进和发展方案,以期引起相关领域学者的关注和参与。
综上所述,这篇高校数学建模竞赛获奖论文范文在结构与内容上展现了较高的水平。
文章在介绍研究背景和问题的同时,恰当地引用了相关的理论和实证研究成果,论据充分且有力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的参赛报名号为(如果赛区设置报名号的话):J2736所属学校(请填写完整的全名):空军工程大学电讯工程学院参赛队员(打印并签名) :1. 胡冰2. 曹盛德3. 杨凯陟指导教师或指导教师组负责人(打印并签名):李炳杰日期: 2010 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2010高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):- 1 -储油罐的变位识别与罐容表标定摘 要本文研究卧式储油罐罐体变位识别与罐容表的标定问题,得到了不同变位角度下的罐容模型及变位参数识别模型。
对于问题一,通过建立恰当的坐标系,利用平行截面积已知时的体积公式,建立了椭圆型储油罐在无变位及仅有纵向变位情形下的罐容模型。
通过计算模型理论值与实验值的误差,分析误差产生的原因,确定了修正函数的形式并利用实验数据拟合出修正函数。
对模型修正后再次进行了误差分析,结果表明,模型理论值与实验数据吻合度较高。
最后,根据修正模型的结果制定了不同变位角下的罐容表。
对于问题二,通过分析横向变位情形下罐容表高度与无横向变位情形下罐容表高度的相互关系,建立两种罐容表高度的转换公式,从而将问题转化为仅有纵向变位情形下的罐容计算问题。
对于纵向变位的罐容问题,将油罐分为左球冠,圆柱体,右球冠三部分分别计算。
柱体部分容积的计算与问题一中的方法相同,球冠部分利用二重积分计算,最终得到反映罐容表高度与罐容关系的数学模型。
根据罐容模型的结果,利用储油罐的实际检测数据,建立了基于最小二乘法原理的变位参数识别模型,该模型的求解结果是储油罐变位参数为纵向变位角 o 2.1α=,横向变位角o 4.4β=。
最后,通过计算确定变位角参数后的模型理论值制定了罐容表,并通过与实际检测数据的比较,分析了模型的正确性。
通过将实际检测数据分组,分别利用变位参数识别模型进行参数识别,我们得到的结果是稳定的,这表明模型具有较高的可靠性。
关键词: 罐容 变位角 参数识别 修正函数 误差分析一 问题的重述1.1 基本情况通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
1.2 有关信息1)典型的储油罐,其主体为圆柱体,两端为球冠体。
2)图2是其罐体纵向倾斜变位的示意图:3)图2是罐体横向偏转变位的截面示意图:油位探针α地平线图2 储油罐纵向倾斜变位后示意图油油浮出油油位探测装置注油检查水平线3)图3是罐体横向偏转变位的截面示意图:1.3有待解决的问题1)为了掌握罐体变位后对罐容表的影响,利用小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。
请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。
2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。
请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。
进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。
二 模型假设及说明2.1模型建立的假设1)假设地基变形后罐体并未发生变形。
2)假设储油罐内部油位探针、注油口、出油管等部件会占用一定的空间。
3)假设罐内部件视为均匀的圆柱体,则它们浸没在油中的体积(近似等于V ∆)应与油料高度0h 成正比。
三 模型中符号说明0h 油浮子高度(即罐容表高度)h油面高度a罐体椭圆面长轴b罐体椭圆面短轴α罐体纵向倾斜角β罐体横向倾斜角S储油部分截面积V储油部分体积r罐体圆柱面半径C球冠高度R球体半径σ修正因子k比例系数E均方差e平均相对误差A投影区域O圆心四模型的建立与求解4.1问题1的分析与求解α=,即为纵向倾由题设可知,在罐体无变位的情况下,等价于罐体纵向倾斜角0斜的一种特殊情况,可纳入对纵向倾斜情况的讨论范围内。
故现仅针对罐体变位的情况进行分析,并建立一般模型[1]。
为了掌握罐体变位后对罐容表的影响,需建立罐容表测量数值H与实际储油体积V 的映射关系,现以油浮子可达最低点为原点,面向纸外为x轴,罐底平行线为y轴,油浮子所在直线为z 轴,对储油罐建立直角坐标系:4.1.1计算横截面积储油体积可以由y 坐标轴上对应的罐椭圆面储油截面积对y 的积分求得[1][2],那么,现先考虑罐椭圆面的截面积:根据所建立的坐标系,可得到椭圆方程:2222x ()1z b a b-+= 02h b << (1) 作水平分割,任取z 轴上(0,h )区间内宽度为dz 的小区间(z ,z+dz ),可求得相应的小横条长度为22b 21a b-(z-)由此可知,对于y 轴上相应点的储油横截面面积为:222()()21hz b S h a dz b ⎡⎤-=-⎢⎥⎣⎦⎰(2)经计算得:22()arcsin 22h b h b S h ab bh h b b π--⎡⎤=++-⎢⎥⎣⎦(3)4.1.2计算储油体积通过截面积对y 的积分求储油体积:设油浮子的高度0z h =,纵向偏移角为0α>,罐底低侧点坐标为1y ,高侧点坐标为2y ,可得y 轴上点对应的储油截面高度为:0h(y)=h tan y α-• (4)联立(3)(4)两式,可以求得[()]S h y 的一个原函数为:[]32222()()()1F(y)= ()arcsin[]1[][2()()]tan 23abh y b h y b h y h y b bh y h y b b b πα⎧⎫--⎪⎪--+---⎨⎬⎪⎪⎩⎭(5)现讨论储油的5种情况:如图6所示,四条虚线段1234,,,L L L L 将储油罐储油分为5种情况,即:1)当储油刚好使油浮子在顶端,即02h b =时,油面线如1L 所示,若储油量继续增加,则油浮子不再移动,此时储油量无法确定,只能得到储油量的一个下限:201V(h ,)[()]dy-abyy S h y απ≥⎰ 02h b = (6)2)当储油刚好浸过储油罐低侧的罐顶时,油面线如2L 所示,设此时油浮子的高度为1z h =,112tan h b y α=+。
若油量继续增加,但不超过1L ,则有体积计算公式:200201tan 2V(h ,)=[()]dy+ab()tany h b h bS h y y ααπα---⎰ 102h h b ≤≤ (7)3)当储油刚好浸过储油罐高侧的罐底时,油面线如3L 所示,设此时油浮子高度为2z h =,22tan h y α=。
若油量继续增加,但不超过2L ,则有体积计算公式:210V(h )=[()]dyy y S h y α⎰ 201h h h ≤≤ (8)4)当储油刚好浸过储油罐油浮子所在探针时(即坐标原点),油面线如4L 所示,此时油浮子高度为0z h =,若油量继续增加,但不超过3L ,则有体积公式:1tan 0V(h ,)=[()]dyh y S h y αα⎰ 020h h ≤≤ (9)5)当储油低于油浮子所在探针时,油面线在4L 以下,此时油浮子高度为00z h ==,储油量无法确定,只能得到它的一个上限:10V(h ,)[()]dyy S h y α≤⎰ 00h = (10)总结以上五种情况,针对0α>,可得如下分段函数:220211110002110tan 0201tan020[()]dy-aby22=[()]dy+ab()2tan (,)=[()]dy=[()]dy 0[()]dy 0y y h by y h y y S h y h b h bS h y y h h bV h S h y h h h S h y h h S h y h ααππαα-⎧≥=⎪⎪--≤<⎪⎪⎪≤<⎨⎪⎪<<⎪⎪⎪≤=⎩⎰⎰⎰⎰⎰ (11)若偏角α=0,那么可由底面积乘以高直接算出,即:0021(,)()()V h S h y y α=•- (12)若偏角0α<,那么122tan h b y α=-,21tan h y α=-,同理可得:1012120202020tan 210020102tan 00[()]dy+aby22=[()]dy+ab )2tan (,)=[()]dy=[()]dy0[()]dy 0y h by y y y hy S h y h b h b S h y y h h bV h S h y h h h S h y h h S h y h ααππαα-⎧≥=⎪⎪-⎪-≤<⎪⎪⎪≤<⎨⎪⎪<<⎪⎪⎪≤=⎪⎩⎰⎰⎰⎰⎰( (13) 4.1.3误差分析对于题中所涉及的两组实验: 1)油罐倾斜角0α=时:联立(3)(4)(12),带入数据120.89,0.6,0.4, 2.05a b y y ===-=得油料体积V 油位高度0h 的关系:当0h 取实验中的值时,经计算得相应的油料体积,利用Matlab 软件做出图形显示理论值与实际试验间的差距[3]:将理论值与实验值作差,得到曲线如下:由上图可以看出,计算值的误差V ∆与油料高度0h 近似成线性关系,进一步分析:由于储油罐内部油位探针、注油口、出油管等部件会占用一定的空间,所以在同一高度下由实验所测得的油料体积会小于理论计算值。