数学建模论文参考
数学建模论文参考范文9700字

数学建模论文参考范文9700字数学建模论文范文篇一:数模论文范文Ⅰ、问题的重述石油是重要的战略资源,进入新世纪以来石油价格一路高涨且波动频繁,油价成为全球关注的焦点。
成品油的合理定价对国家经济发展及社会和谐稳定具有重要的意义,还关系到民生,石油储备等多方面的问题。
石油价格的变化深深影响着经济和社会的发展,由于石油的特殊战略地位,油价的波动已经成为各国政府、学者以及业界关注的焦点,每次油价上涨更是吸引了各方广泛的关注。
统计数据表明,自2009年以来,国内成品油价格共调整17次,其中12次上调,5次下调。
以北京为例,93号汽油的零售价也从5.33元/升上涨至目前的8.33元/升,涨幅约为56%。
油价的上涨引起了广大消费者的不满,每到成品油调价窗口期,油价话题总会引发热议;与此同时,现行的成品油定价机制也遭到了广泛质疑,定价机制改革的呼声也日益高涨。
成品油价格究竟多少合适,随之成为一个敏感而又复杂的问题。
当前我国成品油定价体制是否依然合理?现在的问题就是如何综合考虑各种影响成品油价格的因素如原油价格等提出一个合理的成品油定价机制。
试根据中国国情,收集相关数据,综合考虑各种因素,并通过数学建模的方法,就成品油定价机制进行定性分析与定量计算,得出明确、有说服力的结论。
最后,根据建模分析计算的结果,给国家发改委写一份报告,提出自己的新成品油价格机制,并说明新机制的优越性。
Ⅰ、问题的分析及思路2.1、问题分析石油价格过高会影响国民经济的积极性,影响社会稳定,过低又会影响企业的正常运转等,还需要考虑到与国际油价接轨以及我国特殊的国情,以及我国现行的石油价格机制所存在的不合理问题。
现行成品油价格机制是否合理,需要一个量化指标来判定,然而影响成品油定价机制的指标的相关关系和所反应结果的准确度都是模糊不清的。
应此我们需要基于FCE模糊综合评判算法建立一个评价模型,还需要基于AHP层次分析法得到在各级别指标的权重向量。
优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
数学建模论文

数学建模论文数学建模论文模板15篇[集合]无论在学习或是工作中,大家对论文都再熟悉不过了吧,论文是讨论某种问题或研究某种问题的文章。
怎么写论文才能避免踩雷呢?下面是小编帮大家整理的数学建模论文模板,仅供参考,希望能够帮助到大家。
数学建模论文模板1—、前言数学与统计学教学指导委员会在20xx年作的数学学科专业发展战略研宄报告中指出:今后五年和五年以后,以数学和计算机为主要工具的、国民经济各领域所需要的应用型人才的需求数量很大,这一类数学人才的需求估计将占总需求的一半左右,五年以后,将占总需求的一半以上。
可见,培养具有应用数学和计算机来解决实际问题能力的应用型人才,对社会的发展具有重要意义,而毕业论文(设计)是实现应用型人才培养目标的一个重要实贱环节。
本文就如何将数学建模教学法思想贯穿于应用数学建模教学法思想在应用数学毕业论文(设计)教学中的实践试论高等职业院校高等数学课程改革争议试论高等职业院校高等数学课程改革刍议浅析初中数学课程教学如何做到优质教育试论计算机辅助教学在数学课堂中的作用新课程下初中数学作业布置的实践与思考浅谈多种方法在初中数学教学中的应用浅谈初中数学教法与学法的同步改革数学教学中学生参与意识的培养20xx数学毕业论文开题报告(设计)教学中进行了研宄。
二、应用型人才须要有数学建模意识和能力应用型人才指的是在一线工作岗位上,能把理论付诸实贱,能承担转化应用、实际生产和创造实际价值的任务,为社会经济发展服务。
应用型人才的基本素质为综合应用知识、创新应用与开拓创业的精神。
对于应用数学的应用型人才来说,要求具备从现实问题中抽象出数学规律,应用已知的数学规律来解决实际问题的能力。
学生应受到严格的科学思维训练,具有比较扎实的基础理论知识,初步掌握科学研宄的方法,能应用数学知识去解决实际问题。
而数学建模是应用数学知识解决实际问题的重要实贱手段,它要求学生能把实际问题转化成用公式、图表、程序来描述的数学模型,然后利用数学理论、计算机求解建模,并对结果进行解释,达到解决实际问题的目的。
数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。
数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。
关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。
广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。
一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。
如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。
一、二年级是学生初步感知数学得重要时期。
低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。
数学建模经典论文五篇

1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。
大学生数学建模论文(专业推荐范文10篇)

大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。
大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。
调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。
文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。
关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。
许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。
数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。
数学建模论文(7篇)

数学建模论文(7篇)在学习、工作中,大家总少不了接触论文吧,论文可以推广经验,交流认识。
如何写一篇有思想、有文采的论文呢?为了帮助大家更好的写作数学建模论文模板,山草香整理分享了7篇数学建模论文。
计算数学建模是用数学的思考方式,采用数学的方法和语言,通过简化,抽象的方式来解决实际问题的一种数学手段。
数学建模所解决的问题不止现实的,还包括对未来的一种预见。
数学建模可以说和我们的生活息息相关,尤其是如今科技发达的今天。
数学建模应用领域超乎我们的想象,甚至达到无所不及的程度,随着数学建模在大学教学中的广泛使用,使数学建模不止成为一种学科,更重要的是指导新生代更好的利用现代科学技术,成为高科技人才,把我国人才强国,科教兴国的战略推向一个新的高度。
1.数学建模对教学过程的作用1.1数学建模引进大学数学教学的必要。
教学过程,是教师根据社会发展要求和当代学生身心发展的特点,借助教学条件,指导学生通过认识教学内容从而认识客观世界,并在此基础之上发展自身的过程,即教学活动的展开过程。
以往高工专的数学教学存在着知识单一,内容陈旧,脱离实际等缺陷,已经不能满足时代的发展,如今的数学教学过程不是单纯的传授数学学科知识,而是通过数学教学过程引导学生认识科学,理解科学,从而指导实践,促进学生的德智体美劳全面的进步和发展。
因此数学建模成为一门学科,被各大高等院校广泛引用和推广,其实数学建模不止应用在大学数学教学中,其他一切教学过程多可引进数学建模。
1.2数学建模在大学数学教学中的运用。
大学数学教师通过这个数学建模过程来引导学生解决问题和指导实践的能力。
再次建模结果对现实生活的指导,这是大学数学教学中数学建模所需要达到的效果和要求。
不再停留在理论学习,而是通过理论指导实践,从而为科学的进步和人才综合水平的提高提供可能。
2.数学建模对当代大学生的作用2.2数学建模对学生综合能力的提高数学建模是大学数学教师运用数学科学去分析和解决实际问题,在数学建模学习的过程中,大学生的数学能力得到提高,其分析问题、解决问题的能力得到提高,这对大学生毕业走向社会具有着重大意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽建筑工业学院大学生数学建模竞赛报名表编号(由活动组织者填写):队员详细信息(选手题写)参赛组员1姓名姜恩三性别男院系安徽建筑工业学院土木工程学院专业勘查技术与工程年级大二宿舍17#314 宿舍电话电子信箱手机参赛组员2姓名徐可性别男院系安徽建筑工业学院土木工程学院专业勘查技术与工程年级大二宿舍17#319 宿舍电话电子信箱手机参赛组员3姓名张义性别男院系安徽建筑工业学院土木工程学院专业勘查年级大二宿舍17#317 宿舍电话电子信箱手机指导教师:宫珊珊数学建模竞赛摘要本文通过分析安徽省各校以及全国各赛区建模成绩,构造合理的数学模型,对安徽省各高校以及全国各赛区的数学建模竞赛实力进行排序并给出其分布情况。
最后依据分析得出的数据为参加全国赛的同学提供了一些有价值的建议。
针对问题一题目附件中给出了安徽省各高校的建模成绩获奖统计。
根据此我们引用层次分析法构建数学模型,对各高校建模成绩各奖项加权赋值,得到安徽赛区各高校建模成绩排序以及其分布情况。
针对问题二题目中只给出全国各高校的获奖情况,没有区分各高校所属哪赛区,所以我们首先将各高校按所属省或者直辖市分赛区,共分30个赛区,利用Excel软件统计出的全国各赛区参加2010年高教社杯报名及获奖情况。
按获奖比例对国家一、二等奖加权赋值,得到各赛区的本科组与专科组建模成绩。
然后两组数据运用加权赋值方法处理得到此赛区的总评。
得出全国各赛区建模实力的排序。
针对问题三由问题一、问题二得出的数据,我们从各赛区获奖概率,各赛区获奖分布、队员的分职合作、心态、技巧等各方面提出了自己的意见与建议。
关键词:层次分析法数学建模加权赋值一、问题的重述“一次参赛,终身受益”,全国大学生数学建模竞赛是教育部与中国工业与应用数学学会举办的全国性大学生竞赛,是目前参赛人数最多、最具影响力的全国性大学生学科竞赛。
请根据2010全国赛的报名和获奖情况(见附件)分别讨论以下问题:1.安徽赛区各高校的数学建模竞赛实力排名及分布情况;2.全国各赛区的大学生数学建模竞赛实力排名及分布情况;3.通过数据分析为参加全国赛的同学提供一些有价值的建议。
二、问题分析关于问题一需要对安徽赛区各校建模成绩科学、合理地排序。
首先观察附件1中安徽赛区各校各队的建模成绩,从中统计出各高校成绩的汇总。
然后针对获奖的种类,通过层次分析法对国家一、二等奖省一、二、三等奖进行由定性到定量的转化,并计算出各校的对应得分。
最后,以得分为标准对高校的成绩进行了排序。
另外,在对安徽赛区建模成绩进行排序时,由于题中给出2010年高教社杯报名与获奖情况的数据,数据中成功参赛仅代表并不能体现一个学校的建模实力,即与建模实力无关,因此在考虑实力权重时可忽略。
排序只能代表2010年时各高校的建模实力。
关于问题二给出全国各个赛区的建模成绩科学合理排序。
结合附件2所给出的数据,我们运用Excel软件统计出全国各赛区高校2010年高教社杯获奖情况,按获奖比列对国家本科组和专科组一、二等奖加权赋值,求出各赛区建模成绩排序。
考虑到某些省份或者直辖市未参加建模竞赛的对数较少,所以将参加队数较少的省份或者直辖市与周边省赛区合并。
这样全国可分为二十个赛区。
详情见附表3;通过加权之后得到本科组G1和专科组G2数据,然后将G1和G2再进行一次加权,得到G,既是各赛区的最后总得分,依此得分为标准,进行赛区排名。
排名结果见附表4;在对各赛区数学建模竞赛实力的分布上,我们给出了全国各赛区得分折线图。
关于问题三问题三的解决主要是对问题一与问题二的总结与拓展。
在对问题一、二经过分析的基础上可以从赛区实力,南北差异以及各高校高考时招收学生分数进行对比。
三、基本假设与符号说明3.1基本假设1.假设各学校、各队获奖互不影响,相互独立。
2.假设各赛区评分报奖标准一致。
3.假设无特殊因素影响各队发挥。
4.假设建模组委会评分、报奖公正公开。
5.奖励等级的评定公平、合理6.给定的数据准确无误 3.2符号说明A 由相对尺度组成的判断矩阵 w 各种奖励权重组成的权向量 CI 矩阵A 的一致性检验指标 RI 随机一致性指标 CR 一致性比率注:后文使用的其他符号在相应的文体中自有说明四、模型建立与求解4.1 问题一 安徽赛区各高校的数学建模竞赛实力排名及分布情况; 排序模型与求解高校建模实力直接与在建模中取得的成绩有关,建模实力与奖励间的关系如图表示: 指标一 国一 a1 指标二 国二 a2 指标三 省一 b1 指标四 省二 b2 指标五省三b3注:a1,a2,b1,b2,b3分别为对应的获奖的数量首先,将抽象各项指标转化为数学模型,即构造判断矩阵。
在层次分析法中,为使矩阵中的各要素的重要性能够进行定量显示,引进了矩阵判断标度(1~9标度法)。
1111A=n n nn a a aa ⎛⎫⎪ ⎪ ⎪⎝⎭KM O M L尺度 含义1表示两个因素相比,具有相同重要性归一化的到向量w ,此时,得到的w 向量就是最终的权向量。
最后,由每个高校在各个项目的奖项的个数与权向量即可得出高校的建模实力,由实力水平即可对各高校进行排名。
由此可得矩阵:1357911357311A=1355311113753111119753⎛⎫ ⎪ ⎪ ⎪⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭将A 矩阵按列归一化的矩阵: 归一化后的特征向量:对应求出矩阵A 的最大特征值max λ=5.0607当求出权向量后需要对矩阵A 进行一致性检验,由以上数据对判断矩阵进行一致性检验。
矩阵A 的一致性检验指标为:并将CR 与0.1进行比较,可以得出矩阵A 的一致性指标的变化范围。
当CR 越小表示矩阵A的一致性越好,当CR大于0.1时,表示矩阵A不能采纳。
CR=CI/RI=0.015175/1.12=0.0135<0.1由以上分析的矩阵A的一致性好,w可以采用并作为各种奖励的权值。
e=0.5028*a1+0.2602*a2+0.1344*b1+0.0678*b2+0.0348*b3注:e表示某一高校数学建模竞赛实力相对系数如:安徽大学e=1*0.5028+4*0.2602+10*0.1344+3*0.0678+6*0.0348=3.2998 将题中附表所给数据进行统计并带入有效数据求得安徽赛区2010年高教社杯建模实力排名如附表1。
实力分布如下图表所示:2010年安徽赛区参加高教社杯获奖情况与总排名国家一等奖国家二等奖省一等奖省二等奖省三等奖e/相对系数实力排名安徽大学 1 4 10 3 6 3.2998 1 安徽财经大学 6 9 5 3 3.2142 2 解放军炮兵学院 1 2 10 1 4 2.5742 3 中国科学技术大学1 9 5 4 2.1906 4 安徽师范大学 1 4 6 11 1.5874 5 安徽建筑大学 1 1 3 4 1.3054 6 安庆师范学院 12 5 7 1.1116 7 安徽工业大学 1 4 2 1 0.9685 8 解放军电子工程学院 4 4 2 0.8784 9 安徽工程大学3 3 3 0.7111 10 池州学院 3 2 2 0.6084 11 合肥师范学院 3 1 0.471 12 淮北师范大学 1 2 4 0.4092 13 巢湖学院 2 2 0.4044 14 合肥工业大学 1 15 0.3762 15 安徽理工大学 1 2 2 0.3396 16 安徽财经大学商学院 2 2 0.3384 17 滁州学院 1 1 3 0.3066 18 河海大学文天学院 1 1 3 0.3066 18 安徽新华学院 2 1 0.3036 19 蚌埠学院 2 1 0.3036 19 安徽农业大学 2 4 0.2748 20 淮南师范学院 1 4 0.2736 21 安徽大学江淮学院 1 1 2 0.2718 22 宿州学院 2 3 0.24 23 皖西学院 1 4 0.207 24 阜阳师范学院 2 2 0.2052 25 合肥学院 1 3 0.1722 26 亳州师范高等专科学校 2 1 0.1704 27 安徽绿海商务职业学院 2 0.0696 28 芜湖信息技术职业学院 2 0.0696 28黄山学院 1 0.0678 29 铜陵学院 1 0.0678 29 安徽新闻出版职业技术学院 1 0.0348 30 六安职业技术学院 1 0.0348 30 :4.2问题二全国各赛区的大学生数学建模竞赛实力排名及分布情况;首先,根据题目所给的附件一2010年高教社杯全国大学生数学建模竞赛报名情况以及附件二三获奖情况,将全国所有的学校分为30个赛区。
(由于有些省份或者直辖市报名参赛队数较少,对整体排名影响较大,所以将报名参加队数较少的省份或者直辖市归入到邻近省份,构成一个赛区)。
然后,利用Excel软件统计各赛区获得本科组国一国二以及专科组国一国二获奖总数分布,统计表格如下:(1) 2010年第SX个赛区获本科组国家一等奖和国家二等奖的总数分别为Q,Y;专科组国家一等奖和二等奖的总数分别为A,B;国家本科组一等奖和二等奖颁奖总数分别为C,D;国家专科组一等奖和二等奖颁奖总数分别为E,F;数据见上表。
(2)加权得到2010年第SX省的数学建模本科组实力G1=Q*D/(C+D)+Y*C/(C+D) G2=A*F/(E+F)+B*E/(E+F);本科组:S1:G1=6*210/(210+907)+31*907/(210+907)=26.9S2:G1=17*210/(210+907)+10*907/(210+907)=11.7S3:G1=7*210/(210+907)+41*907/(210+907)=33.2………………………………………(3)对G1和G2进行最优化求解,然后得出全国各赛区2010年参加高教社杯数学建模实力的总排名。
总排名如下表所示:.2010年各赛区本科组建模实力排名2010年各赛区专科组建模实力排名赛区序号赛区G1 排名赛区序号赛区G2 排名1 北京赛区34.11 广东赛区10.31602512 江苏赛区27.22 山西赛区7.504028623 四川赛区23.33 山东赛区5.31602534 山东赛区22.44 江西赛区5.256042945 陕西赛区20.55 江苏赛区5.128021456 河南赛区16.66 陕西赛区4.692032267 湖南赛区16.77 浙江赛区4.327648178 湖北赛区15.88 四川赛区3.504028689 浙江赛区15.99 重庆赛区3.316025910 辽宁赛区14.092211281010 河南赛区3.06803931011 上海赛区13. 11 11 上海赛区2.50402861112 重庆赛区13.076096691212 广西赛区2.06803931213 吉林赛区11.1313 北京赛区1.94001791314 河北赛区10.1414 贵州赛区1.75201431415 广东赛区10.89615041515 海南赛区1.75201431416 安徽赛区10.1616 湖北赛区1.69203221517 江西赛区7.1717 吉林赛区1.56401071618 贵州赛区7.1718 河北赛区1.50402861719 福建赛区7.51819 安徽赛区1.18800351820 山西赛区7.0080572961920 福建赛区1.18800351821 云南赛区5.20 21 黑龙江赛区1.12802141922 黑龙江赛区5.82122 云南赛区12023 天津赛区5.72223 湖南赛区0.75201432124 甘肃赛区4.02324 天津赛区0.75201432125 广西赛区3.52425 甘肃赛区0.56401072226 新疆赛区3.02526 新疆赛区0.56401072227 海南赛区2.42627 辽宁赛区2328 内蒙古赛区1.27 28 内蒙古赛区2329 青海赛区0.12829 青海赛区2330 西藏赛区0.12930 西藏赛区234.3 问题三通过数据分析为参加全国赛的同学提供一些有价值的建议。