离散数学第16章_简单版
离散数学(第16讲)

1 2 3 4 1 2 3 4 2 4 1 3 (1 2 4 3), 3 2 4 1 ( 3 4 1), (1 2 4 3)(3 4 1) ( 2 4)
2018/11/12 计算机学院 15
例6.3
设
1 2 3 4 5 6 1 2 3 4 5 6 1 1 3 6 5 4 2 , 2 2 1 3 5 6 4
2018/11/12
f2={<a,1>,<b,2>}; f4={<a,2>,<b,2>}。
计算机学院 6
常将从A到B的一切函数构成的集合记为BA:BA={f|f:A→B}
函数相等
定义6.2 f=g。 设 f和g :X→Y是两个函数,如果对
xX ,都有f(x)=g(x), 则称f与g相等,记为
2018/11/12
2018/11/12 计算机学院 14
循环的积
一个置换可能由一个单一的循环表示出来, 也可能由多个循环连接在一起表示,称之为循 环的积(置换的复合)。 当两个循环没有公共元素时,它们的积仍是 原来的两个循环;当两个循环有公共元素时, 它们的积按照复合的意义变成了新的循环的积。 例如
1 2 3 4 5 6 0 3 1 6 4 2 5 (1 3 6 5 2)
2018/11/12 计算机学院 3ຫໍສະໝຸດ §6.1 一般集合的函数概念
定义6.1 设f是集合A到B的关系,如果对每个x∈A,都 存在惟一的y∈B,使得<x,y>∈f,则称关系f为A到B 的函数(或映射、变换),记为f:A→B。当 <x,y>∈f时,通常记为y=f(x),这时称x为函数的自 变量,称y为x在f下的函数值(或映像)。 由函数的定义显然有: 1) domf=A,称为函数f的定义域; 2) ranf=B,称为函数f的值域,并称f(A)为A在f下的像; 3) <x,y>∈f∧<x,z>∈f y=z; 4) |f|=|A|。
离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案之欧阳与创编

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔ 0∨(0∧1)⇔0(2)(p↔r)∧(﹁q∨s)⇔(0↔1)∧(1∨1)⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r)⇔(1∧1∧1)↔(0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q)⇔(0∧1)→(1∧0)⇔0→0⇔1 17.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除 0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r)↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p ∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔ (⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∨(⌝q∨p))∧(⌝q∨(⌝q∨p))⇔1∧(p∨⌝q)⇔(p∨⌝q)⇔ M1⇔∏(1)(2) 主合取范式为:⌝(p→q)∧q∧r⇔⌝(⌝p∨q)∧q∧r⇔(p∧⌝q)∧q∧r⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p∨(q∧r))→(p∨q∨r)⇔⌝(p∨(q∧r))→(p∨q∨r)⇔(⌝p∧(⌝q∨⌝r))∨(p∨q∨r)⇔(⌝p∨(p∨q∨r))∧((⌝q∨⌝r))∨(p∨q∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明: (2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x):2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命xF题,在(b)中为真命题。
离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p?r)∧(﹁q∨s)⇔(0?1)∧(1∨1)⇔0∧1⇔0.(3)(⌝(4)(176能被2q:3r:2s:619(4)(p(5)(p(6)((p答:(pqp→q⌝0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P qrp∨qp∧r(p∨q)→(p∧r)0000010010014.(2)(p→(4)(p∧证明(2(45.(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p⇔1∧(p⇔(p∨⇔∏(2)⌝(p→q)⇔(p∧(3)⇔⌝⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r⑤⌝q⑥p→q⑦¬p(3证明(4①t②t③q④s⑤q⑥(⑦(⑧q⑨q⑩p15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p②p③﹁④¬⑤¬⑥r⑦r⑧r3.:(1)均有2=(x+)(x).(2)其中(a)(b)解:F(x):2=(x+)(x).G(x):x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命题。
离散数学sec16-17 群

模 6 加群 <Z6, >中 由 2 生成的子群 <2> = { 0, 2, 4 }
21
特殊子群2
例 设G为群,令C是与G中所有的可交换的元素构 成的集合,即 C={a|a∈G∧x∈G(ax=xa)} 则C是G的子群,称为G的中心。
限群。 群G的基数称为群G的阶,有限群G的阶记作|G|。
(2)只含单位元的群称为平凡群。
(3)若群G中的二元运算是可交换的,则称G为交 换群或阿贝尔(Abel)群。
11
群论中常用的概念-元素的n次幂
定义 设G是群,a∈G,n∈Z,则a的n次幂 P250 定义17.4
e a n a n1a
(a 1 )n
换 σ∈Sn,逆置换σ1是σ 的逆元. 这就证明了Sn关于置换的乘法构成一个群,称为 n
元对称群. n元对称群的子群称为 n元置换群.
31
例 设 S = {1, 2, 3},3元对称群
S3的对称群是? 运算表? S3的子群?
32
n元置换的分解式
• k阶轮换与轮换分解方法 定义11.11 P258
定义 设<G,>是代数系统,为二元运算。如果运 算是可结合的,存在单位元e∈G,并且对G中 的任何元素x都有x-1∈G,则称G为群(group)。 (P249定义17.1)
例 <Z,+>,<Q,+>,<R,+>,<Z+,+>,<N,+>是不是群?
<Zn,>是群?
8
14.4+16离散数学

13
有向图关联矩阵的性质: 有向图关联矩阵的性质:
14
有向图关联矩阵的性质: 有向图关联矩阵的性质:
(1)∑ m ij = 0( j = 1,2,⋯, m ) ,从而 ∑ ∑ m ij = 0 ,这说明 j=1 i =1 i =1 有向图关联矩阵中所有元素之和为0。
n
m
n
0 0 0 − 1 1 1 −1 1 0 0 0 0 0 1 1 0 0 − 1 − 1 − 1
(1 ) i = 1 j= 1
n
n
长度为1的通路的总数。 长度为1的通路的总数。 而 中环的个数, 中长度为1的回路总数。 ∑ a ii 为D中环的个数,即D中长度为1的回路总数。
(1 ) i =1 n
24
问下图中有多少条长度为2、3、4…. 的通路?
25
0 0 0 ' A = 0 0 0 0
0 0 0 0
2 1 0 0 1 0 0 0 1 0 1 1
∑a
j= 1
n
(1 ) ij
,于是 n n a (1) = n d + ( v ) = m = d ( v i )(i = 1,2,⋯, n ) ∑ ∑ ij ∑ i
+
i =1 j=1 i =1
∑a
i =1
4
强连通图和单向连通图的判别定理 定理14 14. 定理14.8 有向图D是强连通图当且仅当D中 存在经过每个顶点至少一次的回路。 定理14.9 有向图D是单向连通图当且仅当D 定理14.9 中存在经过每个顶点至少一次的通路。
5
例
(1)
(2)
(3)
(1)是强连通图 (2)是单向连通图 (3)是弱连通图
离散数学 图论-树

中序遍历(次序:左-根-右) 前序遍历(次序:根-左-右) 后序遍历(次序:左-右-根) b 中序遍历: c b e d g f a I k h j 前序遍历: a b c d e f g h i k j 后序遍历: c e g f d b k i j h a
例:给定二叉树,写出三种访问 结点的序列
是否为根树
(a) (no)
(b) (no)
(c) (yes)
从树根到T的任意顶点v的通 路(路径)长度称为v的层数。 v5的层数为 层。
层数最大顶点的层数称为树 高.将平凡树也称为根树。 右图中树高为( )。
v1
v2 v3
v4 v8v5Fra bibliotekv6v7 v10
v9
在根树中,由于各有向边的方向是一 致的,所以画根树时可以省去各边上的所 有箭头,并将树根画在最上方.
等长码:0-000;1-001;2-010;3-011;4-100; 5-101;6-110;7-111. 总权值: W2=3*100=300
4、二叉树的周游(遍历)
二叉树的周游:对于一棵二叉树的每一个结点都访问一次且 仅一次的操作 1)做一条绕行整个二叉树的行走路线(不能穿过树枝) 2)按行走路线经过结点的位臵(左边、下边、右边) 得到周游的方法有三种: 中序遍历(路线经过结点下边时访问结点) 访问的次序:左子树-根-右子树 前序遍历(路线经过结点左边时访问结点) 访问的次序:根-左子树-右子树 后序遍历(路线经过结点右边时访问结点) 访问的次序:左子树-右子树-根
2、根树中顶点的关系
定义:设T为一棵非平凡的根树, v2 ∀vi,vj∈V(T),若vi可达vj,则称vi为 vj的祖先,vj为vi的后代; v4 v5 若vi邻接到vj(即<vi,vj>∈E(T),称 vi为vj的父亲,而vj为vi的儿子 v8 若vj,vk的父亲相同,则称vj与vk是兄 弟
《离散数学》课件-第16章树

18
16.3 根树及其应用
19
定义(有向树)设D是有向图,如果D的基图是无向 树,则称D为有向树。
在有向树中最重要的是根树。 定义16.6(根树)一棵非平凡的有向树,如果恰有 一个顶点的入度为O,其余所有顶点的入度均为1,则称该 树为根树。 入度为0的顶点称为树根,入度为1出度为0的顶点称 为树叶,入度为1出度不为0的点称为内点,内点和树根统 称为分支点。 树根到一个顶点的有向通路的长度称为该顶点的层数。 层数最大顶点的层数称为树高。 平凡树也称为根树。
2
16.1 树及其性质
3
定义16.1(树和森林) 连通且无回路的无向图称为无向树,简称为树,常用
T表示树。 平凡图为树,称为平凡树。 非连通且每个连通分支是树的无向图称为森林。 T中度数为1的顶点(悬挂顶点)称为树叶,度数大于
1的顶点称为分支点。 称只有一个分支点,且分支点的度数为n-1的n(n≥3)
定义16.8(子树)设T为一棵根树,则其任一顶点v 及其后代导若将层数相同的顶点都 标定次序,则称T为有序树。
根据每个分支点的儿子数以及是否有序,可将根树 分成如下若干类:
定义(跟树分类)设T为一棵根树 (1)若T的每个分支点至多有r个儿子,则称T为r叉 树。又若r叉树是有序的,则称它为r叉有序树。 (2)若T的每个分支点恰好有r个儿子,则称T为r叉 正则树。又若r叉正则树是有序的,则称它为r叉正则有 序树。 (3)若T为r叉正则树,且每个树叶的层数均为树高, 则称T为r叉完全正则树。又若r叉完全正则树是有序的, 则称它为r叉完全正则有序树。
8
平均编码长度为:L = ∑ P( i )× l( i ) = 2.53bit i=1
离散数学——树ppt课件

无向树的性质
定理16.2 设T是n阶非平凡的无向树,则T中至少有两片树叶。
证明
设T有x片树叶,由握手定理及定理16.1可知,
2(n 1) d(vi ) x 2(n x)
由上式解出x≥2。
12
例16.1
例16.1 画出6阶所有非同构的无向树。
解答 设Ti是6阶无向树。 由定理16.1可知,Ti的边数mi=5, 由握手定理可知,∑dTi(vj)=10,且δ(Ti)≥1,△(Ti)≤5。 于是Ti的度数列必为以下情况之一。
(1) 1,1,1,1,1,5 (2) 1,1,1,1,2,4 (3) 1,1,1,1,3,3 (4) 1,1,1,2,2,3 (5) 1,1,2,2,2,2
(4)对应两棵非同构的树, 在一棵树中两个2度顶点相邻, 在另一棵树中不相邻, 其他情况均能画出一棵非同构 的树。
13
例16.1
人们常称只有一个分支点,且分支点的度数为n-1的 n(n≥3)阶无向树为星形图,称唯一的分支点为星心。
知,G-e已不是连通图, 所以,e为桥。
9
(5)(6)
如果G是连通的且G中任何边均为桥,则G中没有回路,但在任 何两个不同的顶点之间加一条新边,在所得图中得到唯一的 一个含新边的圈。
因为G中每条边均为桥,删掉任何边,将使G变成不连通图, 所以,G中没有回路,也即G中无圈。
又由于G连通,所以G为树,由(1) (2)可知,
u,v∈V,且u≠v,则u与v之间存在唯一的路径Г,
则Г∪(u,v)((u,v)为加的新边)为G中的圈, 显然圈是唯一的。
10
(6)(1)
如果G中没有回路,但在任何两个不同的顶点之间加一条新边, 在所得图中得到唯一的一个含新边的圈,则G是树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2m = 2(n1) = 2(2+x) = 13+22+x
解出x = 3,故T有3片树叶.
T 的度数列应为 1, 1, 1, 2, 2, 3, 易知3度顶点与1个2度顶点相邻 与和2个2度顶点均相邻是非同 构的,因而有2棵非同构的无向 树T1, T2,如图所示.
例2 已知无向树T有5片树叶,2度与3度顶点各1个, 其余顶点的度数均为4,求T的阶数n,并画出满 足要求的所有非同构的无向树. 解 设T的阶数为n, 则边数为n1,4度顶点的个 数为n7. 由握手定理得 2m = 2(n1) = 51+21+31+4(n7) 解出n = 8,4度顶点为1个.
由此解出s k,这与s < k矛盾.
3. 证明:n阶 (n>1)阶无向树既不是欧拉图也不是 哈密顿图 证: (1)当n>1时,无向树 至少有两片树叶,而树叶是奇 度顶点,因此,不可能为欧拉图 (2) 当n=2时,T为K2,而K2不是哈密顿图,当 n>2时,T中有割点,根据定理15.6,有割点的图不 是哈密顿图
•
2、无向树的等价定义及性质 定理16.1 设G=<V,E>是n阶m条边的无向图,则下面 各命题是等价的: (1) G 是树 (2) G 中任意两个顶点之间存在惟一的路径. (3) G 中无回路且 m=n1. (4) G 是连通的且 m=n1. (5) G 是连通的且 G 中任何边均为桥. (6) G 中没有回路,但在任何两个不同的顶点之间加 一条新边,在所得图中得到惟一的一个含新边的 圈.
பைடு நூலகம்
(5) 生成树T的余树
导出子图
——全体弦组成的集合的
二、基本回路系统
定理16.3 无向图G具有生成树当且仅当G连通. 推论1 G为n阶m条边的无向连通图,则mn1.
推论2
的边数为mn+1.
推论3 为G的生成树T的余树,C为G中任意一个 圈,则C与 一定有公共边. 证 否则,C中的边全在T中,这与T为树矛盾.
T的度数列为1, 1, 1, 1, 1, 2, 3, 4,共有3棵非同构 的无向树,如图所示.
第二节 生成树
一、生成树及其存在条件
定义16.2 设G为无向图
(1) G的树——T 是G 的子图并且是树 (2) G的生成树——T 是G 的生成子图并且是树 (3) 生成树T的树枝——T 中的边 (4) 生成树T的弦——不在T 中的边
定理16.2 设T是n阶非平凡的无向树,则T 中至 少有两片树叶. 证 设 T 有 x 片树叶,由握手定理及定理16.1可知,
由上式解出x 2.
例1 已知无向树T中有1个3度顶点,2个2度顶点, 其余顶点全是树叶,试求树叶数,并画出满足 要求的非同构的无向树. 解 解本题用树的性质m=n1,握手定理. 设有x片树叶,于是 n = 1+2+x = 3+x,
第十六章 树
• 主要内容 • 无向树及其性质 • 生成树
•
第一节 无向树及其性质
一 无向树的定义及主要定理 定义16.1 (1) 无向树——连通无回路的无向图 (2) 平凡树——平凡图 (3) 森林——至少由两个连通分支(每个都是树) 组成 (4) 树叶——1度顶点 (5) 分支点——度数2的顶点
第十六章 习题课
主要内容 • 无向树及其性质 • 生成树 基本要求 • 深刻理解无向树的定义及性质 • 熟练地求解无向树,生成树
二、练习题 1. 无向树 T 有 ni 个 i 度顶点, i=2, 3, …,k, 其余顶点全是树叶, 求 T 的树叶数.
,及握手定理. 解 用树的性质:边数 m=n1(n 为阶数) (1) n ni t
i 2
k
k
t为树叶数
(2) m ni t 1
i 2
(3) 2 m 2 ni 2t 2 d (vi ) i ni t 从而解出 t (i 2)ni 2
i 3 i 2 k i 1 i 2
k
n
k
2.设n阶非平凡的无向树T中,(T) k,k 1. 证 明T至少 有k片树叶. 证 反证法. 否则,T至多有s片树叶,s < k,下面利用握手定理 及树的性质m = n1推出矛盾. 由于(T) k,故存在v0,d(v0) k. 于是,