离散数学(第十六章

合集下载

离散数学(第16讲)

离散数学(第16讲)

1 2 3 4 1 2 3 4 2 4 1 3 (1 2 4 3), 3 2 4 1 ( 3 4 1), (1 2 4 3)(3 4 1) ( 2 4)
2018/11/12 计算机学院 15
例6.3

1 2 3 4 5 6 1 2 3 4 5 6 1 1 3 6 5 4 2 , 2 2 1 3 5 6 4
2018/11/12
f2={<a,1>,<b,2>}; f4={<a,2>,<b,2>}。
计算机学院 6
常将从A到B的一切函数构成的集合记为BA:BA={f|f:A→B}
函数相等
定义6.2 f=g。 设 f和g :X→Y是两个函数,如果对
xX ,都有f(x)=g(x), 则称f与g相等,记为
2018/11/12
2018/11/12 计算机学院 14
循环的积

一个置换可能由一个单一的循环表示出来, 也可能由多个循环连接在一起表示,称之为循 环的积(置换的复合)。 当两个循环没有公共元素时,它们的积仍是 原来的两个循环;当两个循环有公共元素时, 它们的积按照复合的意义变成了新的循环的积。 例如
1 2 3 4 5 6 0 3 1 6 4 2 5 (1 3 6 5 2)
2018/11/12 计算机学院 3ຫໍສະໝຸດ §6.1 一般集合的函数概念
定义6.1 设f是集合A到B的关系,如果对每个x∈A,都 存在惟一的y∈B,使得<x,y>∈f,则称关系f为A到B 的函数(或映射、变换),记为f:A→B。当 <x,y>∈f时,通常记为y=f(x),这时称x为函数的自 变量,称y为x在f下的函数值(或映像)。 由函数的定义显然有: 1) domf=A,称为函数f的定义域; 2) ranf=B,称为函数f的值域,并称f(A)为A在f下的像; 3) <x,y>∈f∧<x,z>∈f y=z; 4) |f|=|A|。

离散数学sec16-17 群

离散数学sec16-17 群
整数加群<Z,+>, 由 2 生成的子群是 <2> = { 2k | k∈Z } = 2Z
模 6 加群 <Z6, >中 由 2 生成的子群 <2> = { 0, 2, 4 }
21
特殊子群2
例 设G为群,令C是与G中所有的可交换的元素构 成的集合,即 C={a|a∈G∧x∈G(ax=xa)} 则C是G的子群,称为G的中心。
限群。 群G的基数称为群G的阶,有限群G的阶记作|G|。
(2)只含单位元的群称为平凡群。
(3)若群G中的二元运算是可交换的,则称G为交 换群或阿贝尔(Abel)群。
11
群论中常用的概念-元素的n次幂
定义 设G是群,a∈G,n∈Z,则a的n次幂 P250 定义17.4
e a n a n1a
(a 1 )n
换 σ∈Sn,逆置换σ1是σ 的逆元. 这就证明了Sn关于置换的乘法构成一个群,称为 n
元对称群. n元对称群的子群称为 n元置换群.
31
例 设 S = {1, 2, 3},3元对称群
S3的对称群是? 运算表? S3的子群?
32
n元置换的分解式
• k阶轮换与轮换分解方法 定义11.11 P258
定义 设<G,>是代数系统,为二元运算。如果运 算是可结合的,存在单位元e∈G,并且对G中 的任何元素x都有x-1∈G,则称G为群(group)。 (P249定义17.1)
例 <Z,+>,<Q,+>,<R,+>,<Z+,+>,<N,+>是不是群?
<Zn,>是群?
8

离散数学 图论-树

离散数学 图论-树

中序遍历(次序:左-根-右) 前序遍历(次序:根-左-右) 后序遍历(次序:左-右-根) b 中序遍历: c b e d g f a I k h j 前序遍历: a b c d e f g h i k j 后序遍历: c e g f d b k i j h a
例:给定二叉树,写出三种访问 结点的序列
是否为根树
(a) (no)
(b) (no)
(c) (yes)
从树根到T的任意顶点v的通 路(路径)长度称为v的层数。 v5的层数为 层。
层数最大顶点的层数称为树 高.将平凡树也称为根树。 右图中树高为( )。
v1
v2 v3
v4 v8v5Fra bibliotekv6v7 v10
v9
在根树中,由于各有向边的方向是一 致的,所以画根树时可以省去各边上的所 有箭头,并将树根画在最上方.
等长码:0-000;1-001;2-010;3-011;4-100; 5-101;6-110;7-111. 总权值: W2=3*100=300
4、二叉树的周游(遍历)
二叉树的周游:对于一棵二叉树的每一个结点都访问一次且 仅一次的操作 1)做一条绕行整个二叉树的行走路线(不能穿过树枝) 2)按行走路线经过结点的位臵(左边、下边、右边) 得到周游的方法有三种: 中序遍历(路线经过结点下边时访问结点) 访问的次序:左子树-根-右子树 前序遍历(路线经过结点左边时访问结点) 访问的次序:根-左子树-右子树 后序遍历(路线经过结点右边时访问结点) 访问的次序:左子树-右子树-根
2、根树中顶点的关系
定义:设T为一棵非平凡的根树, v2 ∀vi,vj∈V(T),若vi可达vj,则称vi为 vj的祖先,vj为vi的后代; v4 v5 若vi邻接到vj(即<vi,vj>∈E(T),称 vi为vj的父亲,而vj为vi的儿子 v8 若vj,vk的父亲相同,则称vj与vk是兄 弟

离散数学课件16.1-2无向树和生成树

离散数学课件16.1-2无向树和生成树
由定理9.1可知m=n-1,将此结果代入 上式经过整理得k≥2,这说明T至少有 2片树叶.
生成树
❖ 设G=<V,E>是无向连通图,T是G的 生成子图,并且T是树,则称T是G的生 成树.
❖ G在T中的边称为T的树枝, ❖ G不在T中的边称为T的弦. ❖ T的所有弦的集合的导出子图称为T
的余树.
(2)为(1)的一棵生成树T,(3)为T 的余树,注意余树不一定是树.
定理 任何连通图G至少存在一棵生成 树.
推论1 设n阶无向连通图G有m条边,则 m≥n-1.
推论2 设n阶无向连通图G有m条边,T 是G的生成树,T'是T的余树,则T'中有 m-n+1条边.

基本回路
在图中,实边所示的子图是图G的一 棵生成树T,d,e,f为T的树枝,a,b,c 为T的弦.在T上加弦a,产生G的一 个初级回路aed.在T上加弦b,产生 G的一个初级回路bdf.在T上加弦 c,产生G的一个初级回路cef.这3 个回路中每一个回路都只含一条 弦,其余的边都是树枝,这样的回 路称为基本回路.
定义 设T是n阶连通图G=<V,E>的 一棵生成树,称T的n-1个树枝对应的 G的n-1个割集(每个割集只含一个 树枝,其余的边都是弦)S1,S2,···,Sn-1 为对应生成树T的G的基本割集,称 {S1,S2,···,Sn-1}为对应生成树T的基 本割集系统.
对一个n阶连通图G来说,对应 不同的生成树的基本割集可能 不一样,但基本割集的个数必为 n-1个,这也是G的固有特性.
T有5个树枝a,b,c,d,e,因而有5个基本割 集: Sa={a,g,f}; Sb={b,g,h}; Sc={c,f,h}; Sd={d,i,h}; Se={e,f,i};

《离散数学》课件-第16章树

《离散数学》课件-第16章树
解:易见所求为该图的一棵最小生成树,如图所示 总造价为57
18
16.3 根树及其应用
19
定义(有向树)设D是有向图,如果D的基图是无向 树,则称D为有向树。
在有向树中最重要的是根树。 定义16.6(根树)一棵非平凡的有向树,如果恰有 一个顶点的入度为O,其余所有顶点的入度均为1,则称该 树为根树。 入度为0的顶点称为树根,入度为1出度为0的顶点称 为树叶,入度为1出度不为0的点称为内点,内点和树根统 称为分支点。 树根到一个顶点的有向通路的长度称为该顶点的层数。 层数最大顶点的层数称为树高。 平凡树也称为根树。
2
16.1 树及其性质
3
定义16.1(树和森林) 连通且无回路的无向图称为无向树,简称为树,常用
T表示树。 平凡图为树,称为平凡树。 非连通且每个连通分支是树的无向图称为森林。 T中度数为1的顶点(悬挂顶点)称为树叶,度数大于
1的顶点称为分支点。 称只有一个分支点,且分支点的度数为n-1的n(n≥3)
定义16.8(子树)设T为一棵根树,则其任一顶点v 及其后代导若将层数相同的顶点都 标定次序,则称T为有序树。
根据每个分支点的儿子数以及是否有序,可将根树 分成如下若干类:
定义(跟树分类)设T为一棵根树 (1)若T的每个分支点至多有r个儿子,则称T为r叉 树。又若r叉树是有序的,则称它为r叉有序树。 (2)若T的每个分支点恰好有r个儿子,则称T为r叉 正则树。又若r叉正则树是有序的,则称它为r叉正则有 序树。 (3)若T为r叉正则树,且每个树叶的层数均为树高, 则称T为r叉完全正则树。又若r叉完全正则树是有序的, 则称它为r叉完全正则有序树。
8
平均编码长度为:L = ∑ P( i )× l( i ) = 2.53bit i=1

离散数学第十六章课件省名师优质课赛课获奖课件市赛课一等奖课件

离散数学第十六章课件省名师优质课赛课获奖课件市赛课一等奖课件

Sc={c,f,h}
g
h
i
Sd={d,h,i}
Se={e,f,i}
基本割集系统为:{Sa , Sb , Sc , Sd , Se}
割集秩为5.
14
实例
例 下图实线边所示为生成树,求基本回路系统与基本割集系统
解 弦e, f, g相应旳基本回路分别为 Ce=e b c, Cf=f a b c, Cg=g a b c d, C基={Ce, Cf, Cg}.
所求最小生成树如 图所示,W(T)=38.
17
16.3 根树及其应用
定义16.6 有向树T ——基图为无向树旳有向图。 (1) T 为根树——T 中一种顶点入度为0,其他顶点入度均为1
旳有向树. (2) 树根——入度为0旳顶点 (3) 树叶——入度为1,出度为0旳顶点 (4) 内点——入度为1,出度不为0旳顶点 (5) 分支点——树根与内点旳总称 (6) 顶点v旳层数——从树根到任意顶点v旳途径旳长度(即
途径中旳边数) (7) 树高——T 中全部顶点旳最大层数 (8) 平凡根树——平凡图
18
根树实例
根树旳画法:树根放上方,省去全部有向边上旳箭头 如右图所示
a是树根 b,e,f,h,i是树叶 c,d,g是内点 a,c,d,g是分支点 a为0层;1层有b,c; 2层有d,e,f; 3层有g,h; 4层有i. 树高为4
6
子图
定义14.8 G=<V,E>, G =<V ,E >
(1) G G —— G 为G旳子图,G为G 旳母图
(2) 若G G且V =V,则称G 为G旳生成子图
(3) 若V V或E E,称G 为G旳真子图
(4) V (V V且V
)旳导出子图,记作G[V ]

大学离散数学屈婉玲版课后习题第十六章部分课后习题参考答案

大学离散数学屈婉玲版课后习题第十六章部分课后习题参考答案

第十六章部分课后习题参考答案1、画出所有5阶和7阶非同构的无向树.2、一棵无向树T 有5片树叶,3个2度分支点,其余的分支点都是3度顶点,问T 有几个顶点?解:设3度分支点x 个,则)135(232315-++⨯=+⨯+⨯x x ,解得3=xT 有11个顶点3、无向树T 有8个树叶,2个3度分支点,其余的分支点都是4度顶点,问T 有几个4度分支点?根据T 的度数列,请至少画出4棵非同构的无向树。

解:设4度分支点x 个,则)128(243218-++⨯=+⨯+⨯x x ,解得2=x度数列1111111133444、棵无向树T 有i n (i=2,3,…,k )个i 度分支点,其余顶点都是树叶,问T应该有几片树叶?解:设树叶x片,则)1(21-+⨯=⨯+⨯xnxinii ,解得2)2(+-=inix评论:2,3,4题都是用了两个结论,一是握手定理,二是1-=nm5、n(n≥3)阶无向树T的最大度∆(T)至少为几?最多为几?解:2,n-16、若n(n≥3)阶无向树T的最大度∆(T) =2,问T中最长的路径长度为几?解:n-17、证明:n(n≥2) 阶无向树不是欧拉图.证明:无向树没有回路,因而不是欧拉图。

8、证明:n(n≥2) 阶无向树不是哈密顿图.证明:无向树没有回路,因而不是哈密顿图。

9、证明:任何无向树T都是二部图.证明:无向树没有回路,因而不存在技术长度的圈,是二部图。

10、什么样的无向树T既是欧拉图,又是哈密顿图?解:一阶无向树14、设e为无向连通图G中的一条边,e在G的任何生成树中,问e应有什么性质?解:e是桥15、设e为无向连通图G中的一条边,e不在G的任何生成树中,问e应有什么性质?解:e是环23、已知n阶m条的无向图G是k(k≥2)棵树组成的森林,证明:m = n-k.;证明:数学归纳法。

k=1时, m = n-1,结论成立;设k=t-1(t-11)时,结论成立,当k=t时,无向图G是t棵树组成的森林,任取两棵树,每棵树任取一个顶点,这两个顶点连线。

离散数学高等里离散数学课件-CHAP

离散数学高等里离散数学课件-CHAP
图论
图的基本概念

连接两个节点的线段称为边。
简单图与多重图
只含一条边的图称为简单图, 含有相同端点的多条边称为多 重边。
节点
图中的顶点称为节点。
定向图与无向图
如果边有方向,则称为定向图; 如果边无方向,则称为无向图。
有限图与无限图
节点和边都有限的图称为有限 图,节点或边至少有一个为无 限的图称为无限图。
发展
随着计算机科学的快速发展,离散数学也得到了迅速的发展 。许多新的分支如组合数学、离散概率论等不断涌现,并广 泛应用于计算机科学、工程学、物理学等领域。
离散数学的应用领域
计算机科学
离散数学在计算机科学中有着广泛的 应用,如算法设计、数据结构、计算 机图形学、数据库系统等。
工程学
离散数学在工程学中也有着广泛的应 用,如电子工程、通信工程、机械工 程等。
要点二
详细描述
集合可以用列举法、描述法、图示法等多种方法来表示。 列举法是将集合中的所有元素一一列举出来,适用于元素 数量较少的集合。描述法是用数学符号和逻辑表达式来描 述集合中的元素,适用于元素数量较多且具有共同特征的 集合。图示法则是用图形来表示集合,直观易懂,适用于 具有明显包含关系的集合。
03
如果图中任意两个节点之间都存在一 条路径,则称该图为连通图。
路径与回路
欧拉回路与哈密顿回路
如果一条回路恰好经过图中的每条边 一次,则称为欧拉回路;如果一条回 路恰好经过图中的每个节点一次,则 称为哈密顿回路。
连接两个节点的序列称为路径,如果 路径的起点和终点是同一点,则称为 回路。
04
离散概率论
离散概率的基本概念
图的表示方法
邻接矩阵
用矩阵表示图中节点之 间的关系,如果节点i与 节点j之间存在一条边, 则矩阵中第i行第j列的 元素为1,否则为0。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加权长度为3+4+5+6=18
v1
v2
3 v5 5 4
6
v4
v3
最小生成树16
解答(2)
(1)选择权值为3的边(v1,v5);
(2)选择权值为4的边(v4,v5); (3)选择权值为4的边(v1,v4);
形成回路,避开
v1
v2
(4)选择权值为5的边(v2,v5);
3 v5 5
(5)选择权值为6的边(v3,v5);
(3)(4). 只需证明G连通. 用反证法. 否则G有s(s2)个连 通
分支都是小树. 于是有mi=ni1, ,
s
s
m mi ni s n s (s 2)
i1
i1
这与m=n1矛盾.
4
证明思路
(4)(5). 只需证明G 中每条边都是桥. 为此只需证明命题 “G 是 n 阶 m 条边的无向连通图,则 mn1”.
边,在所得图中得到惟一的一个含新边的圈.
3
证明思路
(1)(2). 关键一步是, 若路径不惟一必有回路.
(2)(3). 若G中有回路,则回路上任意两点之间的路径不 惟一. 对n用归纳法证明m=n1.
n=1正确. 设nk时对,证n=k+1时也对:取G中边e,
Ge有且仅有两个连通分支G1,G2(为什么?) . nik,由归纳 假设得mi=ni1, i=1,2. 于是,m=m1+m2+1=n1+n22+1=n1.
命题的证明: 对n归纳. eE, Ge只有n2条边,由命题可知Ge不连通,故e为桥. (5)(6). 由(5)易知G为树,由(1)(2)知,u,vV(uv), u到v有惟一路径,加新边(u,v)得惟一的一个圈. (6)(1). 只需证明G连通,这是显然的.
5
无向树的性质
定理16.2 设T是n阶非平凡的无向树,则T 中至少有两片树叶. 证 设 T 有 x 片树叶,由握手定理及定理16.1可知,
(6)选择权值为8的边(f,e); 最小生成树
加权长度=1+2+3+4+8=18 15
求最小生成树举例
求图G的最小生成树 (1)选择权值为3的边(v1,v5);
(2)选择权值为4的边(v1,v4); (3)选择权值为4的边(v4,v5);
形成回路,避开 (4)选择权值为5的边(v2,v5);
(5)选择权值为6的边(v3,v5);
14
解答
(1)选择权值为1的边(c,d);
(2)选择权值为2的边(b,f);
b 3c
(3)选择权值为3的边(b,c); (4)选择权值为4的边(a,b);
4
(5)权值为5的边(a,f),形成回路a ,避开
2
1 d
权值为6的边(a,c),形成回路,避开;
f
权值为7的边(d,f),形成回路,避开;
8
e
求最小生成树的一个算法 避圈法(Kruskal)设G=<V,E,W>,将G中非环边按权从小 到大排序:e1, e2, …, em. (1) 取e1在T中 (2) 查e2,若e2与e1不构成回路,取e2也在T 中,否则弃e2. (3) 再查e3,…, 直到得到生成树为止.
13
避圈法求最小生成树举例
用避圈法求图G的最小生成树
2m = 2(n1) = 51+21+31+4(n7) 解出n = 8,4度顶点为1个.
8
例题
T的度数列为1, 1, 1, 1, 1, 2, 3, 4,共有3棵非同构16.2 设G为无向图 (1) G的生成树——T 是G 的生成子图并且是树 (2) 生成树T的树枝——T 中的边 (3) 生成树T的弦——不在T 中的边 (4) 生成树T的余树 ——全体弦组成的集合的导出子图
2(n 1) d(vi ) x 2(n x)
由上式解出x 2.
6
例题
例1 已知无向树T中有1个3度顶点,2个2度顶点,其余顶点 全是树叶,试求树叶数,并画出满足要求的非同构的无向树.
解 解本题用树的性质m=n1,握手定理. 设有x片树叶,于是 n = 1+2+x = 3+x,
2m = 2(n1) = 2(2+x) = 13+22+x 解出x = 3,故T有3片树叶.
4
加权长度为3+4+5+6=18
6
v4
v3
最小生成树不唯一,最小生成树的加权长度相同 17
16.3 根树及其应用
定义16.6 T是有向树(基图为无向树) (1) T 为根树——T 中一个顶点入度为0,其余的入度均为1. (2) 树根——入度为0的顶点 (3) 树叶——入度为1,出度为0的顶点 (4) 内点——入度为1,出度不为0的顶点 (5) 分支点——树根与内点的总称 (6) 顶点v的层数——从树根到v的通路长度 (7) 树高——T 中层数最大顶点的层数 (8) 平凡根树——平凡图
定理16.1 设G=<V,E>是n阶m条边的无向图,则下面各命题 是等价的: (1) G 是树 (2) G 中任意两个顶点之间存在惟一的路径. (3) G 中无回路且 m=n1. (4) G 是连通的且 m=n1. (5) G 是连通的且 G 中任何边均为桥. (6) G 中没有回路,但在任何两个不同的顶点之间加一条新
T
T 不一定连通,也不一定不含回路,如图所示
10
生成树举例
求图G的生成树
图T1和T2均为G的生成树。
11
生成树存在条件
定理16.3 无向图G具有生成树当且仅当G连通. 证 必要性显然. 充分性用破圈法(注意:在圈上删除任何一条边,不破坏 连通性)
12
最小生成树
定义16.5 T是G=<V,E,W>的生成树 (1) W(T)——T各边权之和 (2) 最小生成树——G的所有生成树中权最小的
16.1 无向树及其性质
定义16.1 (1) 无向树——连通无回路的无向图 (2) 平凡树——平凡图 (3) 森林——至少由两个连通分支(每个都是树)组成 (4) 树叶——1度顶点 (5) 分支点——度数2的顶点
1
树的举例
判断图G1、G2、G3是否为树? 有回路
不连通

不是
不是 2
无向树的等价定义
T 的度数列应为 1, 1, 1, 2, 2, 3, 易知3度顶点与1个2度顶点相邻 与和2个2度顶点均相邻是非同 构的,因而有2棵非同构的无向 树T1, T2,如图所示.
7
例题
例2 已知无向树T有5片树叶,2度与3度顶点各1个,其余顶 点的度数均为4,求T的阶数n,并画出满足要求的所有非同 构的无向树. 解 设T的阶数为n, 则边数为n1,4度顶点的个数为n7. 由握手定理得
相关文档
最新文档