组合数学 答案
(完整word版)组合数学课后答案

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。
证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。
假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。
假设至少有两人谁都不认识,则认识的人数为0的至少有两人。
任取11个整数,求证其中至少有两个数的差是10的整数倍。
证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。
现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。
证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。
证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。
由鸽巢原理知,至少有2个坐标的情况相同。
又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。
因为奇数+奇数= 偶数;偶数+偶数=偶数。
因此只需找以上2个情况相同的点。
而已证明:存在至少2个坐标的情况相同。
证明成立。
一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。
一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。
那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。
证明:在任意选取的n+2个正整数中存在两个正整数,其差或和能被2n整除。
(书上例题2.1.3)证明:对于任意一个整数,它除以2n的余数显然只有2n种情况,即:0,1,2,…,2n-2,2n-1。
组合数学参考答案(卢开澄第四版)

《组合数学》第二版(姜建国著)-课后习题答案全

习题一(排列与组合)1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数?解:该题相当于从“1,3,5,7,9”五个数字中分别选出1,2,3,4作排列的方案数;(1)选1个,即构成1位数,共有15P 个;(2)选2个,即构成两位数,共有25P 个;(3)选3个,即构成3位数,共有35P 个;(4)选4个,即构成4位数,共有45P 个;由加法法则可知,所求的整数共有:12345555205P P P P +++=个。
2.比5400小并具有下列性质的正整数有多少个?(1)每位的数字全不同;(2)每位数字不同且不出现数字2与7;解:(1)比5400小且每位数字全不同的正整数;按正整数的位数可分为以下几种情况:① 一位数,可从1~9中任取一个,共有9个;② 两位数。
十位上的数可从1~9中选取,个位数上的数可从其余9个数字中选取,根据乘法法则,共有9981⨯=个;③ 三位数。
百位上的数可从1~9中选取,剩下的两位数可从其余9个数中选2个进行排列,根据乘法法则,共有299648P ⨯=个;④ 四位数。
又可分三种情况:⏹ 千位上的数从1~4中选取,剩下的三位数从剩下的9个数字中选3个进行排列,根据乘法法则,共有3942016P ⨯=个;⏹ 千位上的数取5,百位上的数从1~3中选取,剩下的两位数从剩下的8个数字中选2个进行排列,共有283168P ⨯=个;⏹ 千位上的数取5,百位上的数取0,剩下的两位数从剩下的8个数字中选2个进行排列,共有2856P =个;根据加法法则,满足条件的正整数共有:9816482016168562978+++++=个;(2)比5400小且每位数字不同且不出现数字2与7的正整数;按正整数的位数可分为以下几种情况:设{0,1,3,4,5,6,8,9}A =① 一位数,可从{0}A -中任取一个,共有7个;② 两位数。
十位上的数可从{0}A -中选取,个位数上的数可从A 中其余7个数字中选取,根据乘法法则,共有7749⨯=个;③ 三位数。
组合数学课后习题答案

题目:
1. 已知集合A={a,b,c,d},求A的子集的个数。
答案:
集合A={a,b,c,d}的子集的个数可以用组合数学中的2^n来计算,其中n表示集合A中
元素的个数,即n=4,因此A的子集的个数为2^4=16。
A的子集可以分为空集和非空集,空集只有
一个,即空集,而非空集有15个,它们分
别是:{a}、{b}、{c}、{d}、{a,b}、{a,c}、{a,d}、{b,c}、{b,d}、{c,d}、{a,b,c}、{a,b,d}、{a,c,d}、{b,c,d}、{a,b,c,d}。
由此可知,集合A={a,b,c,d}的子集的个数为16个。
2. 已知集合A={1,2,3,4,5},求A的子集的个数。
答案:
集合A={1,2,3,4,5}的子集的个数可以用组合数学中的2^n来计算,其中n表示集合A
中元素的个数,即n=5,因此A的子集的个
数为2^5=32。
A的子集可以分为空集和非空集,空集只有
一个,即空集,而非空集有31个,它们分
别是:{1}、{2}、{3}、{4}、{5}、{1,2}、{1,3}、{1,4}、{1,5}、{2,3}、{2,4}、{2,5}、{3,4}、{3,5}、{4,5}、{1,2,3}、{1,2,4}、{1,2,5}、{1,3,4}、{1,3,5}、{1,4,5}、{2,3,4}、{2,3,5}、{2,4,5}、{3,4,5}、{1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,3,4,5}、{2,3,4,5}、{1,2,3,4,5}。
由此可知,集合A={1,2,3,4,5}的子集的个数为32个。
组合数学课后习题答案

组合数学课后习题答案问题1求解以下组合数:(a)C(5, 2)(b)C(7, 3)(c)C(10, 5)解答:(a)C(5, 2) 表示从5个不同元素中选取2个的组合数。
根据组合数的定义,我们可以使用公式 C(n, k) = n! / (k! * (n-k)!) 来计算组合数。
计算 C(5, 2): C(5, 2) = 5! / (2! * (5-2)!) = 5! / (2! * 3!) = (5 * 4 * 3!) / (2! * 3!) = (5 * 4) / 2 = 10所以 C(5, 2) = 10。
(b)C(7, 3) 表示从7个不同元素中选取3个的组合数。
计算 C(7, 3): C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = (7 * 6 * 5 * 4!) / (3! * 4!) = (7 * 6 * 5) / 3 = 35 * 2 = 70所以 C(7, 3) = 70。
(c)C(10, 5) 表示从10个不同元素中选取5个的组合数。
计算 C(10, 5): C(10, 5) = 10! / (5! * (10-5)!) = 10! / (5! * 5!) = (10 * 9 * 8 * 7 * 6 * 5!) / (5! * 5!) = (10 * 9 * 8 * 7 * 6) / (5 * 4 * 3 * 2 * 1) = 252所以 C(10, 5) = 252。
问题2在一个集合 {a, b, c, d, e} 中,求解以下问题:(a)有多少种不同的3个元素的子集?(b)有多少种不同的4个元素的子集?(c)有多少种不同的空集合?(a)在一个集合 {a, b, c, d, e} 中选取3个元素的子集。
子集的元素个数为3,所以我们需要从5个元素中选取3个。
利用组合数的公式 C(n, k) = n! / (k! * (n-k)!),我们可以计算组合数。
《组合数学》姜建国著(第二版)-课后习题答案完全版

组合数学(第2版)-姜建国,岳建国习题一(排列与组合)1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数? 解:该题相当于从“1,3,5,7,9”五个数字中分别选出1,2,3,4作排列的方案数;(1)选1个,即构成1位数,共有15P 个;(2)选2个,即构成两位数,共有25P 个;(3)选3个,即构成3位数,共有35P 个;(4)选4个,即构成4位数,共有45P 个;由加法法则可知,所求的整数共有:12345555205P P P P +++=个。
2.比5400小并具有下列性质的正整数有多少个?(1)每位的数字全不同;(2)每位数字不同且不出现数字2与7;解:(1)比5400小且每位数字全不同的正整数;按正整数的位数可分为以下几种情况:① 一位数,可从1~9中任取一个,共有9个;② 两位数。
十位上的数可从1~9中选取,个位数上的数可从其余9个数字中选取,根据乘法法则,共有9981⨯=个;③ 三位数。
百位上的数可从1~9中选取,剩下的两位数可从其余9个数中选2个进行排列,根据乘法法则,共有299648P ⨯=个;④ 四位数。
又可分三种情况:⏹ 千位上的数从1~4中选取,剩下的三位数从剩下的9个数字中选3个进行排列,根据乘法法则,共有3942016P ⨯=个;⏹ 千位上的数取5,百位上的数从1~3中选取,剩下的两位数从剩下的8个数字中选2个进行排列,共有283168P ⨯=个;⏹ 千位上的数取5,百位上的数取0,剩下的两位数从剩下的8个数字中选2个进行排列,共有2856P =个;根据加法法则,满足条件的正整数共有:9816482016168562978+++++=个;(2)比5400小且每位数字不同且不出现数字2与7的正整数;按正整数的位数可分为以下几种情况:设{0,1,3,4,5,6,8,9}A =① 一位数,可从{0}A -中任取一个,共有7个;② 两位数。
十位上的数可从{0}A -中选取,个位数上的数可从A 中其余7个数字中选取,根据乘法法则,共有7749⨯=个;③ 三位数。
组合数学题库答案

填空题1.将5封信投入3个邮筒,有_____243 _种不同的投法.2.5个男孩和4个女孩站成一排。
如果没有两个女孩相邻,有 43200 方法.3.22件产品中有2件次品,任取3件,恰有一件次品方式数为__ 380 ______. 4.6()x y +所有项的系数和是_64_ _.答案:64 5.不定方程1232++=x x x 的非负整数解的个数为_ 6 ___.6.由初始条件f f (0)1,(1)1==及递推关系)()1()2(n f n f n f ++=+确定的数列f n n {()}(0)≥叫做Fibonacci 数列7.(3x-2y )20 的展开式中x 10y 10的系数是10101020)2(3-c.8.求6的4拆分数P 4(6)= 2 .9.已知在Fibonacci 数列中,已知f f f (3)3,(4)5,(5)8===,试求Fibonacci 数f (20)=1094610.计算P 4(12)=k k P P P P P P 4412341(12)(12)(8)(8)(8)(8)===+++∑k k k k P P P P 341211(8)(8)(5)(4)145515===+++=+++=∑∑11.P 4(9)=( D )A .5 B. 8 C. 10 D. 612.选择题 1.集合A a a a 1210{,,,}=的非空真子集的个数为( A )A.1022 B.1023 C. 1024 D.10212.把某英语兴趣班分为两个小组,甲组有2名男同学,5名女同学;乙组有3名男同学,6名女同学,从甲乙两组均选出3名同学来比赛,则选出的6人中恰有1名男同学的方式数是( D )A .800 B. 780 C. 900 D. 8503.设x y (,)满足条件x y 10+≤,则有序正整数对x y (,)的个数为( D ) A. 100 B.81 C. 50 D.454.求60123(32)+++x x x x 中x x x 23012项的系数是( C ) A.1450 B. 60 C.3240 D.34605.多项式40123(24)x x x x +++中项22012x x x ⋅⋅的系数是( C ) A .78 B. 104 C. 96 D. 486.有4个相同的红球,5个相同的白球,那么这9个球有( B )种不同的排列方式 A. 63 B. 126 C. 252 D.3787.递推关系f n f n f n ()4(1)4(2)=---的特种方程有重根2,则(B )是它的一般解 A .n n c c 11222-+ B. n c c n 12()2+ C. nc n (1)2+ D. n n c c 1222+8.用数字1,2,3,4(数字可重复使用)可组成多少个含奇数个1、偶数个2且至少含有一个3的n n (1)>位数( )运用指数生产定理A.n n n43(1)4-+- B. n n 4314-+ C.n n4213-+ D. n n n 43(1)3-+-9.不定方程()12n x x x r r n +++=≥正整数的解的个数为多少?( A / C )不确定A.1r r n -⎛⎫⎪-⎝⎭ B.r r n ⎛⎫ ⎪-⎝⎭ C.1n r r +-⎛⎫ ⎪⎝⎭ D.1n r r n +-⎛⎫⎪-⎝⎭10.x x x 12314++=的非负整数解个数为( A )A.120B.100C.85D. 5011.从1至1000的整数中,有多少个整数能被5整除但不能被6整除?( A ) A.167 B.200 C.166 D.3312.期末考试有六科要复习,若每天至少复习完一科(复习完的科目不再复习),5天里 把全部科目复习完,则有多少种不同的安排?( D )A. 9B. 16C.90D.180013.某年级的课外学科小组分为数学、语文二个小组,参加数学小组的有23人,参加语文小组的有27人;同时参加数学、语文两个小组的有7人。
组合数学 课后答案 PDF 版

3.1 某甲参加一种会议,会上有6位朋友,某甲和其中每一个人在会上各相遇12次,每两人各相遇6次,每3人各相遇4次,每4人各相遇3次,每5人各相遇2次,每6人各相遇1次,1人也没遇见的有5次,问某甲共参加几次会议?解:设A 为甲与第i 个朋友相遇的会议集.i=1,2,3,4,5,6.则 │∪A i │=12*C(6,1)-6*C(6,2)+4*C(6,3)-3*(6,4)+2*(6,5)-C(6,6) =28甲参加的会议数为 28+5=333.2:求从1到500的整数中被3和5整除但是不能被7整除的数的个数。
解:设 A 3:被3整除的数的集合A 5:被5整除的数的集合 A 7:被7整除的数的集合 所以 ||=||-||=-=33-4=29 3.3 n 个代表参加会议,试证其中至少有2个人各自的朋友数相等解:每个人的朋友数只能取0,1,…,n -1.但若有人的朋友数为0,即此人和其 他人都不认识,则其他人的最大取数不超过n -2.故这n 个人的朋友数的实际取数只 有n -1种可能.,根据鸽巢原理所以至少有2人的朋友数相等.3.4试给出下列等式的组合意义0j j 0(1)=(1), 1n-m-j+1(2)(1)1 j 1(3)...(1) 1 12m l l n m l n m m n l n k m n k l k l n m l n m l m l m l m l m l m l m m m m m l =-=--⎛⎫⎛⎫⎛⎫-≥≥ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭---⎛⎫⎛⎫⎛⎫=- ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭+-++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑∑ 证明:(1)从n 个不同元素中取k ,使得其中必含有m 个特定元素的方案数为)()(kn mn m k mn --=--。
设这m 个元素为a 1,a 2,…,a m , Ai 为包含a i 的组合(子集),i=1,…,m.1212|...|(...)12 =(...(1))1 2 =(1) m m m l n A A A A A A k n m n m n m n m k k k m k m n l l k ⎛⎫=- ⎪⎝⎭---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛- ⎪⎝⎭ 0ml =⎫ ⎪⎝⎭∑ (2)把l 个无区别的球放到n 个不同的盒子,但有m 个空盒子的方案数为11n l m n m -⎛⎫⎛⎫⎪⎪--⎝⎭⎝⎭令k=n-m ,设A i 为第i 个盒子有球,i=1,2,…k12k 121|...|(...)1k 11211 =(...(1)) 1 2 k k k l A A A A A A k k l k l k k l k k k l k l l k l +-⎛⎫=- ⎪⎝⎭+--+--+--+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ kj j 0k k-j+1 =(1)j l l =-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭∑ (3)设A i 为m+l 个元素中去m+i 个,含特定元素a 的方案集;N i 为m+l 个元素中取m+i 个的方案数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离线考核
《组合数学》
满分100分
一、计算题(每小题10分,共60分。
)
1、求()7
521...x x x +++的展开式中53
432
1x x x x 的系数? 展开后合并同类项,则一共有多少项?
在多项式()7
521...x x x +++的展开式中的项53
432
1x x x x 的系数是 1
,3,1,0,27
C =
!
1!3!1!0!2!
7=420.
因为在它的展开式中不同项(合并同类项后)的个数等于从5个不同元素中有重复地取出7个元素的方法
数,所以不同项的个数为7
571330C +-=。
2、求从1至1000的整数中能被14或21整除的整数的个数。
解:设所求为N ,令}1000,,2,1{ =S ,以A ,B 分别表示S 中能被14和能被21整除的整数所成之集,
则 95
234771 3141000211000141000 =-+=⎥⎦
⎤
⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=-+==B
A B A B A N 3、一次宴会,7位来宾寄存他们的帽子,在取回他们的帽子时,问有多少种可能使得: (1)没有一位来宾取回的是他自己的帽子? (5分) (2)至少有一位来宾取回的是他自己的帽子?(5分)
解:记7个来宾为1A ,2A ,…,7A ,则7个来宾取帽子的方法可看成是由1A ,2A ,…,7A 作成的全排列:如果i A (1≤i ≤7)拿了j A 的帽子,则把i A 排在第j 位,于是
(1)没有一位来宾取回的是他自己的帽子的取法种数等于7元重排数7D ,即等于1854。
(2)至少有一位来宾取回的是他自己的帽子的取法种数等于由1A ,2A ,…,7A 作成的至少有一个元保位的全排列数,为 318618545040!77=-=-D
4、在平面上,对任意自然数n ,连接原点O 与点(,3),n P n n +用)(n f 表示线段n OP 上除端点外的整点个数,试求(1)(2)(2004).f f f ++
+
解 线段n OP 的方程为 3
,0n y x x n n
+=
≤≤. 如果n 与3+n 互素,则不定方程(3)0n x ny +-=不存在适合0x n ≤≤的整数解,即;0)(=n f 如果n 与
3+n 不互素,则n 与3+n 只能有公因数3,即可以设k n 3=.则通过解不定方程,有整数点
))1(2,2(),1,(++k k k k 位于线段n OP 之上,且n OP 中间仅有这二个整数点,即()2f n =.所以
(1)(2)(3)(2004)f f f f +++
+ 2004
2[
]26681336.3
=⨯=⨯=
5、解递推关系:⎩⎨⎧==≥-=--9 ,4)2(
6510
21a a n a a a n n n 。
解:特征方程为0652
=+-x x ,特征根为21=x ,32=x ,所以n n n c c a 3221⋅+⋅=,其中1c ,2
c 是待定常数,由初始条件得 ⎩⎨
⎧=+=+9324
21
21c c c c
解之得31=c ,12=c ,所以 n
n n a 323+⋅= ( ,2,1,0=n )
5、现有人手中有3张一元,2张2元和3张5元的钱币,问该人都能买价值为多少的物品?对每种价值的物品他有几种付款方法?
解 令一元钱币对应的能买物品的形式幂级数为2
3
1()1f x x x x =+++;2元钱币对应的能买物品的形式幂级数为2
22
2
4
2()1()1f x x x x x =++=++;5元钱币对应的能买物品的形式幂级数为
55253510155()1()()1f x x x x x x x =+++=+++,则该人能买物品对应的形式幂级数为
1252
3
2
4
5
10
15
()()()()
(1)(1)(1)
f x f x f x f x x x x x x x x x ==++++++++
2345678910111213141516171819202122
=1+x+2x +2x +2x +3x +2x +3x +2x +2x +3x +2x +3x +2x +2x +3x +2x +3x +2x +2x +2x +x +x
所以,该人可以买价值分别为0,1,2,,21,22元的物品,并且付款的方法数 分别为0,1,2,2,2,3,2,3,2,2,3,2,3,2,2,3,2,3,2,2,2,1,1.
二、证明题(每小题20分,共40分。
)
1、证明: ()010
=-∑≥k k n r k k C C 。
证明 在牛顿定理中令1a =,b t =-,则有 ()()∑≥-=
-0
11k k
k n
k
n
t C
t (1)
对上式两边的t 求微商,得到 ()
()∑≥---=--1
1
1
11k k k n k
n t kC t n . 令t=1,我们就得到第一个结论. 如果我们对(1)式两边的t 进行r 次微商,则有
()()()∑≥---=--r
k r k k n r k k r n r n r t C P t P 111.
在上式两边同时除以r!,并令t=1,即可得到第二个结论.
2、证明:在任意给出的1998个自然数1a ,2a ,…,1998a 中,必存在若干个数,它们的和能被1998整除。
证明:令},,,{199821b b b B =,其中
)1998,,2,1(21 =+++=j a a a b j j 则1998=B ,对任一个非负整数i (0≤i ≤1997),
令 B b b B i ∈={且b 除以1998所得余数为}i ,
则B B i ⊆(0=i ,1,2,…,1997)且B B i i ==1997
,如果Φ≠0B ,设s b 是Φ=0B ,则B B i i ==1997
,
由鸽笼原理的简单形式,必有正整数t (1≤t ≤1997),使得t A ≥2,设k b 和i b (l k <)是t A 中的两个元,则它们除以1998所得余数均为t ,从而k l b b -能被1998整除,即l k k a a a +++++ 21能被1998整除。