空间向量三点共线定理
空间向量基本定理

E
G B O
A
练习 3、 如 图 所 示 , 四 面 体 ABCD的 六 边 都 相 等 , O1、O2 是BCD和ACD的 中 心 , 以 向 量 AB , AC , AD 为 一 个
A
基底,求 O1O( 2 用基底表示)。
O2 D B O1 E
C
小结: 1、本节课的重点内容是空间向量基本定理及 推论. 2、注意空间向量基本定理就是空间向量分解 定理,即空间任一向量可分解为三个方向上 的向量之和;
p xe1 ye2 z e3
z O x
y
建构数学
空间向量基本定理:
如果三个向量 e1 , e2 , e3不 共 面 ,那 么 对 空 间 任 一 向 量 p,存 在 唯 一 的有序实数组 ( x, y, z ), 使
p xe1 ye2 z e3
{e1 , e2 , e3} — 基底
空间向量基本定理
复习
1、共线向量定理
对空间任意两个向量 a, a.
2、共面向量定理 如果两个向量a、b不共线,则向量p与向量a、 b共面的充要条件是存在实数组(x,y),使得
p=xa+yb.
复习
3、平面向量基本定理
如果e1、e2是同一平面内的两个不共线向量, 那么对于这一平面内的任一向量a,有且只 有一对实数λ1、λ2,使
1、 如 果 a, b 与 任 何 向 量 都 不 能 构 空 成间的 一个基底, 则a与b 有 什 么 关 系 ? 共线
2、 判 断 : O, A, B, C为 空 间 四 点 , 且 向 量 OA, OB, OC不 构成空间的一个基底 ,那么点 O, A, B, C有 什 么 关 系共面 ?
空间向量基本定理

(2)、空间任意三个不共面的向量都可以构成空间的一个基底.
( 3 )、 e1 , e2 , e3中能否有 0?
(4) 基底指一个向量组,基向量是指基底中的某一个向量, 二者是相关联的不同概念。
如果空间一个基底的三个基向量是两两互相垂直, 那么这个基底叫正交基底. 特别地,当一个正交基底的三个基向量都是单 位向量时,称为单位正交基底,通常用 i, j , k 表示.
1、 如 果 a, b 与 任 何 向 量 都 不 能 构 空 成间的 一个基底, 则a与b 有 什 么 关 系 ? 共线
2、 判 断 : O, A, B, C为 空 间 四 点 , 且 向 量 OA, OB, OC不 构成空间的一个基底 ,那么点 O, A, B, C有 什 么 关 系共面 ?
通过平面向量基本定理来类似地推广到 空间向量中吗? 空间向量基本定理:
如果三个向量 e1 , e2 , e3不 共 面 ,那 么 对 空 间 பைடு நூலகம் 一 向 量p,存 在 惟 一 的有序实数组 ( x, y, z ), 使
p xe1 ye2 z e3
z O x
y
建构数学
空间向量基本定理:
2、推论中若x+y+z=1,则必有P、A、B、C四点共面。
数学运用
例1、 已 知 向 量 a, b, c 是 空 间 的 一 个 基 底 , a 从 , b, c 中 选 哪 个 向 量 , 一 定以 可 与 向 量p a b, q a b 构 成 空 间 的 另 一 个 基? 底
答:向量 c ,因为如果 c与a b , a b共面,那么 c与a , b共面,这与已知矛盾。
(word完整版)高二空间向量知识点归纳总结,推荐文档

一.知识要点1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性 2. 空间向量的运算:定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
b a B A OA OB +=+=;b a OB OA BA -=-=;)(R a OP ∈=λλ运算律:⑴加法交换律:a b b a+=+ ⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b a λλλ+=+)( 运算法则:三角形法则、平行四边形法则3. 共线向量:(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a ρ平行于b ρ,记作b a //。
(2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ=λb ρ。
(3)三点共线:A 、B 、C 三点共线<=>λ= <=>OB y OA x OC +=,其中1=+y x(4)与a 共线的单位向量为||a ±4. 共面向量 :(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量,a b rr 不共线,p r与向量,a br r 共面的条件是存在实数,x y 使。
y x +=(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>OC z OB y OA x OP ++=,其中1=++z y x5. 空间向量基本定理:如果三个向量c b a ,,不共面,那么对空间任一向量p ,存在一个唯一的有序实数组z y x ,,,使z y x ++=。
若三向量c b a ,,不共面,我们{},,把叫做空间的一个基底,c b a ,,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
空间向量的定义和基本定理

空间向量的定义和基本定理一、空间向量的定义和基本定理1、空间向量与平面向量一样,在空间中,我们把具有大小和方向的量叫做空间向量,向量的大小叫做向量的长度或模。
2、空间向量基本定理(1)共线向量定理定理:对空间任意两个向量$\boldsymbol a$,$\boldsymbol b$($\boldsymbolb$≠0),$\boldsymbol a∥\boldsymbol b$的充要条件是存在实数$\lambda$,使$\boldsymbol a$=$λ\boldsymbol b$。
推论:如果$l$为经过已知点$A$且平行于已知非零向量$\boldsymbol a$的直线,那么对空间任一点$O$,点$P$在直线$l$上的充要条件是存在实数$t$,使$\overrightarrow{O P}=\overrightarrow{O A}+t\boldsymbol \alpha$①。
其中向量$\boldsymbol a$叫做直线$l$的方向向量。
在$l$上取$\overrightarrow{A B}=\boldsymbol a$,则①式可化为$\overrightarrow{O P}=\overrightarrow{O A}+t\overrightarrow{A B}$或$\overrightarrow{O P}=(1-t)\overrightarrow{O A}+t\o verrightarrow{O B}$②。
当$t=\frac{1}{2}$时,点$P$是线段$AB$的中点,则$\overrightarrow{OP}=\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O B})$③。
①②式都叫做空间直线的向量表示,③式是线段$AB$的中点公式。
(2)共面向量定理定理:如果两个向量$\boldsymbol a$,$\boldsymbol b$不共线,那么向量$\boldsymbol p$与向量$\boldsymbol a$,$\boldsymbol b$共面的充要条件是存在唯一的有序实数对($x$,$y$),使$\boldsymbol p$=$x\boldsymbol a$+$y\boldsymbol b$。
空间向量基本定理

O
(3)是线段AB的中点公式
二、共面向量
(1).已知平面α与向量 a,如果 向量a 所在的直线OA平行于
a
O
A
平面α或向量 a在平面α内,那 么我们就说向量 平a 行于平面
a
α,记作 //aα.
α
(2)共面向量:平行于同一平面的向量 思考: 空间任意两个向量是否一定共面? B 空间任意三个向量哪?
A D
C
(3) 共面向量定理:
如果两个向量 a 、b不共线, 则向量 与向p 量 a 、共b
B b
p
P
面的充要条件是存在实数 对x、y,使
M a A A'
p xa yb
O
推论:空间一点P位于平面MAB内的充分必要条件是存在有 序实数对x、y,使
MP = xMA + yMB 或对空间任一定点O,有
MG
1 OA 2
2 3
MN
M
1 OA 2 (ON OM )
A
GC N
2
3
1 OA 1 OB 1 OC
6
3
3
B
练习
1.已知空间四边形OABC,点M、N分别是
边OA、BC的中点,且OA a,OB b ,
OC c,用 a , b , c 表示向量 MN
O M
MN 1 OB 1 OC 1 OA 222
C
OG
1
a b
1
c
2
2
A
B
3 如图,在平行六面体 ABCD ABCD中,E, F,G 分 新疆 王新敞 奎屯
别是 AD, DD, DC 的中点,请选择恰当的基底向量 证明:
(1) EG // AC
空间向量知识点归纳总结(经典)

空间向量与立体几何知识点归纳总结一.知识要点。
1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)向量具有平移不变性2.空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
OB OA AB a b ; BA OA OB a b ;OP a(R)运算律:⑴加法交换律: a b b a⑵加法结合律: (a b) c a (b c)⑶数乘分配律:(a b)a b运算法则:三角形法则、平行四边形法则、平行六面体法则3.共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于b,记作a // b。
(2)共线向量定理:空间任意两个向量a、b(b≠0),a // b存在实数λ,使a=λb。
(3)三点共线: A、B、C 三点共线 <=> AB AC<=> OC xOA yOB(其中x y 1)a(4)与a共线的单位向量为a4.共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量a, b 不共线,p与向量 a, b 共面的条件是存在实数x, y 使p xa yb 。
(3)四点共面:若A、B、C、P 四点共面 <=> AP x AB y AC<=> OP xOA yOB zOC(其中 x y z1)5.空间向量基本定理:如果三个向量 a,b,c 不共面,那么对空间任一向量p,存在一个唯一的有序实数组 x, y, z ,使p xa yb zc 。
若三向量 ab,,c不共面,我们把{ a,b, c}叫做空间的一个基底,a, b, c叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设 O, A, B,C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x, y, z ,使OP xOA yOB zOC 。
高中数学空间向量的基本定理知识点解析

素养评析 证明空间图形中的两直线平行,可以转化为证明两直线的方向 向量共线问题.这里关键是利用向量的线性运算,从而确定C→E=λM→N中的 λ 的值.
3 达标检测
PART THREE
1.给出下列几个命题:
①向量a,b,c共面,则它们所在的直线共面;
②零向量的方向是任意的;
③若a∥b,则存在唯一的实数λ,使a=λb.
4.设 e1,e2 是平面内不共线的向量,已知A→B=2e1+ke2,C→B=e1+3e2,C→D=2e1 -e2,若 A,B,D 三点共线,则 k=_-__8__. 解析 ∵B→D=C→D-C→B=e1-4e2,A→B=2e1+ke2, 又 A,B,D 三点共线,由共线向量定理得A→B=λB→D, ∴12=-k4.∴k=-8.
其中真命题的个数为
A.0
√B.1
C.2
D.3
解析 ①假命题.三个向量共面时,它们所在的直线在平面内,或与平面平行;
②真命题.这是关于零向量的方向的规定;
③假命题.当b=0,则有无数多个λ使之成立.
12345
2.对于空间的任意三个向量a,b,2a-b,它们一定是
√A.共面向量
B.共线向量
C.不共面向量
②对空间任一点 O,有O→P=O→A+tA→B(t∈R).
③对空间任一点 O,有O→P=xO→A+yO→B(x+y=1).
跟踪训练 1 如图所示,在正方体 ABCD-A1B1C1D1 中,E 在 A1D1 上,且A→1E=2E→D1,
F 在对角线 A1C 上,且A→1F=32F→C. 求证:E,F,B三点共线.
即7e1+(k+6)e2=xe1+xke2, 故(7-x)e1+(k+6-xk)e2=0, 又∵e1,e2不共线,
空间向量知识点归纳总结(经典)

空间向量与立体几何知识点归纳总结一.知识要点。
1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示+同向等长的有向线段表示同一或相等的向量(2)向量具有平移不变性2.空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)运算律:⑴加法交换律:abba⑵加法结合律:(a b) c a (b c)⑶数乘分配律:(a b) a b运算法则:三角形法则、平行四边形法则、平行六面体法则3.共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b,记作a // b。
(2)共线向量定理:空间任意两个向量a、b (b工0 ), a//b存在实数入使a = 7b (3)三点共线:A、B、C三点共线<=>AB AC-------------------- 9- 4 *<=> OC xOA yOB(其中( y 1)- a(4)与a共线的单位向量为4.共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量a,b不共线,p与向量a,b共面的条件是存在实数r r rx, y 使p xa yb。
------ ------------- ---- p- ------- *■(3)四点共面:若A、B、c、P四点共面<=>AP xAB yAC--------- --------------------- ----------------------- ►-------------------<=>OP xOA yOB zOC(其中x y z 1) r r r r5.空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存r r ,r rMBgo UBAvbraMBmA uOA JmB 山ora rb ra在一个唯一的有序实数组x, y, z,使p xa yb zc。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量三点共线定理
空间向量三点共线定理在几何中相当重要,它提出了一条性质,即如果三个点的位置坐标在一个直线上,那么三个空间向量的结果也必然在相同的直线上。
它,也可以用于侦测空间中的点的关系,如果点的位置坐标满足它,那么这三个点就在一条直线上。
这个定理也可以使几何题中有关三点共线的性质变得更加清晰,从而更轻松地解决题目。
空间向量三点共线定理可以从数学上解释,即这个定理可以从空间中三点的坐标表示出来,这样就更容易理解什么是空间中三点共线。
首先,需要给出空间向量三点共线定理的表述,即“若三点P,Q,R的坐标分别为(a1,b1,c1),(a2,b2,c2),(a3,b3,c3),那么在三点P,Q,R之间的任意两个向量都满足:(a2-a1)(b3-b1)-(a3-a1)(b2-b1)=0
这个公式很好理解,它表明了一个重要的性质:三个空间向量的线性相关性,即三个向量的积、差和乘积都为0。
这就是空间向量三点共线定理的数学证明,它可以用来证明三个点的位置坐标是否满足三点共线的条件。
空间向量三点共线定理的推广是非常有用的,例如当我们讨论平面向量的时候。
它也可以应用到平面向量上,平面向量三点共线定理可以这样描述:若三点P,Q,R的坐标分别为(x1,y1),
(x2,y2),(x3,y3),那么在三点P,Q,R之间的任意两个向量都
满足:
(x2-x1)(y3-y1)-(x3-x1)(y2-y1)=0
这就是平面向量三点共线定理,它与空间向量三点共线定理的表达非常相似,只是把空间中的坐标用平面中的坐标来表示。
此外,当讨论空间中的四点共线的时候,空间向量四点共线定理也是可以用的。
四点共线定理描述如下:若四点P,Q,R,S的坐标分别为(a1,b1,c1),(a2,b2,c2),(a3,b3,c3),(a4,
b4,c4),那么在四点P,Q,R,S之间的任意三个向量都满足:
(a2-a1)(b3-b1)(c4-c1)-(a3-a1)(b2-b1)(c4-c1)+(a4-a1)(b2-b1)(c3-c1)=0
这就是四点共线定理的表达,它也可以用来检测四个点是否在一条直线上。
空间向量三点共线定理是几何中一个重要的定理,它的应用也非常广泛,对于一个要解决几何问题的人来说,空间向量三点共线定理是必不可少的。
因此,了解和掌握这项定理尤为重要,能够让我们更加高效精准地解决几何问题。