平面向量中“三点共线定理”妙用
(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。
特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。
例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。
点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。
例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。
三点共线向量式的巧妙应用

三点共线向量式的巧妙应用
《三点共线向量式的巧妙应用》
三点共线向量式是数学中一种有趣的思想,它的应用非常广泛。
它可以用来解决几何问题,也可以用来解决物理问题。
在几何中,三点共线向量式可以用来判断三点是否共线,以及三点的位置关系。
它可以帮助我们快速确定三点是否在一条直线上,以及三点的位置关系,这在解决几何问题中非常有用。
在物理中,三点共线向量式可以用来计算力的大小和方向,以及物体的运动轨迹。
三点共线向量式可以帮助我们快速计算力的大小和方向,并且可以用来判断物体的运动轨迹。
三点共线向量式是一种非常有用的思想,它在几何和物理中都有巧妙的应用。
它可以帮助我们快速解决几何和物理问题,是一种非常有用的思想。
平面向量三点共线定理

平面向量三点共线定理
平面向量三点共线定理:
(1)定义
平面向量三点共线定理是指:在三维空间中,若三个任意的点共在一个平面,则它们所在的平面的向量也可以构成一条直线。
(2)正式定义
如果S1、S2、S3是三个同一平面的点,则这三个点的向量形式为:S1S2,S2S3和S1S3,它们围绕原点O构成一种结构,即三角形形式的向量,满足以下条件:
若三个向量都平行,则说明三个点共线。
(3)实际应用
在很多数学知识中,平面向量三点共线定理有着重要的作用。
例如:在平面几何学中,有一个叫“三角平分线定理”的定理,就是用平面向量三点共线定理来推断的结论。
此外,平面向量三点共线定理还可以应用于判断几何图形是否平行、
垂直或成一条直线,甚至可以用于决定三角形的内角和外角,以及三
角形的面积大小等。
(4)证明方式
平面向量三点共线定理是采用数学归纳法来证明的:
设ABC是平面上任意三点,用AB表示AB连线,则有AB+BC=AC。
同理,用BC表示,则有BC+CA=AB,用CA表示,则有CA+AB=BC。
相似地,可以证明,任意N个点在同一平面上的加和结果均为零,即:AB+BC+CD+…+AP=0。
这时,由于任意三个点位于同一平面,包括它们的任意两个连接向量
在内的多个向量的加和结果都是0,因此,任意三个点都必定在一条直线上,这就是平面向量三点共线定理的实际物理意义。
向量中三点共线结论的运用

1 OC = OA OB m n , 1 【联系所求表达式,转换条件】 k k k k k
点评:运用极限思维也可以解决这道题。当AB距离无限接近于0时(即:A、B 重合为一点时) :
1. 其实两道题描述的都是相同的情景,第一题等价于:已知:O 是钝角三角形的外心,且
OC xOA yOB x、y R ,求 x y 的取值范围。刚好是对偶的题目。
2. 第二题在第一题的基础上有所提高,需要自己构造 D 点。所谓外心其实是为了提供一个外接圆, 初做此题容易使人联想到外心的性质,误入歧途。但实际上两题基本思路一致,甚至利用极限情 况求解的方式也一致。 3. 利用极限情况求解往往可以达到很好的解题效果。
1 OC OA= OB ,m=n= ,m+n=-1;当 AB 距离无限接近于外接圆直径时(即:△趋近 2
于直角△) :m=n→(趋近于) ,m+n→ 。当然,以上两种极端情况都不可能取到,所以 用开区间 , 1 。
三、 总结归纳
.
2015.1.22 JZX
解答:令 OC 的反向延长线与 AB 交于点 D, OD kOC ,由于 D 在圆外,则 k 1,0 【C、 O、D 的三点共线的条件】
D、A、B 三点共线,可令: OD OA OB =1 【D、A、B 的三点共线的条件】
点评:运用极限思维也可以解决这道题。当 OA 无限接近于 OD 时(即:D 在圆上时) :m=-1, n=0;当 AB 平行于 OC 时(即:CO、BA 交于无穷远处时) :m=-n,m+n=0。当然,以上两种 极端情况都不可能取到,所以用开区间 1, 0 。 2. (2015·绵阳一诊 10 改编) 已知: O 是锐角三角形的外心, 且 OC xOA yOB x、y R , 求 x y 的取值范围 答案: , 1
三点共线向量式的巧妙运用

1 4 4 2 2 当且仅当 a · 2 = 4, ≥a + 2 ≥ 2 b( a-b) a a
槡
a-b =b 且a2 =
=
4 时等号成立 解得 . a= 槡 2, b 2 a 5
2, 2 时 , 的最小值是 槡 又c = a = 槡 u 4. 2 5
1
C P C N 2 故S△APC C P 2 = = , = = . C B C A S△ABC C B 3 3 2 有关计算和证明问题 此类问题如果善于利 用 三 点 共 线 向 量 式 , 往
∴ 往使问题的求解变得非常简便 . 例 3 ( 2 0 0 7 年 江 西 卷) 如 右 图 ,在 △A B C 中, O是 , 中点 过点 的直线分别 B C O 交直线 A B、 A C 于不同两点 → → A → 若A M、 N, B = mA C M , = N →, 则m + n 的 值 n A 为 . 1( m → O → B → → 解 A A C) = A M + = +A 2 2
B C 的外心 , A B = 6, △A → B → → 若A 且2 A C =1 0, O C, x+1 0 = xA +yA y=
4 4
中学数学教学
2 0 1 0 年第 5 期 P → 2B → P → 0, 又A + P +3C = → → →, ∴A P =-2B P -3C P P → P → 3 P →) ( 1 P →, ∴ t C B B =- -2 - C + λ- ) λ( P → ( P → 0. ) ) 即( 3 B C + 3 = λ-1 λ-t P →、 P → 不共线 , ∵B C 1 λ= , 3 λ-1 = 0 烄 3 ∴ 3 λ-t = 0 烅 t = 1, 烆 → → ∴P Q P =m =C → → Q → 2 ∴C Q P +P =C = m. 评注 本题既考虑到三点共线向量式 , 同时
平面向量中的三点共线结论的应用

若,3.已知B 为OAC 边AC 上一点,且满足OC y OA x OB +=4,不等式222313x y m m x y +≥-++恒成立时,实数m 的最值范围为___________.巩固练习1.在ABC ∆中,4AB =,O 为三角形的外接圆的圆心,若),(R y x AC y AB x AO ∈+=且21x y +=,则ABC ∆的面积的最大值为_____.2.在P AB ∆中,,60,9,80=∠==APB PB P A 点C 满足PB y P A x PC +=,且,0,0,532≥≥=+y x y x 其中则||PC 的最大值为______,最小值为______.3.已知ABC ∆的外心为O 满足AC y AB x AO +=,若,10,6==AC AB 且,5102=+y x 则=∠BAC cos ______.例5.如图,M 为△ABC 的中线AD 的中点,过点M 的直线分别交线段AB 、AC 于点P 、Q 两点,设AP xAB =,AQ y AC =,记()y f x =,设32()32g x x a x a =++,[0,1]x ∈,若对任意11[,1]3x ∈,总存在2[0,1]x ∈,使得12()()f x g x =成立,则实数a 的取值范围为______.巩固练习2.(2022·辽宁葫芦岛·高三期末)如图,在等腰ABC 中,已知2AB AC ==,120A ∠= ,E ,F 分别是边AB ,AC 上的点,且AE AB λ= ,AF AC μ=,其中λ,R μ∈,且21λμ+=,若线段EF ,BC 的中点分别为M ,N ,则MN的最小值是()A .77B .217C .2114D .213.(2023·全国·高三专题练习)直角三角形ABC 中,P 是斜边BC 上一点,且满足2BP PC =,点M 、N 在过点P 的直线上,若AM m AB = ,AN nAC =,()0,0m n >>,则下列结论错误的是()A .12m n+为常数B .m n +的最小值为169C .2m n +的最小值为3D .m 、n 的值可以为12m =,2n =巧用杠杆原理处理三角形中的向量问题数值,各线段上得如图所示各点的标数则根据杠杆平衡原理可,已知三角形中的赋值标数法,d,cNC AN b a MB AM ==点数值乘数值等于点数值乘线段上,段数值乘积相等。
平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B、P三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x ,y使得:OP xOA yOB =+且1x y +=。
特别地有:当点P在线段AB 上时,0,0x y >> 当点P 在线段A B之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。
例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为Sn,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O),则S 200=( ) A .100ﻩﻩﻩﻩB.101 ﻩC.200 ﻩﻩﻩD.201解:由平面三点共线的向量式定理可知:a1+a 200=1,∴1200200200()1002a a S +==,故选A。
点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。
例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y x x y ∴>> 由基本不等式可知:4424y x y x x y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是B C的中点,过点O 的直线分别交直线AB 、AC于不同的两点M 、N,若AB = m AM ,AC =nAN ,则m +n 的值为 .解:因为O 是B C的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是图3图4图2△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值; 证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y∴+= 113x y ∴+= 11x y ∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与B F相交于G 点,记AB a =,AD b =,则AG =_______A.2177a b +B. 2377a b +C. 3177a b + D. 4277a b + 分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。
平面向量三点共线的应用

B
D EA
O
C
【典例】2.
在ABC中,点P是AB上一点,且 BP 2PA,Q是BC的中点, AQ与CP的交点为 M , 又CM tCP, 求实数t的值。
A P
M
B
Q
C
【变式】.
在ABC中,点P是AB上一点,且 BP 2PA,Q是BC的中点, AQ与CP的交点为 M , 又 AM t AQ, 求实数t的值。
A P
M
B
Q
C
【典例】3. 已知G为ABC的重心,过点 G的直线与边 AB, AC分别相交于点 P, Q, 若AP 3 AB, 求ABC与APQ的面积之比。
5
A
P B
G Q
C
【典例】4.
已知在平行四边形ABCD中,M , N分别是边BC,CD的中点, AM与BN相交于点P,若a AB,b AD,用a,b表示AP的结果是()
N
D
C
P
M
A
B
平面向量中三点共线定理的应用
----求向量(线段)的比例关系
知识梳理
三点共线定理
【典例】1.
如图,在OCB中,A是CB的中点,D是将OB分成2:1的一个内分点,
DC和OA交于点E,设OE OA,求实数的值。
BD Leabharlann AOC【变式】.
如图,在OCB中,A是CB的中点,D是将OB分成2:1的一个内分点, DC和OA交于点E,设CE xCD, 求实数x的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量中“三点共线定理”妙用对平面任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。
特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。
例1(06年高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。
点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。
例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面三点共线定理可得:122m n+= 2m n ∴+=例5(省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面三点共线定理求解。
解:,,E G C 三点共线,∴由平面三点共线定理可得:存在唯一的一对实数x 使得(1)AG x AE x AC ∴=+- , 1133AE AB a ==,AC a b =+ 12(1)()(1)(1)33xAG x a x a b a x b ∴=⨯+-+=-+-…………………①又,,F G B 三点共线,∴由平面三点共线定理可得:存在唯一的一对实数λ使得(1)AG AB AF λλ∴=+- 1144AF AD b ==,, 1(1)4AG a b λλ∴=+-…………………………… ②由①②两式可得:213114x x λλ⎧=-⎪⎪⎨-⎪=-⎪⎩6737x λ⎧=⎪⎪∴⎨⎪=⎪⎩3177AG a b ∴=+ 点评:本题的解法中由两组三点共线(F 、G 、B 以及E,G,C 三点在一条直线上),C图5图6利用平面三点共线定理构造方程组求解,避免了用的向量的加法和平面向理基本定理解答本题的运算复杂,达到了简化解题过程的效果。
例6的变式一:如图7所示,在三角形ABC 中,AM ﹕AB=1﹕3,AN ﹕AC=1﹕4,BN 与CM相交于点P ,且a AB =,b AC =,试用a 、b表示AP解:,,N P B 三点共线,∴得,1AP xABy AN x y=++= ,AN ﹕AC=1﹕4, b4141==1444y y x AP xAB AC xa b xa b -∴=+=+=+……①又,,C P M 三点共线,∴由平面三点共线定理可得:存在唯一的一对实数μ,λ使得,1AP AM AC μλμλ∴=++= ∵AM ﹕AB=1﹕3 ∴a AB AM3131==,, 133AP a b a b μλλλ-∴=+=+…………………………… ② 由①②两式可得:1314x x λλ-⎧=⎪⎪⎨-⎪=⎪⎩311211x λ⎧=⎪⎪∴⎨⎪=⎪⎩ 81,11x y y +=∴= 321111AP a b ∴=+ 例6的变式二:如图8所示:直线l 过ABCD 的两条对角线AC 与BD 的交点O ,与AD 边交于点N,与AB 的延长线交于点M 。
又知AB = m ,AD =n AN ,则m +n= 解:因为点O 两条对角线AC 与BD 的交点,所以点O 为AC 的中点1()2AO AB AD ∴=+ AB = m ,AD =n1()222m nAO mAM nAN AM AN ∴=+=+ 又,,M O N 三点共线,∴由平面三点共线的向量式定理可得:122m n+= 2m n ∴+=定理的推广:推广1:如图9所示:已知平面一条直线AB,两个不同的点O 与P. 点O,P 位于直线AB 异侧的充要条件是:存在唯一的一对实数x,y使得:OP xOA yOB =+且1x y +>。
推广2:如图10所示:已知平面一条直线AB,两个不同的点O 与P.点O,P 位于直线AB 同侧的充要条件是:存在唯一的一对实数x,yOP xOA yOB =+且1x y +<。
例7 已知点P 为ABC 所在平面一点,且13AP AB t AC =+(t R ∈),若点P 落在ABC 的部,如图11,则实数t 的取值围是( )A .3(0,)4 B. 13(,)24C. (0,1)D. 2(0,)3解:点P 落在ABC 的部 ∴A,P 两点在直线BC 的同一侧,∴由推论2知:113t +< 23t ∴<,所以选D例8(06年高考题文科) 如图12:OM ∥AB ,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域(不含边界).且OB y OA x OP +=,则实数对(x ,y )可以是( )A .)43,41( B. )32,32(- C. )43,41(- D. )57,51(-解:由题目的条件知:点O 与点P 在直线AB 的同侧,所以1x y +<,所以A,D 两选项不符合。
对于选项B 、C,都有1x y +<,但当23x =-时,①如果点P 在直线AB 上,则由平面三点共线的向量式定理可知:53y =②如果点P 在直线OM 上,OM ∥AB 可知:||OP AB ,由平面向理共线定理可知:存在唯一的实数t,使得()OP t AB t OB OA tOA tOB ==-=-+,y x +=,t x t y ∴-==22,33t y ∴==又因为点P 在两平行直线AB 、OM 之间,所以2533y <<,故B 选不符合。
对选项C 同理可知:当14x =-时,1544y <<,故34y =符合,所以选C例9(06年高考题理科)如图13,OM ∥AB,点P 在由射线OM 、线段OB 及AB 的延长线围成的阴影区域(不含边界)运动,且OP xOA yOB =+,当12x =-时,y 的取值围是 .解:当12x =-时,A图12①如果点P 在直线AB 上,则由平面三点共线的向量式定理可知:32y =②如果点P 在直线OM 上,OM ∥AB 可知:OP AB ,由平面向理共线定理可知:存在唯一的实数t,使得()OP t AB t OB OA tOA tOB ==-=-+,OB y OA x OP +=,t x t y ∴-==11,22t y ∴==,又因为点P 在两平行直线AB 、OM 之间,所以1322y <<,所以实数y的取值围是:13(,)22练习:3.OAB ∆,点P 在边AB 上,3AB AP =,设,OA a OB b ==,则OP = ( )12.33A a b + 21.33B a b +.C 1233a b - .D 2133a b -1、平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C (x , y )满足OC =αOA +βOB ,其中α,β∈R 且α+β=1,则x , y 所满足的关系式为( )A .3x +2y -11=0B .(x -1)2+(y -2)2=5 C .2x -y =0 D .x +2y -5=02、已知P 是ABC ∆的边BC 上的任一点,且满足R y x y x ∈+=.,,则yx 41+ 的最小值是PBA3、在平行四边形ABCD 中,O 是对角线AC 与BD 的交点,E 是BC 边的中点,连接DE 交AC 于点F 。