平面向量中三点共线定理探究
(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。
特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。
例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。
点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。
例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。
平面向量中三点共线

平面向量中三点共线定理的应用知识梳理(一)、对平面内任意的两个向量b a b b a//),0(, 的充要条件是:存在唯一的实数,使b a由该定理可以得到平面内三点共线定理:(二)、三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v且OP xOA yOB u u u v u v u u u v 。
特别地有:当点P 在线段AB 上时,0,0x y当点P 在线段AB 之外时,0xy典例剖析例1、 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则yx 41 的最小值是 分析:Q 点P 落在ABC V 的边BC 上 B ,P,C 三点共线AP xAB yAC u u u r u u u r u u u rQ 1x y 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x yQ x>0,y>040,0y x x y由基本不等式可知:4424y x y xx y x y,取等号时4y xx y224y x 2y x 0,0x y Q 2y x 1x y Q 12,33x y ,符合所以yx 41 的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例2、在△ABC 中,13AN NC u u u r u u u r ,点P 是BC 上的一点,若211AP mAB AC u u u r u u u r u u u r,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211分析:,,B P NQ 三点共线,又2284111111AP mAB AC mAB AN mAB ANu u u r u u u r u u u r u u u r u u u r u u u r u u u r 8111m311m ,故选C例3、在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同m AM ,AC =n AN ,则m +n 的的两点M 、N ,若AB u u u r=值为 .:Q 因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC u u u r u u u r u u u rm AB AM u u u r u u u u r Q =,AC nAN u u ur u u u r1()2AO mAM nAN u u u r u u u u r u u u r22m n AO AM AN u u u r u u u u r u u u r又,,M O N Q 三点共线,由平面内三点共线定理可得:122m n2m n变式、直线l 过Y ABCD 的两条对角线AC 与BD 的交点O ,与AD 边交于点N,与AB的延长线交于点M 。
高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==.
【思路点拨】本题包含两个问题:(1)A 、B 、P 共线⇒m+n=1,且OP mOA nOB ==成立;(2)上述条件成立⇒A 、B 、P 三点共线.
【证明】(1)由三点共线⇒m 、n 满足的条件.
若A 、B 、P 三点共线,则AP 与AB 共线,由向量共线的条件知存在实数λ使AP AB λ=,即()OP OA OB OA λ-=-,∴(1)OP OA OB λλ=-+. 令1m λ=-,n=λ,则OP mOA nOB =+且m+n=1.
(2)由m 、n 满足m+n=1⇒A 、B 、P 三点共线.
若OP mOA nOB =+且m+n=1,则(1)OP mOA m OB =+-.
则()OP OB m OA OB -=-,即BP mBA =.
∴BP 与BA 共线,∴A 、B 、P 三点共线.
由(1)(2)可知,原命题是成立的.
【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一.
举一反三:
【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.
【解析】 因为1212121(4)()233
AC AB BC e e e e e e CD =+=-++=-=,所以AC 与CD 共线.。
平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B、P三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x ,y使得:OP xOA yOB =+且1x y +=。
特别地有:当点P在线段AB 上时,0,0x y >> 当点P 在线段A B之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。
例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为Sn,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O),则S 200=( ) A .100ﻩﻩﻩﻩB.101 ﻩC.200 ﻩﻩﻩD.201解:由平面三点共线的向量式定理可知:a1+a 200=1,∴1200200200()1002a a S +==,故选A。
点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。
例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y x x y ∴>> 由基本不等式可知:4424y x y x x y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是B C的中点,过点O 的直线分别交直线AB 、AC于不同的两点M 、N,若AB = m AM ,AC =nAN ,则m +n 的值为 .解:因为O 是B C的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是图3图4图2△OAB 的重心,P 、Q 分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线.设OA x OP =,OB y OQ =,证明:yx 11+是定值; 证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y∴+= 113x y ∴+= 11x y ∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与B F相交于G 点,记AB a =,AD b =,则AG =_______A.2177a b +B. 2377a b +C. 3177a b + D. 4277a b + 分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。
平面向量三点共线定理的推论及空间推广

平面向量三点共线定理的推论及空间推广三点共线定理,又称三点确定一直线,它是平面几何学中一个基本定理。
它宣称,假设有三个不同的点,它们一定能构成一条直线。
本文主要介绍三点共线定理的推论及平面的推广,并且进一步评论该定理在空间几何中的推广。
一、三点共线定理:1. 定义:三点共线定理,又称三点确定一直线,是指,任意三个不同点,它们一定能构成一条直线。
2. 推论:(1)若由不同的三点确定的直线上含有两点,那么其余一点必然也在这条直线上。
(2)如果有一条直线上含有两点,则另一点也必然在这条直线上。
3. 例子:我们从A、B、C三点可以确定一条直线,若在这条直线上发现了B1点,B1点必然和A、C也在这条直线上。
二、平面推广:1.定理:三点共线定理也同样拓展到了平面中,即:任意三个不同点,必定能构成一个平面或一个平行于某平面的直线。
2.推论:(1)若由不同的三点所确定的平面上含有两点,那么另一点必定也在这个平面上。
(2)如果一个平面上含有两点,则另一点也必定在这个平面上。
3.例子:三个点A、B、C在一个平面上,若在这个平面上发现了B1点,那么A、C也必定在这个平面上,这样就可以确定这个平面。
三、空间推广:1.定理:三点共线定理可以拓展到空间几何中,即:任意三个不同点,必定能构成一个平面或一个空间中的直线。
2.推论:(1)若由不同的三点所确定的平面上含有两点,那么另一点必定也在这个平面上。
(2)如果一个平面上含有两点,则另一点也必定在这个平面上。
3.例子:如果三个点A、B、C全都在空间中,若空间中发现了B1点,那么A、C也必定在平面上,这样就可以确定这个平面。
总结:三点共线定理是一个基本定理,指任意三个不同点,一定能构成一条直线,并且这个定理在平面和空间几何中都能成立,一个平面或一个空中的直线,它的推论雷同,即:若有两点,另一点也在这个平面或这条直线上。
平面向量中“三点共线定理”妙用讲解学习

平面向量中“三点共线定理”妙用对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b a λ=由该定理可以得到平面内三点共线定理:三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=。
特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy <笔者在经过多年高三复习教学中发现,运用平面向量中三点共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。
例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设直线不过点O ),则S 200=( ) A .100B .101C .200D .201解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200()1002a a S +==,故选A 。
点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。
例2 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:4424y x y xx y x y+≥⨯=,取等号时4y xx y =224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例3(湖北省2011届高三八校第一次联考理科)如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C 例4(07年江西高考题理科)如图3,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .解:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=例5(广东省2010届高三六校第三次联)如图5所示:点G 是△OAB 的重心,P 、Q分别是边OA 、OB 上的动点,且P 、G 、Q 三点共线. 设OA x OP =,OB y OQ =,证明:yx 11+是定值; 图3图4图2证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+1OP xOAOA OP x=∴= 1OQ yOBOB OQ y=∴=111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3例6(汕头市东山中学2013届高三第二次模拟考试)如图6所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b +分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。
平面向量中三点共线

知识梳理(一)、对平面内任意的两个向量b a b b a//),0(,≠的充要条件是:存在唯一的实数λ,使b aλ=由该定理可以得到平面内三点共线定理:(二)、三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且OP xOA yOB =+。
特别地有:当点P 在线段AB 上时,0,0x y >>当点P 在线段AB 之外时,0xy <典例剖析例1、 已知P 是ABC ∆的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则yx 41+ 的最小值是 分析:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线AP xAB yAC =+ 1x y ∴+= 且x>0,y>014141444()1()()145y x y xx y x y x y x y x y x y∴+=+⨯=+⨯+=+++=++ x>0,y>040,0y xx y ∴>> 由基本不等式可知:44y x x y +≥=,取等号时4y xx y=224y x ∴=2y x ∴=±0,0x y >>2y x∴=1x y +=12,33x y ∴==,符合所以yx 41+的最小值为9 点评:本题把平面三点共线问题与二元函数求最值、基本不等式巧妙地结合在一起, 较综合考查了学生基本功.例2、在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211分析:,,B P N三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+8111m ∴+=311m ∴=,故选C例3、在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB = m AM ,AC =n AN ,则m +n 的值为 .:因为O 是BC 的中点,故连接AO ,如图4,由向量加法的平行四边形法则可知:1()2AO AB AC ∴=+m AB AM =,AC nAN =1()2AO mAM nAN ∴=+22m nAO AM AN ∴=+ 又,,M O N 三点共线,∴由平面内三点共线定理可得:122m n+= 2m n ∴+=变式、直线l 过ABCD 的两条对角线AC 与BD 的交点O ,与AD 边交于点N,与AB 的延长线交于点M 。
有关平面向量三点共线问题的求解

有关平面向量三点共线问题的求解
三点共线向量公式:(x2-x1)(y3-y1)=(x3-x1)(y2-y1)。
三点共线指的是三点在同一条直线上。
可以设三点为A、B、C,利用向量证明:λAB=AC(其中λ为非零实数)。
三点共线证明方法:
方法一:挑两点奠定一条直线,排序该直线的.解析式.代入第三点座标看看与否满足用户该解析式(直线与方程)。
方法二:设三点为a、b、c,利用向量证明:λab=ac(其中λ为非零实数)。
方法三:利用点差法求出来ab斜率和ac斜率,成正比即为三点共线。
方法四:用梅涅劳斯定理。
方法五:利用几何中的公理“如果两个不重合的平面存有一个公共点,那么它们存有且只有一条过该点的公共直线”.所述:如果三点同属两个平行的平面则三点共线。
方法六:运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”.其实就是同一法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量中“三点共线向量定理”探究
三点共线定理在教材中没有作为定理使用,但在各级考试中却应用广泛,笔者尝试通过
聚焦结论,优化思路,多维度揭示定理的价值所在.
()
0.a b b a b a b λλ≠=向量共线定理:对平面内的任意两个向量 、 , // 的充要条件是:存在唯一的实数 ,使由该定理可以得到平面内三点共线定理:
()121212+= OA OB OP OP OA OB R λλλλλλ=+∈三点共线定理:已知平面内一组基底 , 及任一向量 ,, , 则A ,B ,P 三点共线,当且仅当 1.
()()()1122121,,1,
=1,,+= A B P AP AB OP OA OB OA OP OA O OP OA O B B λλλλλλλλλλλλλ=⇔-=-⇔=-+-=+=证明:如图 , 三点共线,当且仅当有唯一一个实数 , ,且使
令则 1.
()()()()()()1212112212=1,1;2+= OA OP OP OA OB OP OA OB OA AP AB OB OP OA OB λλλλλλλλλλλλλλ⇔-===-+⇔-=-⇔=+ 的系数之和等于1 即为向量,的变化而变化的定理特.如图,
且1征:
向量,
的系数点P 的位置是随着令 , 当点P 在线段AB 内()()
()()
()()
12121212121,1,,=10,10,1=1,01,0=10,,0=0=110
=1=10 1.
λλλλλλλλλλλλλλλλλλλλλλλλλ-∈=∈-∈-∞=∈+∞<-<<>∈+∞=∈-∞-===-===此时 此时,0,当点P 在线段AB 的延长线上时, ,点P 在线段AB 反向延长线上时, ,当点P 与点A , ,当点P 与点B 重合时, 时此时此时此时,, ,重合时,
111AP PB OP OA OB λλλλ∆==
+++推论:在OAB 中,P 为直线AB 上的一点,且则
P B
A O
1()
()1.,,2,21522112 (33333333)
ABC AB c AC b D BD DC AD A b c B c b C b c D b c ∆====+--+定理应用1:由三角形边上的分点引出向量问题
例在中,若点 满足 则
()2= 1212+=1+21+233
3BD DC AD AB AC c b λ==+解析:如图 ,因为,由推论可得2,
所以 ,所以答案为A. ()
11.2,,=3
2112....3333ABC AD DB CD CA CB A B C D λλ∆==+练习在 中,已知点D 是AB 边上一点,若 则 - -()124+= =33.
A λλ∴解析:如图,因为A,B,D 三点共线,所以1,所以答案为
()()()2.51,,0,0ABC BP PC AM mAB AN nAC m n m n λλ∆==>>+=定理应用2:由过三角形一边上分点的直线引出向量问题
例如图,在 中,点P 是直线BC 上的一点 ,且满足 = ,过点P 的直线分别交直线AB,AC 于不同的两点M,N,若,则
()()()()11111111,,+=1+=1+.11AP AB AC AM AN m n M P N m n m n λλλλλλλλλλλ=
+=+++++∴∴++因为三点共线,,解析:由推论可知,
()()
2.6,,ABC AB mAM AC nAN m n ∆==+=练习如图,在 中,点D 是BC 的中点 ,过点D 的直线分别交直线AB,AC
于不同的两点M,N,若则11,2222
,,+1,+ 2.22
m n AD AB AC AM AN m n M D N m n =
+=+==解析:因为D 是BC 的中点,所以又因为三点共线,所以所以
()()
3.712,,ABC BD DC AM mAB AN nAC m n ∆==+=练习如图,在 中,点D 满足 =2 ,过点D 的直线分别交直线AB,AC 于不同的两点M,N,若则()()1212, 3.1+ 2=12AD AM AN m n
m n λ=
+∴+=+解析:令2,则 ()()()
3.811,,0,0ABC AM mAB AN nAC m n m n ∆==>>+=定理应用3:由过三角形重心的直线引出向量问题
例如图,设点G 是在 的重心,过点G 直作直线MN 于直线AB,AC 交于不同的两点M,N,且满足,则2111133333,,,1111=1=3.33AD AB AC AM AG m AN M G N m m m m
n =+=+∴+∴+=
解析:设D 为BC 的因为三点共线,点,则,
中
()()()()
4.8,,0,012,23AMN ABC ABC AM mAB AN nAC m n m n S S m n ∆∆∆==>>===+=练习如图,设点G 是在 的重心,过点G 直作直线MN 与直线AB,AC 两边分别交于
M,N,两点,且,
若则;若则111=3 1.2
1sin 222,=,133sin 211=33 2.AMN AMN ABC ABC m n m n AM AN MAN S S S mn S AB AC BAC m n mn m n
∆∆∆∆+∴==⋅⋅∠=∴==⋅⋅∠+∴+==,当时, 因为若 因 ,解因为为析: {}()()
12002004.=.100.101.200.201
n n a OB a OA a OC O A B C D 定理应用4:由三点共线定理引出的数列求和问题
例已知等差数列 的前n 项和为S ,若 = + ,
且A,B,C 三点共线该直线不过原点 ,则S ()12001200200200++=1=
=100.2.a a a a A ∴,S 解析:由A,B 所,C 三以答点共线可案为知,
()220192201920202020+,+=1=
=1010.2
.a a AB d BC A B C a a B ∴∴∴= , 三点共线 ,S 所以答解析因案为:
为
()()()
.9,,0,02810.3.4..33
ABC D BD DC D AM mAB AN nAC m n m n A B C D ∆==>>+定理应用5:由三点共线定理引出的不等式求最值问题
例5如图,在 中,点 满足 =2 ,过点 的直线分别交直线AB,AC 于不同的两点M,N,若则 最小值为 ()()()1212, 3.1+2121252252222 3.333333
322=133BD DC AD AM AN m n m n n m m n m n m n m n n m m n m n =+∴+=+⎛⎫∴+=++=++≥+⨯
= ⎪⎝⎭=
=解析:因为 =2等号当且仅当,即 时成立, ,故选A.
{}(
)220192005.,=.0.1009.2017.2020n n a d S OA a OB a OC AB d BC O BC S A B C D ∉练习已知等差数列 的公差为 ,前n 项和为 ,若 = + ,且=, 则
()()7.1012,,3.4 (622)
ABC AB mAM AC nAN m n A B C D ∆==+练习如图,在 中,点D 是BC 的中点 ,过点D 的直线分别交直线AB,AC 于不同的两点M,N,若则
的最小值为 (
)11,
2222,,+1,+ 2.22
121121233=+=
3+
2222m n AD AB AC AM AN m n M D N m n n m m n m n m n m n =
+=+==+⎛⎫⎛⎫∴+++≥= ⎪ ⎪⎝⎭⎝⎭又因为三点共线解析:因为D 是BC 的中点,所以,所以所以
2=2,4.n m m n C m n
==-等号当且仅当
,即时成立,故选。