钠原子光谱
原子光谱实验及数据处理

里德伯表插值法
(高铁军,朱俊孔,《近代物理实验》,山东大学出版社,2000年)
里德伯表插值法
0.64 0.62 a12 0.64 *(3185.27 3174.44) 0.635 3185.27 3138.65
所以(m+a) = n’ = 3.635 ;
因此n1’ = 3.635 n2’ = 4.635 即量子缺Δ l = 1.365。 由于n-Δ l=m+a, 令n=5,得Δ l = 1.365
单变量求解法(Excel软件处理)
“单变量解”是一组命令的组成部分,这些命令有时也称
作假设分析工具。如果已知单个公式的预期结果,而用于 确定此公式结果的输入值未知,则可使用“单变量求解” 功能,通过单击“工具”菜单上的“单变量求解”即可使 用“单变量求解”功能。
R R A3s v1 v2 2 2 (3 p) (4 p)
Na原子光谱实验及数据处理
王承悦 07300720365
一、基本结构与概念
碱金属原子结构模型:外层一个价电子围绕原子实
运动,原子实的净电荷Z是1。 在价电子场的作用下,正、负电荷的中心不再重合, 原子实被极化,价电子受库电场和偶极距的共同作 用。 2 2 e e 价电子的势能: V C
1 1 v1 16238.51/ cm T1 615.82nm
1 1 v2 19412.95 / cm T1 515.12nm
| v1 v2 | 3174.44 / cm
查里德伯表可知,这个值介乎于3138.65nm和3185.27nm, 即n’介乎于3.64与3.66之间。 利用线性插值法可知:
三、数据处理
由于个谱线都有一个固定项,因此,同一谱线系中的
钠原子光谱的拍摄与分析

钠原子光谱的拍摄与分析试验目的:通过对钠原子光谱的观察、拍摄和分析,加深对碱金属原子中外层电子与原子实相互作用以及自旋与轨道运动的相互作用的了解。
实验器材:钠光灯、光栅摄谱仪、光电倍增管、A/D接口、计算机和相应软件系统。
实验原理:1、钠原子光谱的线系:碱金属原子只有一个价电子,所以和氢原子类似,但是由于价电子在原子实中贯穿的程度和引起原子实极化的程度与价电子的量子态有关,所以电子的能量与量子数n,l都有关。
钠原子光谱有四个线系:主线系:3S—nP,有自吸收线,仅共振线在可见区漫线系:3P—nD,谱线展宽明显锐线系:3P—nS,谱线比较清晰基线系:3D—nF,全部在红外区2、钠原子光谱的双重结构:由于电子自旋和轨道运动的相互作用使能级分裂,钠原子光谱显示出双重结构。
主线系光谱线双重结构的两个成分中短波成分与长波成分的强度比为2:1,而锐线系和漫线系则相反。
实验步骤:1、打开光源、光电倍增管、计算机电源,进入软件界面,定标光电管位置。
2、调整光源位置和单色仪的两个狭缝宽度,初步测量300nm—620nm间的谱线分布和相对强度。
3、调整光源位置,分别测量记录不同强度的各个谱线,依据共振线定标。
4、记录各个谱线的位置、强度、特点等数据。
5、退出软件系统,关闭所有仪器。
数据处理:原始测量数据:(范围:300nm—620nm负高压:6增益:6采集次数:10)定标误差曲线:(用处见后面问题思考)对证认了的Na的谱线的计算:能级数据表格:能级图:对于3p轨道有效电荷的计算:而用双重结构的波数差计算:问题思考:1、在光路的设计上,应当把狭缝尽量放小,而光源在需要时可以尽量接近狭缝,使得在保证光强的同时尽量使单色仪的分辨率提高。
2、可以通过把光源移近和拉远两次扫描并对比所得光谱,来得到每条光谱线的来源信息:如果来自于钠光灯,则光源移近后增强明显,反之则为杂散光(普通日光灯也是发射线)。
3、共振线在弥散较强烈的发射线背景上有一条吸收线。
Na原子光谱试验及数据处理

a12
0.64
0.64 3185.27
0.62 3138.65
*(3185.27
3174.44)
0.635
❖ 所以(m+a) = n’ = 3.635 ;
❖ 因此n1’ = 3.635 n2’ = 4.635 ❖ 由于n-Δl=m+a, 令n=5,得Δl = 1.365 ❖ 即量子缺Δl = 1.365。
300-650nm的钠光谱与实验测得的光谱进行对照,并确定六 组主要的谱线系:
主线系 漫线系 锐线系
跃迁
3p-3s 4p-3s 4d-3p 5d-3p 5s-3p 6s-3p
波长1(nm)
589.00 330.26 568.41 497.85 615.47 514.88
波长2(nm)
589.61 330.26 568.95 498.29 616.17 515.36
v%2
R (4 p)2
单变量求解法(Excel软件处理)
实验总结
❖从上面的计算过程来看, 用里德堡表插 值法进行计算量子缺比较繁琐,用Excel 软件进行数值计算过程简单。
❖ 从计算的结果来看,Excel的运算精度要 优于里德堡插值表法 。这是显然的, 因 为里德堡表法里列出的波数只保留到小 数点后第二位, 而且有效量子数的划分 也是以0.02为单位,还要用到线性插值 法进行计算,这就限制了运算精度的提 高。
❖ Na原子光谱
二、实验和数据记录:
❖ 实验仪器:
❖ 44W型平面光栅光谱仪采用水平非对称光学 系统。
二、实验和数据记录:
❖ 2、钠原子光谱图(300nm-500nm):
二、实验和数据记录:
❖ 2、钠原子光谱图(500nm-650nm):
实验二 钠原子光谱

实验二 钠原子光谱碱金属是元素周期表中的第一列元素(H 除外),包括Li 、Na 、K 、Rb 、Cs 、Fr ,是一价元素,具有相似的化学、物理性质。
碱金属原子的光谱和氢原子光谱相似,也可以归纳成一些谱线系列,而且各种不同的碱金属原子具有非常相似的谱线系列。
碱金属原子的光谱线主要由4个线系组成:主线系、第一谱线系(漫线系)、第二辅线系(锐线系)和柏格曼线系(基线系)。
碱金属原子与氢原子在能级方面存在差异,而且谱线系种类也不完全相同。
原子实的极化和轨道贯穿理论很好的解释了这种差别。
进一步对碱金属原子光谱精细结构的研究证实了电子自旋的存在和原子中电子的自旋与轨道运动的相互作用,即自旋-轨道相互作用,这种作用较弱,由它引起了光谱的精细结构。
钠原子光谱及其相应的能级结构具有碱金属原子光谱和能级结构的典型特征。
本实验通过钠原子光谱的观察与分析,加深对有关原子结构、原子内部电子的运动、碱金属原子的外层电子与原子核相互作用以及自旋与轨道运动相互作用的了解,在分析光谱线和测量波长的基础上,计算钠原子中价电子的各能级和相应的量子亏损,绘制钠原子的部分能级图。
【实验原理】原子光谱是研究原子结构的一种重要方法。
1885年,巴尔末(J.J.Balmer )根据人们的观测数据,发现了氢光谱的规律,提出了著名的氢光谱线的经验公式。
氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起了重要作用。
根据玻尔理论或量子力学中的相关理论,可得出对氢及类氢离子的光谱规律为: ⎥⎦⎤⎢⎣⎡-=222111~n n R H ν (2—1) 其中,ν~为波数,HR 为氢的里德伯常数(109 677.58cm ),1n 和2n 为整数。
钠是碱金属原子,核外有11个电子,其中622221p s s 这10个电子形成稳定的满壳层结构,并与原子核共同组成原子实,在最外层只有一个价电子。
在这一点上又与最简单的氢原子相似,因此纳原子光谱中各谱线的波数ν~,也可以用下列关系式表示: ⎥⎦⎤⎢⎣⎡-=222111~n n R ν (2—2) 其中 R 为里德伯常数 (=109737.31cm -1 ),在氢原子光谱中,1n 和2n 都是正整数,相应于 1n =1,2,3,···等值,分别有赖曼谱系,巴耳末谱系,帕邢谱系等。
1-2钠原子光谱-图文

1-2钠原子光谱-图文1.2钠原子光谱氢原子光谱和波尔理论给出了单纯正负电荷间相互吸引作用的电场量子化规律。
正确认识复杂原子光谱的规律,是完善波尔理论的必要条件。
在多电子原子体系中,碱金属原子只有一个价电子,与氢原子的结构相似,分析二者原子光谱的异同,是研究复杂原子光谱的切入点,不但认清了同种电荷间排斥作用的电场量子化规律,为解释元素的周期律奠定基础,还导致电子自旋的发现。
多电子原子中存在原子核-电子、电子-电子以及自旋-轨道多重相互作用。
通过拍摄钠原子光谱,在测量波长和分析光谱线系的基础上,根据价电子在不同轨道运动时的量子缺来理解电子-电子排斥作用对能级结构的影响,可以较全面地掌握光谱分析技术的基本方法。
一、实验目的(1)测量钠主线系的谱线波长;(2)了解原子光谱与原子结构的关系,求钠原子主线系的量子改正数(量子缺)。
二、实验原理原子中电子绕核运动的能量是量子化的。
电子从一个能级跃迁到另一能级,就要辐射或吸收一定的能量,由此形成原子的发射光谱或吸收光谱。
电子在主量数为n2和n1的上、下能级之间跃迁时,其发射光谱的波数为11~1(EE)R,(1.2.1)2122hcn1n2其中E1与E2分别表示上能级与下能级的能量,h为普朗克常数,c为光速,R为里德伯常数。
每一谱线的波数都可以表达为两光谱项之差,即~TT,(1.2.2)12T为光谱项,对于氢原子,光谱项可写成TRH。
(1.2.3)n2碱金属(Li,Na,K,Rb,C,Fr)原子只有一个价电子,在由原子核和闭壳层电子组成的离子实库仑场中运动,具有和氢原子相仿的结构,但比氢原子和类氢离子(He原子去掉一个核外电子形成的离子)要复杂。
这是由于碱金属原子中存在离子实的极化与贯穿,电子在主量子数n相同、轨道量子数l(l=1,2,…,n-1)不同的轨道上运动,其能量并不相同。
因此,电子的能量与n和l都有关系,即每个主量子数为n的能级分为n个子能级。
离子实的极化(离子实正负电荷中心不重合)与贯穿(价电子穿入离子实封闭电子壳层)都会使价电子受到附加的吸引作用,因此能量比氢原子体系的能量要低。
钠原子光谱

钠原子发射光谱实验目的:1、通过对钠原子光谱的观察与分析加深对碱金属原子的外层电子与原子实相互作用级轨道自旋相互作用的了解。
2、在分析光谱线和测量波长的基础上计算钠原子在不同轨道上运动时的量子数之损3、绘制钠原子的能级跃迁图,并与氢原子的能级进行比较。
实验仪器:钠灯光源 光栅光谱仪 计算机实验原理:对钠原子光谱的研究能使我们获得有关原子结构,原子内部电子的运动,碱金属原子的外层电子与原子核相互作用以及自旋与轨道运动相互作用的知识,并能对电子自旋的发现和元素周期表做出解释。
(一) 原子光谱的产生:1、原子的壳层结构原子是由原子核与绕核运动的电子所组成。
每一个电子的运动状态可用主量子数n 、角量子数l 、磁量子数l m 和自旋量子数S m 等四个量子数来描述。
主量子数n ,决定了电子的主要能量E 。
角量子数l ,决定了电子绕核运动的角动量。
电子在原子核库仑场中在一个平面上绕核运动,一般是沿椭圆轨道运动,是二自由度的运动,必须有两个量子化条件。
这里所说的轨道,按照量子力学的含义,是指电子出现几率大的空间区域。
对于一定的主量子数n ,可有n 个具有相同半长轴、不同半短轴的轨道,当不考虑相对论效应时,它们的能量是相同的。
如果受到外电磁场或多电子原子内电子间的相互摄动的影响,具有不同l 的各种形状的椭圆轨道因受到的影响不同,能量有差别,使原来简并的能级分开了,角量子数l 最小的、最扁的椭圆轨道的能量最低。
磁量子数l m (轨道方向的量子数),决定了电子绕核运动的角动量沿磁场方向的分量。
所有半长轴相同的在空间不同取向的椭圆轨道,在有外电磁场作用下能量不同。
能量大小不仅与n 和l 有关,而且也与l m 有关。
自旋量子数S m (自旋方向量子数),决定了自旋角动量沿磁场方向的分量。
电子自旋在空间的取向只有两个,一个顺着磁场;另一个反着磁场,因此,自旋角动量在磁场方向上有两个分量。
电子的每一运动状态都与一定的能量相联系。
钠原子光谱

钠原子光谱目的要求:本实验通过对钠原子光谱的观察、拍摄与分析,加深对碱金属原子的外层电子与原子实相互作用以及自旋与轨道运动相互作用的了解,在分析光谱线系和测量波长的基础上,计算钠原子的价电子在不同轨道运动时的量子缺,绘制钠原子的部分能级图.科学小史:(1)原子光谱及光谱研究元素的原子光谱,可以了解原子的内部结构,认识原子内部电子的运动,并导致电子自旋的发现.钠原子是一个多电子原子,既存在着原子核和电子的相互作用,又存在着电子之间的相互作用,还有电子自旋运动与轨道运动的相互作用.光谱是用来鉴别物质、发现新元素和确定它的化学组成的重要依据。
光谱分为发射光谱和吸收光谱两大类。
物体发光直接产生的光谱叫做发射光谱。
其中炽热的固体、液体和高压气体的发射光谱是连续光谱;而稀薄气体或金属蒸气的发射光谱是一些不连续的亮线,叫做明线光谱。
明线光谱是由游离态的原子发射的,所以也叫原子光谱。
还有一些物质的发射光谱呈带状,是由该元素的原子团或分子发射的,叫做带状光谱或分子光谱。
吸收光谱是指高温物体发出的白光(其中包含连续分布的一切波长的光),通过物质时,某些波长的光波物质吸收后产生的光谱。
所以吸收光谱是以连续光谱为背景的若干条暗线。
各种原子的吸收光谱中的每条暗线,都跟该种原子的发射光谱中的一条明线相对应。
每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线又叫做原子的特征谱线。
特征谱线为光谱分析技术的应用、研究和发展,提供了可靠的基础和保障。
光谱分析就是使用分光镜、分光仪、单色仪、摄谱仪、投影仪、记录仪和计算机等光谱仪器和分析仪器,通过对各类光谱的产生、拍摄、观察、记录等手段对物质进行定性或定量的检测、分析与研究。
它在我国国民经济中,特别是地质、矿产部门有着广泛的应用,在现代航天事业和对外星球的探测中,光谱分析有着更广阔的发展前景。
我们选了十幅有代表性的各类光谱图例。
a.氢的明线光谱;f.高压汞灯的明线光谱;b.氦的明线光谱;g.荧光灯的明线光谱;c.氩的明线光谱;h.钠的吸收光谱;d.钢的明线光谱;i.白炽灯的连续光谱;e.氙的明线光谱;j.太阳的连续光谱(其中有暗线)。
实验3-3钠原子光谱

实验 33 钠原子光谱对元素的光谱进行研究是了解原子结构的重要途径之一。
通过对原子光谱的研究,不仅让我们 了解了原子内部电子的运动,同时也导致了电子自旋的发现和对元素周期表的解释。
在对氢原子光谱的研究中, 人们认识到电子围绕原子核运动只能处于一系列能量不连续的状态, 从而获得了关于氢原子结构的知识。
但对于多电子原子,除了原子核和电子的相互作用外,还存着 电子之间的相互作用,而且电子的自旋运动和轨道运动的相互作用也更为显著。
为了更好地理解这 方面的知识,我们安排了钠原子光谱实验。
【实验目的】1、通过对钠原子光谱的观察和分析,加深对碱金属原子中外层电子与原子实相互作用以及自旋 与轨道运动相互作用的了解;2、在对光谱线系进行分析和波长测量的基础上,计算钠原子中价电子在不同轨道运动时的量子 缺,绘制钠原子的部分能级图,并根据双重线不同成分的波长差,计算价电子在某些轨道运动时原 子实的有效电荷。
【实验原理】(一) 钠原子光谱的线系为了比较与说明,我们先回忆一下氢原子的光谱规律。
对于氢原子光谱,人们早就发现它们的 光谱线的波数可以用两项值之差表示:2 1 2 2 n R n R - = n (331)式中 R 为里德伯常数。
若令 2 n =2, 1n =3、4、5……,则可得熟知的巴尔末线系。
碱金属原子只有一个价电子,价电子在核和内层电子组成的原子实的中心力场中运动,和氢原 子有点类似。
但是,由于原子实的存在,价电子处在不同量子态时,或者按轨道模型的描述,处于 不同的轨道时,它和原子实的相互作用是不同的。
这主要是因为:首先,价电子处于不同轨道时, 它们的轨道在原子实中贯穿的程度不同,所受到的作用不同;其次,价电子处于不同轨道时,引起 原子实极化的程度也不同。
这二者都要影响原子的能量。
即使电于所处轨道的主量子数 n 相同而轨 道量子数 l 不同,原子的能量也是不同的,因此原子的能量与价电子所处轨道的量子数 n,l 都有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
近代物理实验题目钠原子光谱的观测与分析班级09物理学号09072053姓名张泽民指导教师余云鹏钠原子光谱的观测与分析研究元素的原子光谱,可以了解原子的内部结构,认识原子内部电子的运动,并导致电子自旋的发现。
原子光谱的观测,为量子理论的建立提供了坚实的实验基础。
1885年末,巴尔末(J.J.Balmer)根据人们的观测数据,总结出了氢光谱线的经验公式。
1913年2月,玻尔(N.Bohr)得知巴尔末公式后,3月6日就寄出了氢原子理论的第一篇文章,他说:“我一看到巴尔末公式,整个问题对我来说就清楚了。
”1925年,海森伯(W.Heisenberg)提出的量子力学理论,更是建筑在原子光谱的测量基础之上的。
现在,原子光谱的观测研究,仍然是研究原子结构的重要方法之一。
20世纪初,人们根据实验预测氢有同位素,1912年发明质谱仪后,物理学家用质谱仪测得氢的原子量为1.00778,而化学家由各种化合物测得为1.00799。
基于上述微小的差异,伯奇(Birge)和门泽尔(Menzel)认为氢也有同位素2H(元素左上角标代表原子量),它的质量约为1H的2倍,据此他们算得1H和2H在自然界中的含量比大约为4000:1,由于里德伯(J.R.Rydberg)常量和原子核的质量有关,2H的光谱相对于1H的应该会有位移。
1932年,尤雷(H.C.Urey)将3L液氢在低压下细心蒸发至1毫升以提高2H的含量,然后将那1mL注入放电管中,用它拍得的光谱,果然出现了相对于1H移位了的2H的光谱,从而发现了重氢,取名为氘,化学符号用D表示。
由此可见,对样品的考究,实验的细心,测量的精确,于科学进步非常重要。
二、【实验仪器】1、WGD—8A型组合式多功能光栅光谱仪由光栅单色仪、接收单元、扫描系统、电子放大器、A/D采集单元、计算机组成。
该设备集光学、精密机械、电子学、计算机技术于一体。
光学系统采用C-T型。
入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm连续可调,顺时针旋转为狭缝宽度加大,反之减小,每旋转一周狭缝宽度变化0.5nm。
光源发出的光束进入入射狭缝S1,S1位于过反射式准光镜M2的焦面上,通过S1射入的光束经M2反射成平行光束投向平面光栅G上,衍射后的平行光束经物镜M3成像在S2上或S3上。
M2、M3 焦距500mm光栅G 每毫米刻线2400条,闪耀波长250nm波长范围200-660nm相对孔径 D/F=1/7杂散光≤10-3分辨率优于0.06 nm光电倍增管接收(1)波长范围 200-660nm(2)波长精度≤ ±0.2nm(3)波长重复性≤ 0.1nmCCD(电荷耦合器件)(1)接收单元 2048(2)光谱响应区间 300-660nm(3)积分时间 88档(4)重量 25kg两块滤光片工作区间白片 350-600nm红片 600-660nm光路图:三、【实验原理】(一)钠原子光谱1、原子光谱的线系碱金属原子只有一个价电子,价电子在核和内层电子组成的原子实的中心力场中运动,和氢原子有些类似。
若不考虑电子自旋和轨道运动的相互作用引起的能级分裂,可以把光谱项表示为:式中你n,l分别是主量子和轨道量子数,是原子实的平均有效电荷,>1。
因此还可以把上式改写为:(1-3-3)△l是一个与n和l都有关的正的修正数,称为量子缺。
理论计算和实验观测都表明,当n不是很大时,量子缺的大小主要决定l而随n变化不大,本实验中近似地认为△l与n无关。
电子由上能级(量子数为n,l)跃迁到下能级发射的光谱线的波数由上式决定:(1-3-4)如果令n',l'固定,而n依次改变(l的选择定则为△l=±1),则得到一系列的v值,它们构成一个光谱线系。
光谱中常用这种符号表示线系。
l=0,1,2,3分别用S,P,D,F表示。
钠原子光谱有四个线系:主线系(P线系):3S-nP,n=3,4,5,…;漫线系(D线系):3P-nD, n=3,4,5,…;锐线系(S线系):3P-nS,n=4,5,6,…;基线系(F线系):3P-nF,n=4,5,6,…;在各个线系中,式(1-3-4)中的n',l'固定不变,称为定项,以表示之;n,l项称为变动项。
因此(1-3-4)可写作(1-3-5)其中为常量,n=n’, n’+1, n’+2,… .在钠原子光谱的四个线系中,只有主线系的下级是基态(3S1/2能级),在光谱学中,称主线系的第一组线(双线)为共振线,钠原子的共振线就是有名的黄双线(589.0nm和589.6nm)。
钠原子的其他三个线系,基线系在红外区域,漫线系和锐线系除第一组谱线在红外区域,其余都在可见区域。
2、钠原子光谱的双重结构碱金属原子只具有一个价电原子,由于原子实的角动量为零(暂不考虑原子核自旋的影响),因此价电原子的角动量就等于原子的总角动量。
对于S轨道(l=0),电子的轨道角动量为零,总角动量就等于电子的自旋角动量,因此j只取一个数值,即j=1/2,从而S谱项只有一个能级,是单重能级。
对于l≠0的p,d,f…轨道,j可取j=l±1/2两个数值,依次相应的谱项分裂双重能级,由于能级分裂,用式(1-3-2)表示的光谱项相应发生变化,根据量子力学计算结果,双重能级的项值可以分别表示为:(1-3-6)(1-3-7)是只与n,l有关的因子,它等于:式中n,l(1-3-8)式中R为里德伯常数,R=109737.312cm-1;a为精细结构常数,;*s Z 为原子实的有效电荷,实验上根据式(1-3-3)从量子缺确定的原子实有效电荷Z 和根据光谱线双重结构确定的有效电荷*s Z 不完全相同。
由式(1-3-6)—(1-3-8),双重能级的间隔可以用波数表示为:(1-3-9)由上式可知,双重能级的间隔随n 和l 的增大而迅速减小。
(1)光谱线双重结构不同成分的波数差对钠原子而言,主线系光谱线对应的电子跃迁的下能级是3S 谱项,为单重能级,j =1/2;上能级分别是3P,4P,…谱项,都为双重能级,量子数j 分别是1/2和3/2。
由于电子在不同能级之间跃迁时,量子数j 的选择定则为△j =0,±1。
因此,主线系各组光谱线均包含双重结构的两部分,它们的波数差分别是上能级中双重能级的波数差,因而测量主线系光谱双重结构两个成分的波长,可以确定3P,4P 等谱项双重分裂的大小。
根据式(1-3-9),,因此主线系光谱线双重结构两个成分的波数差随谱线波数的增大而迅速减小。
根据锐线系所对应的跃迁,作同样的分析,不难看出,锐线系光谱也包含双重结构的两部分,但两个成分的波数都相等,其值等于3P 谱项双重分裂的大小。
漫线系和基线系谱线对应的跃迁的上、下能级,根据选择定则△j =0,±1,每一组谱线的多重结构中应有三个成分,但这样一组线不叫三重线,而称为复双重线,因为它们仍然是由于双重能级的跃迁产生的。
这三个成分中,有一个成分的强度比较弱,而且它与另一个成分十分靠近,仪器的分辨率如果不够高,通常只能观察到两个成分。
在钠原子的弧光光谱中,由于漫线系十分弥漫,从而也只能观察到两个成分。
由于nD 谱项的双重分裂比较小,因此这两个成分的波数差近似等于3P 谱项的双重分裂。
(2)光谱线双重结构不同成分的相对强度,碱金属原子光谱不同线系的差别还表现在强度方面。
在实验室中通常用电弧、火花或辉光放电等光源拍摄原子光谱,在这种情况下考虑谱线的强度时只须考虑自发辐射跃迁。
原子从上级n 至下能级m 的跃迁发出的光谱线强度为:(1-3-10)式中n N 为处上能级的原子数目,mn hv 为上、下能级的能量差,mn A 为单位时间内原子崇上能级n 跃迁到下能级m 的跃迁概率。
考虑碱金属原子在不同能级之间跃迁时,如果没有外场造成双重能级的进一步分裂,每一能级的统计权重为g =2j +1。
在许多情况下(如所考虑的能级间隔不是太大或者光源中电子气体的温度很高),处于不同能级的原子数目和它们的统计权重成正比,对能级n 和m ,有:(1-3-11)若计算出原子在不同能级之间的自发跃迁概率mn A ,利用式(1-3-10)和(1-3-11)可以计算不同谱线的强度比。
考虑到各个能级的统计权重,可以利用谱线跃迁的强度和定则来估算谱线的相对强度。
强度和定则是:①从同一能级跃迁产生的所有谱线成分的强度和正比于该能级的统计权重上g ;②终于同一下能级的所有谱线的强度和正比于该能级的统计权重下g 。
把强度和定则分别应用于碱金属原子光谱的不同线系,即可得到各个线系双重结构不同成分的相对强度。
主线系光谱的双重线是之间跃迁产生的(图1-3-1),其中上能级是双重的,下能级是单重的,根据强度和定则,两个成分A λ和B λ的强度比为:其中2/3g 和2/1g 分别是两个上能级2/32P n 和2/12P n 的统计权重,图中A λ是短波成分,B λ为长波成分。
因此,主线系光谱双重结构的两个成分中短波成分与长波成分的强度比是2:1。
它与根据式(1-3-10)和(1-3-11)计算得到的结果是一致的。
锐线系光谱的双重线是之间跃迁产生的(图1-3-2),上能级是单重的,下能级是双重的。
根据强度和定则,两成分A λ和B λ的强度比为:其中2/3g 和2/1g 是能级2/323P 和2/123P 的统计权重。
图中A λ和B λ分别是短波成分和长波成分,因此锐线系光谱线双重结构的两个成分中短波成分和长波成分的强度比是1:2,这与主线系的情形正相反。
漫线系光谱的复双重线是:之间跃迁产生的(图1-3-3),这时上、下能级都是双重的。
复双重线的三个成分的波长从小到大依次为A λ、B λ和c λ;强度分别为I、DB I 和DC I 。
根据强度和定则(1)我们有:其中2/5g 和2/3g 分别是下能级2/323P 和2/123P 的统计权重。
由两式解得,但由于B λ和c λ相距很近,通常无法分开,两个成分合二为一,其波长用BC λ表示,这个成分比A λ的波长要长,这时有:因漫线系双重短波成分与长波成分的强度比也是1:2,与锐线系的情形相同,而与主线系相反。
基线系的情形和漫线系类似。
四、【实验内容】1.在电压500v,波长范围585-595nm观察钠原子光谱的双黄线,测量其波长,利用双黄线校准仪器的波长读数。
2.在电压650v下观察钠原子波长范围300-580nm和595-660nm的光谱图,测量其波长,并计算量子缺及绘制能级图。
五、【实验数据及结果分析】1.实验所得数据图像。
如下图所示。
图1 钠原子300-580nm光谱图图2 钠双黄线光谱图由钠黄双线的光谱图可得:其能量强度非常的高,易于观测分析,对应的波长分别为589.00nm和589.60nm。