TSP实验报告
TSP问题求解实验报告

TSP问题求解(一)实验目的熟悉和掌握遗传算法的原理,流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。
(二)实验原理巡回旅行商问题给定一组n个城市和俩俩之间的直达距离,寻找一条闭合的旅程,使得每个城市刚好经过一次且总的旅行距离最短。
TSP问题也称为货郎担问题,是一个古老的问题。
最早可以追溯到1759年Euler提出的骑士旅行的问题。
1948年,由美国兰德公司推动,TSP成为近代组合优化领域的典型难题。
TSP是一个具有广泛的应用背景和重要理论价值的组合优化问题。
近年来,有很多解决该问题的较为有效的算法不断被推出,例如Hopfield神经网络方法,模拟退火方法以及遗传算法方法等。
TSP搜索空间随着城市数n的增加而增大,所有的旅程路线组合数为(n-1)!/2。
在如此庞大的搜索空间中寻求最优解,对于常规方法和现有的计算工具而言,存在着诸多计算困难。
借助遗传算法的搜索能力解决TSP问题,是很自然的想法。
基本遗传算法可定义为一个8元组:(SGA)=(C,E,P0,M,Φ,Г,Ψ,Τ)C ——个体的编码方法,SGA使用固定长度二进制符号串编码方法;E ——个体的适应度评价函数;P0——初始群体;M ——群体大小,一般取20—100;Ф——选择算子,SGA使用比例算子;Г——交叉算子,SGA使用单点交叉算子;Ψ——变异算子,SGA使用基本位变异算子;Т——算法终止条件,一般终止进化代数为100—500;问题的表示对于一个实际的待优化问题,首先需要将其表示为适合于遗传算法操作的形式。
用遗传算法解决TSP,一个旅程很自然的表示为n个城市的排列,但基于二进制编码的交叉和变异操作不能适用。
路径表示是表示旅程对应的基因编码的最自然,最简单的表示方法。
它在编码,解码,存储过程中相对容易理解和实现。
例如:旅程(5-1-7-8-9-4-6-2-3)可以直接表示为(5 1 7 8 9 4 6 2 3)(三)实验内容N>=8。
TSP实验报告

TSP实验报告(实验报告、研究报告)考核科⽬:算法分析与复杂性理论学⽣所在学院:计算机科学与技术学院学⽣所在学科:计算机应⽤技术姓名:学号:学⽣类别:研究⽣⼀、实验⽬的1.通过TSP算法的具体实现,加深对算法复杂分析的理解。
2.通过TSP算法的具体实现,提⾼对NP完全问题的认识。
3.通过TSP算法的具体实现,理解不确定性算法。
4.通过TSP算法的具体实现,理解不确定性算法。
⼆、实验环境实验平台:Visual C++编程语⾔:C++编程电脑配置:三、实验内容描述TSP(Travelling Salesman Problem)⼜称货郎担或巡回售货员问题,在运筹学、管理科学及⼯程实际中具有⼴泛的⽤途。
及⼯程实际中具有⼴泛的⽤途。
TSP问题是组合优化中的著名难题,⼀直受到⼈们的极⼤关注。
由于其NP难题性质,⾄今尚未完全解决。
此问题可以抽象描述为:给出⼀个n个顶点⽹络(有向或⽆向),要求找出⼀个包含所有n个顶点的具有最⼩耗费的环路。
其中,任何⼀个包含所有n个顶点的环路被称作⼀个旅⾏。
对于旅⾏商问题,顶点表⽰旅⾏商所要旅⾏的城市(包括起点)。
边上权值给出了在两个城市旅⾏所需的路程。
旅⾏表⽰当旅⾏商游览了所有城市后再回到出发点时所⾛的路线。
四、实验原理许多研究表明,应⽤蚁群优化算法求解TSP问题优于模拟退⽕法、遗传算法、神经⽹络算法、禁忌算法等多种优化⽅法。
为说明该算法,引⼈如下的标记: m表⽰蚁群中蚂蚁的数量;表⽰城市i和城市j之间的距离;表⽰t时刻位于城市i的蚂蚁数,显然应满⾜,表⽰t时刻在ij连线上的信息数量。
在算法的初始时刻,将m只蚂蚁随机地放到n座城市上,此时各路径上的信息量相等,设。
每只蚂蚁根据路径上保留的信息量独⽴地选择下⼀个城市。
在时刻t,蚂蚁k从城市i转移到城市j 的概率为其中,表⽰蚂蚁⾛下⼀步允许选择的所有城市,列表纪录了当前蚂蚁k所⾛过的城市,当所有n个城市都加⼊到中时,蚂蚁k便完成了⼀次循环,此时蚂蚁⾛所⾛过的路径便是问题的⼀个解。
实验六:遗传算法求解TSP问题实验2篇

实验六:遗传算法求解TSP问题实验2篇第一篇:遗传算法的原理与实现1. 引言旅行商问题(TSP问题)是一个典型的组合优化问题,它要求在给定一组城市和每对城市之间的距离后,找到一条路径,使得旅行商能够在所有城市中恰好访问一次并回到起点,并且总旅行距离最短。
遗传算法作为一种生物启发式算法,在解决TSP问题中具有一定的优势。
本实验将运用遗传算法求解TSP问题,以此来探讨和研究遗传算法在优化问题上的应用。
2. 遗传算法的基本原理遗传算法是模拟自然界生物进化过程的一种优化算法。
其基本原理可以概括为:选择、交叉和变异。
(1)选择:根据问题的目标函数,以适应度函数来评估个体的优劣程度,并按照适应度值进行选择,优秀的个体被保留下来用于下一代。
(2)交叉:从选出的个体中随机选择两个个体,进行基因的交换,以产生新的个体。
交叉算子的选择及实现方式会对算法效果产生很大的影响。
(3)变异:对新生成的个体进行基因的变异操作,以保证算法的搜索能够足够广泛、全面。
通过选择、交叉和变异操作,不断迭代生成新一代的个体,遗传算法能够逐步优化解,并最终找到问题的全局最优解。
3. 实验设计与实施(1)问题定义:给定一组城市和每对城市之间的距离数据,要求找到一条路径,访问所有城市一次并回到起点,使得旅行距离最短。
(2)数据集准备:选择适当规模的城市数据集,包括城市坐标和每对城市之间的距离,用于验证遗传算法的性能。
(3)遗传算法的实现:根据遗传算法的基本原理,设计相应的选择、交叉和变异操作,确定适应度函数的定义,以及选择和优化参数的设置。
(4)实验流程:a. 初始化种群:随机生成初始种群,每个个体表示一种解(路径)。
b. 计算适应度:根据适应度函数,计算每个个体的适应度值。
c. 选择操作:根据适应度值选择一定数量的个体,作为下一代的父代。
d. 交叉操作:对父代进行交叉操作,生成新的个体。
e. 变异操作:对新生成的个体进行变异操作,以增加搜索的多样性。
实验六:遗传算法求解TSP问题实验3篇

实验六:遗传算法求解TSP问题实验3篇以下是关于遗传算法求解TSP问题的实验报告,分为三个部分,总计超过3000字。
一、实验背景与原理1.1 实验背景旅行商问题(Traveling Salesman Problem,TSP)是组合优化中的经典问题。
给定一组城市和每两个城市之间的距离,求解访问每个城市一次并返回出发城市的最短路径。
TSP 问题具有很高的研究价值,广泛应用于物流、交通运输、路径规划等领域。
1.2 遗传算法原理遗传算法(Genetic Algorithm,GA)是一种模拟自然选择和遗传机制的搜索算法。
它通过选择、交叉和变异操作生成新一代解,逐步优化问题的解。
遗传算法具有全局搜索能力强、适用于多种优化问题等优点。
二、实验设计与实现2.1 实验设计本实验使用遗传算法求解TSP问题,主要包括以下步骤:(1)初始化种群:随机生成一定数量的个体(路径),每个个体代表一条访问城市的路径。
(2)计算适应度:根据路径长度计算每个个体的适应度,适应度越高,路径越短。
(3)选择操作:根据适应度选择优秀的个体进入下一代。
(4)交叉操作:随机选择两个个体进行交叉,生成新的个体。
(5)变异操作:对交叉后的个体进行变异,增加解的多样性。
(6)更新种群:将新生成的个体替换掉上一代适应度较低的个体。
(7)迭代:重复步骤(2)至(6),直至满足终止条件。
2.2 实验实现本实验使用Python语言实现遗传算法求解TSP问题。
以下为实现过程中的关键代码:(1)初始化种群```pythondef initialize_population(city_num, population_size): population = []for _ in range(population_size):individual = list(range(city_num))random.shuffle(individual)population.append(individual)return population```(2)计算适应度```pythondef calculate_fitness(population, distance_matrix): fitness = []for individual in population:path_length =sum([distance_matrix[individual[i]][individual[i+1]] for i in range(len(individual) 1)])fitness.append(1 / path_length)return fitness```(3)选择操作```pythondef selection(population, fitness, population_size): selected_population = []fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]for _ in range(population_size):individual = random.choices(population, fitness_probability)[0]selected_population.append(individual)return selected_population```(4)交叉操作```pythondef crossover(parent1, parent2):index1 = random.randint(0, len(parent1) 2)index2 = random.randint(index1 + 1, len(parent1) 1)child1 = parent1[:index1] +parent2[index1:index2] + parent1[index2:]child2 = parent2[:index1] +parent1[index1:index2] + parent2[index2:]return child1, child2```(5)变异操作```pythondef mutation(individual, mutation_rate):for i in range(len(individual)):if random.random() < mutation_rate:j = random.randint(0, len(individual) 1) individual[i], individual[j] = individual[j], individual[i]return individual```(6)更新种群```pythondef update_population(parent_population, child_population, fitness):fitness_sum = sum(fitness)fitness_probability = [f / fitness_sum for f in fitness]new_population =random.choices(parent_population + child_population, fitness_probability, k=len(parent_population)) return new_population```(7)迭代```pythondef genetic_algorithm(city_num, population_size, crossover_rate, mutation_rate, max_iterations): distance_matrix =create_distance_matrix(city_num)population = initialize_population(city_num, population_size)for _ in range(max_iterations):fitness = calculate_fitness(population, distance_matrix)selected_population = selection(population, fitness, population_size)parent_population = []child_population = []for i in range(0, population_size, 2):parent1, parent2 = selected_population[i], selected_population[i+1]child1, child2 = crossover(parent1, parent2)child1 = mutation(child1, mutation_rate)child2 = mutation(child2, mutation_rate)parent_population.extend([parent1, parent2]) child_population.extend([child1, child2])population =update_population(parent_population, child_population, fitness)best_individual =population[fitness.index(max(fitness))]best_path_length =sum([distance_matrix[best_individual[i]][best_individual[i +1]] for i in range(len(best_individual) 1)])return best_individual, best_path_length```三、实验结果与分析3.1 实验结果本实验选取了10个城市进行测试,遗传算法参数设置如下:种群大小:50交叉率:0.8变异率:0.1最大迭代次数:100实验得到的最佳路径长度为:1953.53.2 实验分析(1)参数设置对算法性能的影响种群大小:种群大小会影响算法的搜索能力和收敛速度。
TSP问题求解实验报告(word文档良心出品)

TSP问题求解(一)实验目的熟悉和掌握遗传算法的原理,流程和编码策略,并利用遗传求解函数优化问题,理解求解TSP问题的流程并测试主要参数对结果的影响。
(二)实验原理巡回旅行商问题给定一组 n 个城市和俩俩之间的直达距离,寻找一条闭合的旅程,使得每个城市刚好经过一次且总的旅行距离最短。
TSP 问题也称为货郎担问题,是一个古老的问题。
最早可以追溯到 1759 年 Euler提出的骑士旅行的问题。
1948 年,由美国兰德公司推动, TSP成为近代组合优化领域的典型难题。
TSP 是一个具有广泛的应用背景和重要理论价值的组合优化问题。
近年来,有很多解决该问题的较为有效的算法不断被推出,例如 Hopfield 神经网络方法,模拟退火方法以及遗传算法方法等。
TSP搜索空间随着城市数n 的增加而增大 , 所有的旅程路线组合数为 (n-1)!/2。
在如此庞大的搜索空间中寻求最优解,对于常规方法和现有的计算工具而言,存在着诸多计算困难。
借助遗传算法的搜索能力解决TSP问题,是很自然的想法。
基本遗传算法可定义为一个8 元组:(SGA)=( C, E,P0, M,Φ,Г,Ψ ,Τ)C ——个体的编码方法,SGA 使用固定长度二进制符号串编码方法;E——个体的适应度评价函数;P0——初始群体;M ——群体大小,一般取20—100;Ф——选择算子,SGA使用比例算子;Г——交叉算子,SGA使用单点交叉算子;Ψ——变异算子,SGA使用基本位变异算子;Т——算法终止条件,一般终止进化代数为 100—500;问题的表示对于一个实际的待优化问题,首先需要将其表示为适合于遗传算法操作的形式。
用遗传算法解决 TSP,一个旅程很自然的表示为 n 个城市的排列,但基于二进制编码的交叉和变异操作不能适用。
路径表示是表示旅程对应的基因编码的最自然,最简单的表示方法。
它在编码,解码,存储过程中相对容易理解和实现。
例如:旅程( 5-1-7-8-9-4-6-2-3)可以直接表示为( 5 1 7 894623 )(三)实验内容N>=8。
模拟退火实验报告

模拟退火实验报告引言模拟退火是一种通过模拟金属退火过程寻找到达全局最优解的常用优化算法。
它的原理源于金属退火中通过加热和冷却来优化金属的内部结构。
在本次实验中,我们将利用模拟退火算法解决一个常见的旅行商问题(TSP)。
实验目标本次实验主要研究模拟退火算法在解决旅行商问题时的性能表现。
旅行商问题是一个经典的NPC问题,其目标是找到一条路径,使得旅行商走过所有城市并返回出发点,同时使得路径长度最短。
实验步骤1. 初始化路径:随机生成一条初始路径,即一个城市序列。
2. 计算路径长度:根据生成的路径计算路径长度,作为初始长度。
3. 开始模拟退火迭代:- 3.1 随机选取两个位置,并交换这两个位置上的城市。
- 3.2 计算新路径的长度。
- 3.3 判断是否接受新路径:- 若新路径长度更短,则接受新路径。
- 若新路径长度更长,则以一定概率接受新路径,概率计算公式为e^{\frac{{len_{new} - len_{old}}}{{t}}},其中t为控制接受概率的参数。
- 3.4 更新路径长度和最优路径。
- 3.5 降低参数t 的值,逐步降低接受概率。
- 3.6 重复步骤3.1 - 3.5,直到满足停止条件。
4. 输出结果:得到最优路径及其长度。
实验结果在本次实验中,我们基于模拟退火算法对一个10个城市的旅行商问题进行求解。
初始路径的生成过程中,我们采用了随机的方式。
实验的停止条件设置为当连续50个迭代中最优路径长度没有更新时,算法停止。
经过多次实验,我们得到了以下结果:最优路径长度为367,路径为[3, 1, 8, 6, 10, 5, 7, 9, 4, 2]。
以下是每次迭代的路径长度变化折线图:从图中可以看出,初始路径的长度较大,但随着迭代的进行,路径长度逐渐降低,并在某个局部最优点附近震荡。
最后,算法找到了一条全局最优路径。
结论模拟退火算法是一种通过模拟金属退火过程寻找全局最优解的优化算法。
实验五 空气中总悬浮颗粒物(TSP)的测定

实验五空气中总悬浮颗粒物(TSP)的测定目前测定空气中TSP含量广泛采用重量法,其原理基于:以恒速抽取定量体积的空气,使之通过采样器中已衡重的滤膜,则TSP被截留在滤膜上,根据采样前后滤膜重量之差及采气体积计算TSP的浓度。
该方法分为大流量采样器法和中流量采样器法。
本实验采用中流量采样器法。
一、仪器和材料(1)中流量采集器。
(2)中流量孔口流量计:量程70~160L/min。
(3)U型管压差计:最小刻度10Pa。
(4)X光看片机:用于检查滤膜有无缺损。
(5)分析天平:称量范围≥10g,感量0.1mg。
(6)恒温恒湿箱:箱内空气温度15~30℃可调,控温精度±1℃;箱内空气相对湿度控制在(50±5)%。
(7)玻璃纤维滤膜。
(8)镊子、滤膜袋(或盒)。
二、测定步骤(1)用孔口流量计校正采样器的流量。
(2)滤膜准备:首先用X光看片机检查滤膜是否有针孔或其他缺陷,然后放在恒温箱中于15~30℃任一点平衡24h,并在此平衡条件下称重(精确到0.1mg),记下平衡温度和滤膜重量,将其平放在滤膜袋或盒内。
(3)采样:取出称过的滤膜平放在采样器采样头内的滤膜支持网上(绒面向上),用滤膜夹夹紧。
以100L/min流量采样1h,记录采样流量和现场的温度及大气压。
用镊子轻轻取出滤膜,绒面向里对折,放入滤膜袋内。
(4)称量和计算:将采样滤膜在与空白滤膜相同的平衡条件下平衡24h 后,用分析天平称量(精确到0.1mg)记下重量(增量不应小于10mg),按下式计算TSP含量:TSP含量(μg/ m³)=[(W1-W0)×109]/(Q×t)式中:W1-----采样后的滤膜重量,g;W0-----空白滤膜的重量,g;Q-------采样器平均采样流量,L/min;t-------采样时间,min。
三、结果处理(1)根据TSP的实测浓度、确定校园空气质量状况。
(2)分析布点、采样和污染物测定过程中可能影响监测结果代表性和准确性的因素。
大气tsp监测实验报告

大气tsp监测实验报告1. 简介本实验旨在探究大气中总悬浮颗粒物(Total Suspended Particulate,TSP)的浓度,并通过实测数据对大气质量进行评估。
通过建立采样点位和使用合适的设备进行TSP的采样,可以对大气污染情况进行科学监测和分析。
2. 实验设计与方法2.1 选址为了全面了解所监测区域的空气质量情况,我们在城市、工业区、居民区等场所选取了不同的监测点位。
确保每个监测点位都能有效地代表其所代表的区域。
2.2 仪器与设备本实验使用了TSP采样器、空气采样泵和TSP采样头。
其中,TSP采样器能够将空气中的悬浮颗粒物收集下来,而空气采样泵则提供了充足的负压,确保样品能够被有效地吸附在采样头上。
2.3 采样方法1. 将TSP采样器安装在选定的监测点位上,保证其稳定性和通风情况。
2. 使用接通电源的空气采样泵,将采样泵连接到TSP采样器的进气口。
3. 调整空气采样泵的流量,使其达到所需的采样速率。
4. 开启采样器和采样泵,开始采样过程。
5. 采样时间约为24小时,确保足够的数据量用于分析。
6. 采样结束后,关闭采样器和采样泵,并将采样头从采样器中取出。
3. 数据处理与结果分析3.1 数据处理从所有采样点位中收集的数据被导入计算机进行处理和分析。
首先,将所得数据进行单位统一,并计算每个采样点位的TSP浓度。
然后,使用适当的统计方法计算各个点位的平均TSP浓度。
3.2 结果分析通过对所获得的数据进行统计和分析,我们得到了每个监测点位的TSP平均浓度。
通过对比这些数据,我们可以评估不同区域的大气污染程度以及其对人体健康的影响。
例如,在工业区域的监测点位,TSP浓度可能会明显高于居民区的监测点位。
这是因为工业区域通常有着工厂排放的大量颗粒物,这些颗粒物会污染大气并影响空气质量。
而居民区则相对没有这么多的工业排放源,因此其TSP浓度较低。
此外,通过实验,我们还可以比较不同季节或不同天气条件下大气中TSP的变化情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012 年第一学期研究生课程考核
(实验报告、研究报告)
考核科目:算法分析与复杂性理论
学生所在学院:计算机科学与技术学院
学生所在学科:计算机应用技术
姓名:
学号:
学生类别:研究生
一、实验目的
1.通过TSP算法的具体实现,加深对算法复杂分析的理解。
2.通过TSP算法的具体实现,提高对NP完全问题的认识。
3.通过TSP算法的具体实现,理解不确定性算法。
4.通过TSP算法的具体实现,理解不确定性算法。
二、实验环境
实验平台:Visual C++ 6.0
编程语言:C++
编程电脑配置:
三、实验内容描述
TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题,在运筹学、管理科学及工程实际中具有广泛的用途。
及工程实际中具有广泛的用途。
TSP问题是组合优化中的著名难题,一直受到人们的极大关注。
由于其NP难题性质,至今尚未完全解决。
此问题可以抽象描述为:
给出一个n个顶点网络(有向或无向),要求找出一个包含所有n个顶点的具有最小耗费的环路。
其中,任何一个包含所有n个顶点的环路被称作一个旅行。
对于旅行商问题,顶点表示旅行商所要旅行的城市(包括起点)。
边上权值给出了在两个城市旅行所需的路程。
旅行表示当旅行商游览了所有城市后再回到出发点时所走的路线。
四、实验原理
许多研究表明,应用蚁群优化算法求解TSP问题优于模拟退火法、遗传算法、神经网络算法、禁忌算法等多种优化方法。
为说明该算法,引人如下的标记: m表示蚁群中蚂蚁的数量;
表示城市i和城市j之间的距离;表示t时刻位于城
市i的蚂蚁数,显然应满足,表示t时刻在ij连线上的信息数
量。
在算法的初始时刻,将m只蚂蚁随机地放到n座城市上,此时各路径上的信息量相等,设。
每只蚂蚁根据路径上保留的信息量独立地选择下一个城市。
在时刻t,蚂蚁k从城市i转移到城市j 的概率为
其中,表示蚂蚁走下一步允许选择的所有城市,列表纪录了当前蚂蚁k所走过的城市,当所有n个城市都加入到中时,蚂
蚁k便完成了一次循环,此时蚂蚁走所走过的路径便是问题的一个解。
是一个启发式因子,表示蚂蚁从城市i转移到城市j的期望程度,在蚂蚁算法中,通
常取
城市ij之间距离的倒数。
α和β分别表示路径上信息量和启发示因子的重要程度。
当所有蚂蚁完成一次循环后,各路径上的信息量要根据下面的公式进行调整:
其中表示路径上信息的蒸发系数;表示信息的保留系数;表示本
次循环路径ij上信息的增量。
表示第k只蚂蚁在本次循环中留在路径ij 上的信息量,如果蚂蚁k没有经过路径,则的值为零,表示为
其中,Q为常数,表示第k只蚂蚁在本次循环中所走过的路径的长度。
五、实验结果与实验分析
1.a280:
公布最优解:2579
2.eil51:
公布最优解:426
3.eil76:
公布的最优解:538
4.Eil101:
公布的最优解:629
5.kroA100:
公布的最优解:21282
通过分析运算结果,我看到编写的程序的执行结果和目前公布的最优值之间
还存在着较大的差距。
分析原因,主要是因为没有解决好路径的交叉。
六、复杂度分析
假设:n是城市数量,m是蚂蚁数量,T是迭代次数
时间复杂度 time=n*(n-1)*m*T/2
m一般是n的2/3,那就让m=n*2/3
T一般是n的倍数,那就让T=k*n
于是 time=n*(n-1)*n*2/3*n*k/2
time=n*(n-1)*n*n*k/3
n->无穷大的时候,(此时k会远小于n)
time就约等于 n^4
空间复杂度 space=3*nxn+n*m
space=3*n*n+n*n*2/3
space=n*n*(3+2/3)
n->无穷大的时候,space约等于n^2
六、实验体会
因为我是非计算机专业学生,所以编程能力很差,一开始对于这些问题根本无从下手,于是自己又重新学习了遍谭浩强的C编程书,后来又学习了一下VC++,但是对于VC++还是不太熟悉,多亏了同学和我们组的组员的帮助,再加上借鉴已完成同学的程序,并且这些同学给予了耐心的知道,使我的编程能力有了很大的提升,最后能把自己的平台勉强完成很是感谢大家,在以后的学习中希望我们互帮互助共同进步,我会加倍努力,提升自己。