(完整版)大学物理质点运动学习题及答案(2)

合集下载

大学物理活页作业(马文蔚主编)答案

大学物理活页作业(马文蔚主编)答案

运动方程。)
7.解:(1)
r

2ti

(2

t
2
)
j
( SI )
r1 2i j (m)
r2 4i 2 j (m)
r r2 r1 2i 3 j (m)
v

r

2i

3j
t
(m / s)
(2) v
mr 2 J
(2)设绳子对物体(或绳子对轮轴)的拉力为 T,则根据牛顿运动定律和转动定律 得:
mg – T=ma
T r=J
由运动学关系有: a = r
联立解得:
mgJ T
J mr 2
1 质点运动学单元练习一答案—11
10.解:以中心 O 为原点作坐标轴 Ox、Oy 和 Oz 如图所示,取质量为 dm dxdy
式中面密度 为常数,按转动惯量定义,
Jz
(x2

y 2 )dm

b
2 b
dx

a
2 a
(
x
2


y 2 )dy

(ab3 12
a3b)
2
2
薄板的质量 m ab
所以
Jz

m (a2 12

b2 )
7.刚体转动单元练习(二)答案
1.C
2.A
3.D
4.B
5.
3
o

1 3
Ep

1 2
mv12

1 2
m2v
2 2

1 2
(m1
m2 )v 2

大学物理习题册及解答第二版第一章质点的运动

大学物理习题册及解答第二版第一章质点的运动

7 汽车在半径为200m的圆弧形公路上刹车,刹车开始阶段的路程
随时间的变化关系为 S 20t 0.2t3(SI),汽车在t=1s时的切向加速

,法向加速度大小为 ,加速度的大小和方向为


at
d 2S dt 2
1.2t
1.2m / s2
an
2
R
1 dS R dt
2
(20 0.6t 2 )2 R
第一章 质点的运动(一)
一、选择题
1 某质点作直线运动的运动学方程为x=3t-5t3+6(SI),则
该质点作 (A)匀加速直线运动,加速度沿x轴正方向. (B)匀加速直线运动,加速度沿x轴负方向. (C)变加速直线运动,加速度沿x轴正方向. (D)变加速直线运动,加速度沿x轴负方向.
2
一质点在某瞬时位于位矢 r(
2
4 一质点沿x方向运动,其加速度随时间变化关系为a =3+2t(SI) , 如果初始时质点的速度v0为5m/s,则当t为3s时,质点的速度v
=_2__3_m_/_s_
5.一质点作半径为 0.1 m的圆周运动,其角位置的运动学方程为:
π
1 t2
(SI)
42
则其切向加速度为 a
R
R d 2
0.1m / s2
定要经过2m的路程. (B) 斜向上抛的物体,在最高点处的速度最小,加速度最大. (C) 物体作曲线运动时,有可能在某时刻的法向加速度为零. (D) 物体加速度越大,则速度越大.
3. 在相对地面静止的坐标系内, A、B 二船都以3m/s 的速率匀
速行驶, A 船沿x轴正向, B船沿y轴正向,今在船 A 上设置与静
(A)
1 2

质点运动学习题和答案

质点运动学习题和答案

作业1 质点运动学知识点一、位移、速度、加速度1、位矢:位移:平均速度:(瞬时)速度:(瞬时)加速度:2、路程s:物体通过的实际距离。

平均速率:(瞬时)速率:速度的大小等于速率问题1、如何由求,如何由求。

利用求导,。

问题2、如何由求,如何由求。

若,利用若,利用若,利用问题3、如何由求位移和路程。

位移:路程:1、,求得速度为零的时间,然后求出的路程和的路程[ C]1、[基础训练1]如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率收绳,绳不伸长、湖水静止,则小船的运动是(A) 匀加速运动.(B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动.【解答】如图建坐标系,设船离岸边x米,,,,,可见,加速度与速度同向,且加速度随时间变化。

[ B ]2、[基础训练2]一质点沿x轴作直线运动,其v-t曲线如图所示,如t=0时,质点位于坐标原点,则t=4.5 s时,质点在x轴上的位置为(A) 5m. (B)2m.(C) 0. (D) -2m.(E) -5 m.【解答】质点在x轴上的位置即为这段时间内v-t曲线下的面积的代数和。

[C]3、[自测提高6]某物体的运动规律为,式中的k为大于零的常量.当时,初速为v0,则速度与时间t的函数关系是(A)(B)(C)(D)【解答】,分离变量并积分,,得4、[基础训练12 ]一质点沿直线运动,其运动学方程为x = 6 t-t2 (SI),则在t由0至4s的时间间隔内,质点的位移大小为 8m ,在t由0到4s的时间间隔内质点走过的路程为 10m .【解答】(1)x = 6 t-t2 (SI),位移大小;(2),可见,t<3s时,>0;t=3s时,=0;而t>3s时,<0;所以,路程=5、[基础训练13 ]在x轴上作变加速直线运动的质点,已知其初速度为,初始位置为x0,加速度(其中C为常量),则其速度与时间的关系为,运动学方程为。

大学物理习题册及解答_第二版_第一章_质点的运动

大学物理习题册及解答_第二版_第一章_质点的运动

如果质点在原点处的速度为零,试求其在任意位置的速度


a
d
dt
d
dx
dx dt
d
dx
d adx (3 6x2 )dx
d
x (3 6x2 )dx
0
0
6x 4x3
2.一质点沿半径为R的圆周运动,其路程S随时间t变化的规律为:
(S I)S,式bt中b0、.5cct为2 大于零的常数,且b2>R c.
Δt
2 1
“-”表示平均速度 方向沿x轴负向。
dx
(2) 第2秒末的瞬时速度 v 10t 9t 2 16m/s
dt
t2
(3) 由2秒末的加速度 a dv 10 18t 26m/s2
dt
t2
2.一质点在Oxy平面上运动,运动方程为x=3t, y=3t2-5(SI), 求(1)质 点运动的轨道方程,并画出轨道曲线;(2)t1=0s和t2=120s时质点的 的速度、加速度。
与其速度矢量恰好垂直;(4) 在什么时刻电子离原点最近.
4 质点作曲线运动, 表示位置矢量, 表示速度, 表示加速度,
S表示路程,at表示切向加速度,下列表达式中,
(1) d a
dt
(3) dS
dt
(2) dr
(4)
ddtr
dt
at
(A)只有(1)、(4)是对的.
(B) 只有(2)、(4)是对的.
(C)只有(2)是对的.
(D) 只有(3)是对的.
, ay
dvy dt
dv 2dt, dv 36t 2dt
x
y
dv vx
0
x
t
0
2 dt

大学物理第2章质点动力学习题解答

大学物理第2章质点动力学习题解答

第2章 质点动力学习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。

解:∵j i dt r d a ˆ6ˆ12/22+== , j ia m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。

F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。

证明:∵r j t b it a dt r d a 2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F2ω-==, ∴作用于质点的合力总指向原点。

2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。

解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g ,f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μ2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2f 1 N 1 m 1g T aFN 2 m 2gTaN 1 f 1 f 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。

大学物理活页作业答案(全套)

大学物理活页作业答案(全套)

大学物理活页作业答案(全套)1.质点运动学单元练习(一)答案1.B2.D3.D4.B5.3.0m;5.0m(提示:首先分析质点的运动规律,在t<2.0时质点沿某轴正方向运动;在t=2.0时质点的速率为零;,在t>2.0时质点沿某轴反方向运动;由位移和路程的定义可以求得答案。

)27.解:(1)r2ti(2t)jr12ij(SI)(m)(m)r24i2j(m)rr2r12i3jrv2i3jtdr2i2tj(2)vdtv22i4ja22j8.解:(m/)dv(SI)a2jdt(m/)(SI)(m/2)vtoadtA2cotdtAintottoot某AvdtAAintdtAcot2质点运动学单元练习二答案—19.解:(1)设太阳光线对地转动的角速度为ω/27.27105rad/6某3600dh1.94103m/2dtcothωtv(2)当旗杆与投影等长时,t/4 t1.081043.0h4dvdvdydvvkydtdydtdy10.解:a-kyvdv/dykydyvdv,1212kyvC221212已知y=yo,v=vo则Cv0ky02222v2vok(yoy2)2质点运动学单元练习二答案—22.质点运动学单元练习(二)答案1.D2.A3.B4.Cd4t5.vdtdvm;at4dt1v2m;an8t2R2m2;a4et8t2en6.o2.0m2rad/;4.0anr220rad/;atr0.8rad/;2m/27.解:(1)由速度和加速度的定义drv2ti2jdtdv(SI);a2idt(SI)(2)由切向加速度和法向加速度的定义atd2t4t24dtt212t12(SI)ana2at2(SI)3/2v2(3)2t21an(SI)8.解:火箭竖直向上的速度为vyvoin45gt火箭达到最高点时垂直方向速度为零,解得2质点运动学单元练习二答案—3vogt83m/in45u34.6m/tan309.解:v答案不符10.解:uhl;vuvlh2质点运动学单元练习二答案—43.牛顿定律单元练习答案1.C2.C3.A4.T10.2TMg367.5kg;a0.98m/22Mdv某d某k2k2v某dtdt225.v某k某;2v某f某mdv某1mk2dt26.解:(1)FTcoFNinma FTinFNcomgFTmginmaco;(2)FN=0时;a=gcotθ27.解:omRmgFNmgcomaingoR8.解:由牛顿运动定律可得120t4010分离变量积分dvdtv6.0dv212t4dtv6t4t6ot(m/)2质点运动学单元练习二答案—5。

大学物理习题精选-答案——第2章质点动力学

大学物理习题精选-答案——第2章质点动力学

质点动力学习题答案2-1 一个质量为P的质点,在光滑的固定斜面(倾角为)上以初速度v0运动,V0的方向与斜面底边的水平线AB平行,如图所示,求这质点的运动轨道.解:物体置于斜面上受到重力mg ,斜面支持力斜面与X轴垂直方向为Y轴•如图2-1.由①、②式消去t,得12 g Sin 2v22-2 质量为m的物体被竖直上抛,初速度为v0,物体受到的空气阻力数值为 f KV,K为常数•求物体升高到最高点时所用时间及上升的最大高度解:⑴研究对象:m⑵受力分析:m受两个力, 重力P及空气阻力f⑶牛顿第二定律:合力:may分量: mg KVmdVdtmdVmg KVdtdVmg KV-dtmV_dVmg KV 0V0-dtmN •建立坐标:取v0方向为X轴,平行X方向: F X X V O tY方向: F y mg Sin ma yVy1y — g Sin t2X2图2-1mg KV e m(mg KV o )1J 1V — (mg KV o )e m mg K K V 0时,物体达到了最高点,可有 t 0为tom∣n mg KV Om∣n(1 KKV O )mg②KVdy mgdy dtVdtK1y tt1 tdyoOVdto K (mg KV O )e mmg KdtKmt1yK 2(mg KV o ) e m1KmgtmK t1③2 (mg KV o ) 1 e mmgtK 2Kt t o 时,yy f max ,2-3一条质量为m ,长为I 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度丄 I n mg K V Kmg KV omymaxK 2(mgKV o ) 11m I 一 KV o 、mg ∣n(O) K K mgmR mgKV o ) 11 mg KV 0 mgm 2K 2g ∣n(1 KVO mg(mg KV o )KV o mg KV oK 2g ∣n(1mgmV。

大学物理活页作业答案(全套)

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。

)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。

)7.解:(1))()2(22SI jt i t r)(21m ji r)(242m ji r)(3212m ji r r r)/(32s m ji t r v(2))(22SI j t i dtrd v )(2SI jdt vd a)/(422s m j i v)/(222 s m ja8.解:t A tdt A adt v totosin cos 2t A tdt A A vdt A x totocos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5s m th dt ds v /1094.1cos 32(2)当旗杆与投影等长时,4/ th s t 0.31008.14410.解: ky yv v t y y v t dv ad d d d d d d -k y v d v / d yC v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C )(2222y y k v v o o2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14 s m t dt ds v ;24s m dtdva t ;2228 s m t Rv a n ;2284 s m e t e a nt6.s rad o /0.2 ;s rad /0.4 ;2/8.0s rad r a t ;22/20s m r a n7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v ;)(2SI idtv d a(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t)(12222SI t a a a t n(3))(122/322SI t a v n8.解:火箭竖直向上的速度为gt v v o y 45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin9.解:s m uv /6.3430tan10.解:l h v u ;u hl v3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721;2/98.02.0s m MT a 5.x k v x 22 ;x x xv k dtdxk dt dv v 222 221mk dt dv mf x x 6.解:(1)ma F F N T sin cosmg F F N T cos sinsin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o 2Rg o8.解:由牛顿运动定律可得dtdv t 1040120 分离变量积分tovdt t dv 4120.6 )/(6462s m t t vt oxdt t tdx 6462.5 )(562223m t t t x9.解:由牛顿运动定律可得dtdv mmg kv 分离变量积分t o vv o dt m k mg kv kdv ot m kmg kv mg olnmg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos ,t vm mg d d sin ,以及 ta v d d, d d v a t ,积分并代入初条件得 )cos 1(22 ag v ,)2cos 3(cos 2mg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v;2212m t F v v7.解:(1)t dt dxv x 10;10 dtdv a x x N ma F 20 ;m x x x 4013J x F W 800(2)s N Fdt I40318.解: 1'v m m mv221221'2121o kx v m m mv''m m k mm vx9.解: 物体m 落下h 后的速度为 gh v 2当绳子完全拉直时,有 '2v M m gh mgh mM m v 2'gh mM mMMv I I T 22'2210.解:设船移动距离x ,人、船系统总动量不变为零0 mv Mu等式乘以d t 后积分,得totomvdt Mudt0)( l x m Mx m mM mlx 47.05.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f由功能原理 2121210)(kx x x f 解得 )(22121x x mg kx .8.解:根据牛顿运动定律 Rv m F mg N 2cos由能量守恒定律mgh mv 221质点脱离球面时 RhR F Ncos ;0 解得:3R h9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m ①212211m m v m v m v(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p② 联立①、②得 )/()(212122121m m m m E pv v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)( MV V u m ①mgR MV V u m 2221)(21 ② 解得: )(2m M M gRmV ;MgRm M u )(2(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2M mg m M mg R mu mg N /)(2/2mg MmM M mg m M Mmg N 23)(26.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 质点运动学 习题及答案1.|r ∆|与r ∆ 有无不同?t d d r 和dr dt 有无不同? t d d v 和dv dt有无不同?其不同在哪里?试举例说明. 解: |r ∆|与r ∆ 不同. |r ∆|表示质点运动位移的大小,而r ∆则表示质点运动时其径向长度的增量;t d d r 和dr dt 不同. t d d r 表示质点运动速度的大小,而dr dt则表示质点运动速度的径向分量;t d d v 和dv dt 不同. t d d v 表示质点运动加速度的大小, 而dv dt则表示质点运动加速度的切向分量. 2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线运动?解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么? 解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.4.一物体做直线运动,运动方程为2362x t t =-,式中各量均采用国际单位制,求:(1)第二秒内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。

解: 由于: 232621261212x(t )t t dx v(t )t t dtdv a(t )t dt=-==-==- 所以:(1)第二秒内的平均速度: 1(2)(1)4()21x x v ms --==- (2)第三秒末的速度: 21(3)1236318()v ms -=⨯-⨯=-(3)第一秒末的加速度:2(1)121210()a ms -=-⨯=(4)物体运动的类型为变速直线运动。

5.一质点运动方程的表达式为2105(t t t =+r i j ),式中的,t r 分别以m,s 为单位,试求;(1)质点的速度和加速度;(2)质点的轨迹方程。

解: (1)质点的速度: 205dr v ti j dt==+质点的加速度: 20dv a i dt== (2)质点的轨迹方程: 由210,5x t y t ==联立消去参数t 得质点的轨迹方程:252y x = 6.一人自坐标原点出发,经过20s 向东走了25m ,又用15s 向北走了20m ,再经过10s 向西南方向走了15m ,求:(1)全过程的位移和路程;(2)整个过程的平均速度和平均速率。

解: 取由西向东为x 轴正向, 由南向北为y 轴正向建立坐标系.则人初始时的位置坐标为(0,0), 经过20s 向东走了25m 后的位置坐标为(25,0), 又用15s 向北走了20m 后的位置坐标为(25,20), 再经过10s 向西南方向走了15m 后的位置坐标为(2520--于是:(1)全过程的位移和路程: [(25(207.52)]()25201560()r i j m s m∆=-+-∆=++= (2)整个过程的平均速度和平均速率: 5141/[(25(207.52)]/[(2)(2)](/)96964/60/45(/)3v r t i j t i j m s v s t m s =∆∆=-+-∆=-+-=∆∆== 7.一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计. (1)以时间t 为变量,写出质点位置矢量的表示式,分别求出第一秒和第二秒内质点的位移;(2)求出质点速度矢量的表示式,计算t =4 s 时质点的瞬时速度;(3) 求出质点加速度矢量的表示式,并计算t =0s 到t =4s 内质点的平均加速度。

解: (1) j t t i t r )4321()53(2-+++=(m ) 将0t =,1=t ,2=t 分别代入上式即有054t s r i j ==-(m )180.5t s r i j ==- (m )2114t s r i j ==+(m )第一秒内质点的位移:103 3.5t s t s r r r i j ==∆=-=+(m )第二秒内质点的位移213 4.5t s t s r r r i j ==∆=-=+(m )(2) d 3(3)m/s d r v i t j t ==++ 437m/s t s v i j ==+(3) 2d 1m/s d v a j t== 240(37)(33)1/404t s t sv v i j i j a jm s ==-+-+===- 8.质点的运动方程为8282(t )cos(t )sin(t )(m )=+r i j ,求:(1)质点在任意时刻的速度和加速度的大小;(2)质点的切向加速度和运动轨迹。

解: (1)质点在任意时刻的速度和加速度的大小:122212212122221621623223221632x y x y dr v sin(t )cos(t )(ms )dtd r a cos(t )sin(t )(ms )dt v (v v )(ms )a (a a )(ms )----==-+==--=+==+=i j i j (2)质点的切向加速度:20()dv a ms dtτ-== 运动轨迹:由 8282x cos(t )y sin(t )==消去t 得2228x y += 9.一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少? 解: (1) t =2 s 时,质点的切向和法向加速度2222222222229181836(9)1296t s t s t s n t s t s t s d t dtd t dta R t ms a R t ms τθωωββω-===-============= (2)当加速度的方向和半径成45°角时的角位移:令 /451n a a tg τ== 得到:329t = 因此 223 6.679Rad θ=+⨯= 故 0 2.6720.67Rad θθθ∆=-=-=10 飞轮半径为0.4 m ,自静止启动,其角加速度为β= 0.2 rad/2s ,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度.解: 1212222222122220.220.4()0.40.40.16()0.40.40.064()0.40.20.08()()0.102()1.25t s t s n t s t s n n t rads v r ms a r ms a r ms a a a ms a tg a τττωβωωβθ-=-=-=-=-==⨯===⨯===⨯===⨯==+=== 11 一质点沿X 轴运动,其加速度32a t =+,如果初始时刻1053v ms ,t s -==时,则质点的速度大小为多少?解:305132(32)23()vdv t dtdv t dt v ms -=+=+=⎰⎰12 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得 ts s t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的,∴ t s v v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船或 s vs h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度322220202002)(d d d d d d s v h s v s l s v s lv s v v s t slt l s t v a =+-=+-=-==船船13.已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置.解:∵ t t va 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t ,00=v ,∴01=c故 2234t t v +=又因为 2234d d t t t xv +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c故 521232++=t t x所以s 10=t 时21102310341010190(m s )21210105705(m)2v x -=⨯+⨯=⋅=⨯+⨯+=14.一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解:0021220103442()22210()3vtxt dv t dtdv tdtv t ms dx t dtdx t dt x t m -======+⎰⎰⎰⎰15.在一个无风的雨天,一火车以120m s -⋅的速度前进,车内旅客看见玻璃上雨滴的下落方向与竖直方向成75,求雨滴下落的速度(设雨滴做匀速运动)。

解:由题意,牵连速度1020v ms -=,相对速度与竖直方向成75,绝对速度竖直向下.于是: 0075v tg v = 由此得到: 01075 5.36()v v tg ms -==。

相关文档
最新文档