最优化理论与方法复习要求2015

合集下载

第2章 最优化的基本理论和基本方法 最优性条件 2.1 无约束优化

第2章 最优化的基本理论和基本方法 最优性条件 2.1 无约束优化



1
2
n
几何解释: z=f(x,y)=x2 +y2, (x,y)=(0,0)为局部解
几何解释: z=f(x,y)=x2 +y2, (x,y)=(0,0)为局部解
§1.2 局部解的二阶必要条件
定理2 设f(x)在x=x*=(x1*, x2*, ..., xn*)T 处 对x的各个分量具有连续的二阶偏导数连续, 若x=x*为f(x)的局部解,则f(x)的海赛矩 阵 2 f (x*)为半正定矩阵
对于无约束的凸优化问题,驻点就是全局最 优解。(驻点是满足梯度为0的点) 因此,局部解也是最优解( f(x)可导时)。
无约束优化的三个基本定理。
凸优化情况
作业
薛毅p140, 4.1,(2) 4.2 这两个题目有是凸规划的吗?
练习
f(x)= 2x12+5x22 +x32 +2x2x3 + 2x1x3 -6x2+3 求f的局部解和分条件
min f(x)=x3, xR, f(x)=x3, f在x=0可导,f (x)= 0, f(x)= 0,半正定。 但易见x=0不是局部解。
§1 无约束最优化(薛毅第4章第1节)
问题:
min f(x),
x1 x= x 2 ∈Rn x n
(2-1)
考虑问题的局部解。
费马引理
费马引理:基本定理,单变量局部解的必要条件
若f(x)在x=x0可导,则f(x)在x=x0为局部解的必 要条件是 f ' ( x 0 ) 0 。
满足一阶和二阶必要条件, 但不是局部解的例子。 仅是必要条件不是充分条件。
局部解的充分条件不是必要条件

附录4:《最优化方法》复习提要

附录4:《最优化方法》复习提要

附录4 《最优化方法》复习提要 第一章 最优化问题与数学预备知识§1. 1 模型无约束最优化问题 12min (),(,,,)T n n f x x x x x R =∈.约束最优化问题(},,2,1,0)(;,,2,1,0)(,|{l j x h m i x g R x x S j i n ===≥∈=∧)min ();...f x s t x S ⎧⎨∈⎩ 即 m i n ();..()0,1,2,,,()0,1,2,,.i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩其中()f x 称为目标函数,12,,,n x x x 称为决策变量,S 称为可行域,()0(1,2,,),()0(1,2,,)i j g x i m h x j l ≥===称为约束条件.§1. 2 多元函数的梯度、Hesse 矩阵及Taylor 公式定义 设:,n n f R R x R →∈.如果n ∃维向量p ,n x R ∀∆∈,有()()()T f x x f x p x o x +∆-=∆+∆.则称()f x 在点x 处可微,并称()T df x p x =∆为()f x 在点x 处的微分.如果()f x 在点x 处对于12(,,,)T n x x x x =的各分量的偏导数都存在,则称()f x 在点x 处一阶可导,并称向量 为()f x 在点x 处一阶导数或梯度.定理1 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处梯度()f x ∇ 存在,并且有()()T df x f x x =∇∆.定义 设:,n n f R R x R →∈.d 是给定的n 维非零向量,de d=.如果 存在,则称此极限为()f x 在点x 沿方向d 的方向导数,记作()f x d∂∂. 定理2 设:,n n f R R x R →∈.如果()f x 在点x 处可微,则()f x 在点x 处沿任何非零方向d 的方向导数存在,且()()T f x f x e d∂=∇∂,其中d e d =.定义 设()f x 是n R 上的连续函数,n x R ∈.d 是n 维非零向量.如果0δ∃>,使得(0,)λδ∀∈,有()f x d λ+<(>)()f x .则称d 为()f x 在点x 处的下降(上升)方向.定理3 设:,n n f R R x R →∈,且()f x 在点x 处可微,如果∃非零向量n d R ∈,使得()T f x d ∇<(>)0,则d 是()f x 在点x 处的下降(上升)方向.定义 设:,n n f R R x R →∈.如果()f x 在点x 处对于自变量12(,,,)T n x x x x =的各分量的二阶偏导数2()(,1,2,,)i jf x i j n x x ∂=∂∂都存在,则称函数()f x 在点x 处二阶可导,并称矩阵为()f x 在点x 处的二阶导数矩阵或Hesse 矩阵. 定义 设:,n m n h R R x R →∈,记12()((),(),,())T m h x h x h x h x =,如果 ()(1,2,,)i h x i m =在点x 处对于自变量12(,,,)T n x x x x =的各分量的偏导数都存在,则称向量函数()h x 在点x 处是一阶可导的,并且称矩阵 为()h x 在点x 处的一阶导数矩阵或Jacobi 矩阵,简记为()h x ∇.例2 设,,n n a R x R b R ∈∈∈,求()T f x a x b =+在任意点x 处的梯度和Hesse 矩阵. 解 设1212(,,,),(,,,)TTn n a a a a x x x x ==,则1()nk k k f x a x b ==+∑,因()(1,2,,)k kf x a k n x ∂==∂,故得()f x a ∇=.又因2()0(,1,2,,)i jf x i j n x x ∂==∂∂,则2()f x O ∇=.例3 设n n Q R ⨯∈是对称矩阵,,n b R c R ∈∈,称1()2TT f x x Qx b x c =++为二次函数,求()f x 在任意点x 处的梯度和Hesse 矩阵.解 设1212(),(,,,),(,,,)T T ij n n n n Q q x x x x b b b b ⨯===,则121111(,,,)2n nnn ij i j k k i j k f x x x q x x b x c ====++∑∑∑,从而111111111()()()nn j j j j j j n n n nj j n nj j j j n f x q x b q x x bf x Qx b f x b q x b q x x ====⎛⎫⎛⎫∂⎛⎫+ ⎪ ⎪ ⎪∂⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪∇===+=+ ⎪ ⎪ ⎪ ⎪ ⎪∂⎝⎭ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭∑∑∑∑.再对1()(1,2,,)nij j i j i f x q x b i n x =∂=+=∂∑求偏导得到2()(,1,2,,)ij i jf x q i j n x x ∂==∂∂,于是1112121222212()n n n n nn q q q q q q f x Q q q q ⎛⎫⎪ ⎪∇== ⎪⎪⎝⎭. 例4 设()()t f x td ϕ=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求(),()t t ϕϕ'''. 解 由多元复合函数微分法知 2()(),()()T T t f x td d t d f x td d ϕϕ'''=∇+=∇+.定理4 设:,n n f R R x R →∈,且()f x 在点x 的某邻域内具有二阶连续偏导数,则()f x 在点x 处有Taylor 展式21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.证明 设()(),[0,1]t f x t x t ϕ=+∆∈,则(0)(),(1)()f x f x x ϕϕ==+∆.按一元函数Taylor 公式()t ϕ在0t =处展开,有21()(0)(0)(),(0)2t t t t ϕϕϕϕθθ'''=++<<.从例4得知2(0)(),()()()T T f x x x f x x x ϕϕθθ'''=∇∆=∆∇+∆∆.令1t =,有21()()()(),(01)2T T f x x f x f x x x f x x x θθ+∆=+∇∆+∆∇+∆∆<<.根据定理1和定理4,我们有如下两个公式()()()()()T f x f x f x x x o x x =+∇-+-,221()()()()()()()()2T T f x f x f x x x x x f x x x o x x =+∇-+-∇-+-.§1. 3 最优化的基本术语定义 设:n f R R →为目标函数,n S R ⊆为可行域,x S ∈.(1) 若x S ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的全局(或整体)极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的全局(或整体)最优解,并称()f x 为其最优值.(2) 若,x S x x ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格全局(或整体)极小点. (3) 若x ∃的δ邻域(){}(0)n N x x R x x δδδ=∈-<>使得()x N x S δ∀∈,都有()()f x f x ≥,则称x 为()f x 在S 上的局部极小点,或者说,x 是约束最优化问题min ()x Sf x ∈的局部最优解.(4) 若x ∃的δ邻域()(0)N x δδ>使得(),x N x S x x δ∀∈≠,都有()()f x f x >,则称x 为()f x 在S 上的严格局部极小点.第二章 最优性条件§2.1 无约束最优化问题的最优性条件定理1 设:n f R R →在点x 处可微,若x 是问题min ()f x 的局部极小点,则()0f x ∇=. 定义 设:()n f S R R ⊆→在int x S ∈处可微,若()0f x ∇=,则称x 为()f x 的平稳点.定理 2 设:n f R R →在点x 处具有二阶连续偏导数,若x 是问题min ()f x 的局部极小点,则()0f x ∇=,且2()f x ∇半正定.定理 3 设:n f R R →在点x 处具有二阶连续偏导数,若()0f x ∇=,且2()f x ∇正定,则x 是问题min ()f x 的严格局部极小点.注:定理2不是充分条件,定理3不是必要条件.例1 对于无约束最优化问题2312min ()f x x x =-,其中212(,)T x x x R =∈,显然 2212()(2,3),T f x x x x R ∇=-∀∈,令()0f x ∇=,得()f x 的平稳点(0,0)T x =,而且2222020(),()0600f x f x x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭. 易见2()f x ∇为半正定矩阵.但是,在x 的任意δ邻域x x δ-<,总可以取到(0,)2T x δ=,使()()f x f x <,即x 不是局部极小点.例2 对于无约束最优化问题42241122min ()2f x x x x x =++,其中212(,)T x x x R =∈, 易知3223112122()(44,44)Tf x x x x x x x ∇=++,从而得平稳点(0,0)T x =,并且 22221212221212001248(),()008412x x x x f x f x x x x x ⎛⎫+⎛⎫∇=∇=⎪ ⎪+⎝⎭⎝⎭. 显然2()f x ∇不是正定矩阵.但是,22212()()f x x x =+在x 处取最小值,即x 为严格局部极小点. 例3 求解下面无约束最优化问题332122111min ()33f x x x x x =+--, 其中212(,)T x x x R =∈,解 因为21212222201(),()0222x x f x f x x x x ⎛⎫-⎛⎫∇=∇= ⎪ ⎪--⎝⎭⎝⎭,所以令()0f x ∇=,有2122210,20.x x x ⎧-=⎪⎨-=⎪⎩解此方程组得到()f x 的平稳点(1)(2)(3)(4)1111,,,0202x x x x --⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.从而2(1)2(2)2020(),()0202f x f x ⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭,2(3)2(4)2020(),()0202f x f x --⎛⎫⎛⎫∇=∇= ⎪ ⎪-⎝⎭⎝⎭.由于2(1)()f x ∇和2(4)()f x ∇是不定的,因此(1)x 和(4)x 不是极值点.2(3)()f x ∇是负定的,故(3)x 不是极值点,实际上它是极大点.2(2)()f x ∇是正定的,从而(2)x 是严格局部极小点.定理4 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微,若()0f x ∇=,则x 为min ()f x 的全局极小点.推论5 设:n f R R →是凸函数,且()f x 在点n x R ∈处可微.则x 为min ()f x 的全局极小点的充分必要条件是()0f x ∇=. 例4 试证正定二次函数1()2TT f x x Qx b x c =++有唯一的严格全局极小点1x Q b -=-,其中Q 为n 阶正定矩阵.证明 因为Q 为正定矩阵,且(),n f x Qx b x R ∇=+∀∈,所以得()f x 的唯一平稳点1x Q b -=-.又由于()f x 是严格凸函数,因此由定理4知,x 是()f x 的严格全局极小点. §2.2 等式约束最优化问题的最优性条件定理1 设:n f R R →在点x 处可微,:(1,2,,)n j h R R j l →=在点x 处具有一阶连续偏导数,向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题的局部极小点,则,1,2,,j v R j l ∃∈=,使得1()()0lj j j f x v h x =∇-∇=∑.称(,)()()T L x v f x v h x =-为Lagrange 函数,其中12()((),(),,())T l h x h x h x h x =.称12(,,,)T l v v v v =为Lagrange 乘子向量.易见(,)x v L L x v L ∇⎛⎫∇= ⎪∇⎝⎭,这里1(,)()(),(,)()lx j j v j L x v f x v h x L x v h x =∇=∇-∇∇=-∑.定理 2 设:n f R R →和:(1,2,,)n j h R R j l →=在点n x R ∈处具有二阶连续偏导数,若l v R ∃∈,使得(,)0x L x v ∇=,并且,,0n z R z ∀∈≠,只要()0,1,2,,T j z h x j l ∇==,便有2(,)0T xx z L x v z ∇>,则x 是问题的严格局部极小点.例1 试用最优性条件求解 221212min ();..()80.f x x x s t h x x x ⎧=+⎨=-=⎩解 Lagrange 函数为221212(,)(8)L x v x x v x x =+--,则1221122(,)2(8)x vx L x v x vx x x -⎛⎫⎪∇=- ⎪ ⎪--⎝⎭, 从而得(,)L x v的平稳点2)T和(2)T ,对应有,2T x v ==和(,2T x v ==.由于221222(,),()222xx x v L x v h x x v--⎛⎫⎛⎫⎛⎫∇==∇= ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭. 因此1212{(,)|}T z z z z ==-.并且(),0z M x z ∀∈≠,有222211221(,)24280T xx z L x v z z z z z z ∇=-+=>.利用定理2,所得的两个可行点T x =和(T x =都是问题的严格局部极小点. §2.3 不等式约束最优化问题的最优性条件定义 设,,,0n n S R x clS d R d ⊆∈∈≠,若0δ∃>,使得,,(0,)x d S λλδ+∈∀∈,则称d 为集合S 在点x 处的可行方向. 这里{|,(),0}n clS x x R SN x δδ=∈≠∅∀>.令 {|0,0,,(0,)}D d d x d S δλλδ=≠∃>+∈∀∈使, 0{|()0}T F d f x d =∇<.定理 1 设n S R ⊆是非空集合,:,,()f S R x S f x →∈在点x 处可微.若x 是问题min ()x Sf x ∈的局部极小点,则 0F D =∅.对于min ();..()0,1,2,,,i f x s t g x i m ⎧⎨≥=⎩ (1)其中:,:(1,2,,)n n i f R R g R R i m →→=.令(){|()0,1,2,,}i I x i g x i m ===,其中x 是上述问题(1)的可行点.定理2 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,如果x 是问题(1)的局部极小点,则 00F G =∅,其中0{|()0,()}T i G d g x d i I x =∇>∈.定理3 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,若x 是问题(1)的局部极小点,则存在不全为0的非负数0,(())i u u i I x ∈,使0()()()0iii I x u f x u g x ∈∇-∇=∑. (x 称为Fritz John 点)如果()(())i g x i I x ∉在点x 处也可微,则存在不全为0的非负数01,,,m u u u ,使01()()0,()0,1,2,,.mi i i i iu f x u g x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为Fritz John 点) 例1 设1311222min ();..()(1)0,()0.f x x s t g x x x g x x =-⎧⎪=--≥⎨⎪=≥⎩试判断(1,0)T x =是否为Fritz John 点. 解 因为12100(),(),()011f x g x g x -⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,所以为使Fritz John 条件01210000110u u u -⎛⎫⎛⎫⎛⎫⎛⎫--=⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.取0120,0u u u α===>即可,因此x 是Fritz John 点.定理4 设x 是问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(())i g x i I x ∉在点x 处连续,并且()(())i g x i I x ∇∈线性无关.若x 是问题(1)的局部极小点,则存在0(())i u i I x ≥∈,使得()()()0iii I x f x u g x ∈∇-∇=∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在0(1,2,,)i u i m ≥=,使得1()()0,()0,1,2,,.mi i i i if x ug x u g x i m =⎧∇-∇=⎪⎨⎪==⎩∑ (x 称为K-T 点) 例2 求最优化问题21211222min ()(1);..()20,()0f x x x s t g x x x g x x ⎧=-+⎪=--+≥⎨⎪=≥⎩的K-T 点. 解 因为1122(1)10(),(),()111x f x g x g x --⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,所以K-T 条件为若20u =,则11u =-,这与10u ≥矛盾.故20u >,从而20x =;若120x -+=,则12u =-,这与10u ≥矛盾.故10u =,从而211,1u x ==; 由于120,0u u ≥≥,且(1,0)T x =为问题的可行点,因此x 是K-T 点. 定理 5 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.§2.4 一般约束最优化问题的最优性条件 考虑等式和不等式约束最优化问题min ();..()0,1,2,,,()0,1,2,,,i j f x s t g x i m h x j l ⎧⎪≥=⎨⎪==⎩(1) 其中:,:(1,2,,),:(1,2,,)n n n i j f R R g R R i m h R R j l →→=→=.并把问题(1)的可行域记为S .,(){|()0,1,2,,}i x S I x i g x i m ∀∈==.定理1 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,并且向量组12(),(),,()l h x h x h x ∇∇∇线性无关.若x 是问题(1)的局部极小点,则 00F G H =∅,这里0{|()0}T F d f x d =∇<,0{|()0,()}T i G d g x d i I x =∇>∈,0{|()0,1,2,,}T j H d h x d j l =∇==.定理2 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续.若x 为问题(1)的局部极小点,则存在不全为0的数0,(())i u u i I x ∈和(1,2,,)j v j l =,且0,0(())i u u i I x ≥∈,使0()1()()()0liijji I x j u f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为Fritz John 点)若()(())i g x i I x ∉在点x 处也可微,则存在不全为0的数0,(1,2,,)i u u i m =和(1,2,,)j v j l =,且0,0(1,2,,)i u u i m ≥=,使011()()()0,()0,1,2,,.m li i j j i j i iu f x u g x v h x u g x i m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为Fritz John 点) 例1 设2212311222212min ();..()0,()0,()(1)0.f x x x s t g x x x g x x h x x x ⎧=+⎪=-≥⎪⎨=≥⎪⎪=--+=⎩试判断(1,0)T x =是否为Fritz John 点.解 (){2}I x =,且2200(),(),()011f x g x h x ⎛⎫⎛⎫⎛⎫∇=∇=∇= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且(){1,2}I x =,因此为使Fritz John 条件022*******u u v ⎛⎫⎛⎫⎛⎫⎛⎫--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭成立,只有00u =才行.所以取020,1,1u u v ===-,即知x 是Fritz John 点.定理3 设x 为问题(1)的可行点,()f x 和()(())i g x i I x ∈在点x 处可微,()(1,2,,)j h x j l =在点x 处具有一阶连续偏导数,()(())i g x i I x ∉在点x 处连续,且向量组()(()),()(1,2,,)i j g x i I x h x j l ∇∈∇=线性无关.若x 是问题(1)的局部极小点,则存在数0(())i u i I x ≥∈和(1,2,,)j v j l =,使()1()()()0liijji I x j f x u g x v h x ∈=∇-∇-∇=∑∑. (x 称为K-T 点)如果()(())i g x i I x ∉在点x 处也可微,则存在数0(1,2,,)i u i m ≥=和(1,2,,)j v j l =,使11()()()0,()0,1,2,,.m li i j j i j i if x ug x vh x u g xi m ==⎧∇-∇-∇=⎪⎨⎪==⎩∑∑ (x 称为K-T 点) 令 1212()((),(),,()),()((),(),,())T T m l g x g x g x g x h x h x h x h x ==,1212(,,,),(,,,)T T m l u u u u v v v v ==,称u 与v 为广义Lagrange 乘子向量或K-T 乘子向量.令(,,)()()()T T L x u v f x u g x v h x =--为广义Lagrange 函数.称(,,)L x u v 为广义Lagrange 函数.则K-T 条件为定理4 设在问题(1)中,()f x 和()(1,2,,)i g x i m -=是凸函数,()(1,2,,)j h x j l =是线性函数,x 是可行点,并且()f x 和()(())i g x i I x ∈在点x 处可微.若x 是问题(1)的K-T 点,则x 是问题(1)的全局极小点.例2 求解最优化问题221221212min ()(3)(1);..()0,()230.f x x x s t g x x x h x x x ⎧=-+-⎪=-+≥⎨⎪=+-≥⎩ 解 广义Lagrange 函数为222121212(,,)()()()(3)(1)()(23)L x u v f x ug x vh x x x u x x v x x =--=-+---+-+-.因为111(,,)2(3)22L x u v x ux v x ∂=-+-∂,22(,,)2(1)L x u v x u v x ∂=---∂.所以K-T 条件及约束条件为 下面分两种情况讨论. (1) 设0u =,则有由此可解得12718,,555x x v ===-,但71(,)55T x =不是可行点,因而不是K-T 点.(2) 设0u >,则有由此可得211230x x --+=,解得11x =或13x =-。

最优化理论与方法(线性部分)思考题与作业要求

最优化理论与方法(线性部分)思考题与作业要求

最优化理论与方法(线性部分)思考题
1.就你学过的运筹学问题,写出能够建立线性规划模型的问题,并
举例(建立模型)。

2.举例(说明问题、建立模型)论述线性规划在交通、运输、物流
和安全管理中的应用。

3.对一个用单纯形法求解不会产生循环(且能求得最优解)的n个
变量m个约束的线性规划问题,估算一下基本计算次数。

4.简述线性规划求解算法的改进历史。

5.证明课本(清华版运筹学(第三版))2.5题。

6.有人说:“原问题有多重解(多个最优解),对偶问题一定也有多
重解”,此话是否正确?请举一算例。

7.D-W分解算法适合那种类型的线性规划问题?请举一算例。

8.何谓“原始-对偶”单纯形法?请举一算例。

9.何谓有界变量的线性规划问题?如何求解?请举一算例。

10.何谓线性规划的逆问题,分别对“最优解的逆线性规划问题”和
“对目标函数值的线性规划逆最优值问题”举出算例。

11.对同一优化问题,是否存在决策变量一样但所建模型不一样的情
况?请举例;是否存在目标函数中没有决策变量的最优化问题?
12.简述建立线性多目标规划的过程,自选一个实际问题,建立模型
并用图解法和单纯形法求解。

要求每个人所举例题都不一样,否则视为抄袭!。

最优化复习重点

最优化复习重点
2
1/ 2 0 ∴ ∇ f (x ) = 0 1/ 8
2 1 −1
∴ x 2 = x 1 − ∇ 2 f ( x 1 )−1 ∇f ( x 1 ) = [0,0]T
条件。 例 3 试写出下述问题的 K − T 条件。 min
2 2 f ( x ) = 3 x1 − 3 x1 x 2 + 2 x 2 2 2 x1 − 2 x1 + 2 x 2 + x 2 ≤ 3 2 s . t . x1 + 2 x 2 = 4 x 2 + 2 x2 ≥ 0
解:
1 T (1)基变量为 x 2 , x4 , x5 ,基本可行解为 x = ( 。 (2)因为变量 x1 的检验数 σ 1 = 2 > 0 ,所以不是最优单纯 ) 型表。 型表。
x1 − 2 2 2 2 x 2 x 3 x4 x5 0 2 1 0
障碍函数
ϕ ( x , µ ) = ( x1 − 2 x2 ) + 2 x2 + u
2
1
2 2 x2 + 6 − 3 x1

2 ϕ ( x , µ ) = ( x1 − 2 x2 )2 + 2 x2 − u ln( 2 x2 + 6 − 3 x1 )
将下面的线性规划问题化为标准型。 例5 将下面的线性规划问题化为标准型。
min z = 2 x1 + x 2 − 3 x 3 x1 + x 2 − 2 x 3 ≤ 4 2 x1 − x 3 ≥ 2 s .t . 2 x2 + x3 ≤ 5 x 1 , x 2 ≥ 0 , x 3 无无无 解: 令 x 3 = x 4 − x 5 . max z = −2 x1 − x2 + 3 x4 − 3 x5 x1 + x 2 − 2 x4 + 2 x5 + x6 = 4 2x − x + x − x = 2 1 4 5 7 s .t . 2 x 2 + x4 − x5 + x8 = 5 x1 , x 2 , x4 , x5 , x6 , x7 , x8 ≥ 0

最优化第一部分

最优化第一部分
3.由目标函数个数分:若模型中只有一个目标函数,则称为单 目标规划;若模型中有两个极其以上的目标函数,则称为多 目标规划.
最优化理论与方法 第一部分 绪论
二、最优化问题的基本概念
1. 最优化问题的向量表示 研究最优化问题,一般都采用向量表示,例如决策变量
x1 , x2 , , xn 可以看作是n维向量空间Rn中的一个向量x的n个
学科交叉的方法 , 具有综合性 . 最优化方法从一开始就是由
于不同学科专长、多方面专家经过共同协作集体努力而获得 成果. 现在 , 由于研究对象的复杂性和多因素性 , 决定了最优 化方法内容的跨学科性、交叉渗透性和综合性.
最优化理论与方法 第一部分 绪论
(3) 最优化方法研究和解决问题的方法具有显著的系统分析特 征 , 其各种方法的运用 , 几乎都需要建立数学模型和利用计算 机求解 . 可以说,没有计算机的发展就没有最优化方法的发展. (4) 最优化方法具有强烈的实践性和应用的广泛性 . 最优化方
工时/h
3 10 300
用电能量/kw— h
4 5 200
利润/元
60 120
解: 这是一个简单的生产计划问题, 可归结为在满足各项生产 条件的基础上, 合理安排两种产品每天的生产量, 以使利润最 大化的最优化设计问题.
最优化理论与方法 第一部分 绪论
设每天生产甲产品x1件, 乙产品x2 件, 每天获得的利润用函数 f (x1, x2)表示, 即:

x ( x1 , x2 , , xn )T
矩阵相等:设 x ( x1 , x2 , , xn )T , y ( y1 , y2 , , yn )T , 如果对一切 1 i n , 都有 x y , 则称向量x与y相等,记作 i i

最优化原理复习纲要

最优化原理复习纲要

复习第一章 绪论一. 基本概念二. 知识点局部极小点、全局极小点、凸集、极点、极方向、凸函数Farkas Gordan 图解法、点与闭凸集的分离定理、引理、择一定理、凸函数的一阶、二阶充要条件.第四章 无约束最优化问题的一般结构方向导数、一维搜索、局部收敛与全局收敛、收敛速率、算法的二次终止性一. 基本概念4.1.4.一阶必要条件、二阶必要条件、二阶充分条件、定理、最速下降算法二. 知识点精确一维搜索、非精确一维搜索、单峰函数黄金分割法.第五章 一维搜索一. 基本概念二. 知识点共轭方向Newton Newton 方程、法算法、共轭梯度法、拟牛顿法的基本性质第六章 使用导数的最优化方法一. 基本概念二. 知识点KKT Lagrangian 下降方向、可行方向、凸规划、有效约束(起作用约束)、点、函数第八章 约束问题的最优性条件一. 基本概念二. 知识点KKT 一阶必要条件(条件)、二阶必要条件、二阶充分条件第十章 可行方向法知识点:Zoutendijk可行方向法、投影阵及其基本性质(外)罚函数、(内)罚函数、第十一章 乘子法一. 基本概念二. 知识点()(外)罚函数算法、内罚函数算法、罚函数法相关理论结果{}{}{}1111(1)(;)(;)(;);(2)()()();(3)()()().k k k k k k k k k k k k P x P xP x S x S xS x f x f x f x σσσ++++≤≥≤,即序列非减,即序列非增,即序列非减111100,min{(;}.)k k k k k k x xP x σσσσσ+++<<设和分别为取罚参数及时无约束问题的全局最优解,则下列不等式成立:。

最优化理论与方法

最优化理论与方法

最优化理论与方法最优化是研究如何找到使某个目标函数取得最大值或最小值的问题。

最优化理论和方法是解决最优化问题的一类数学方法。

随着现代科学技术的发展,最优化理论和方法在工程、经济、管理等领域有着广泛的应用。

最优化问题可以分为无约束问题和约束问题。

无约束问题是指目标函数只受自变量的约束,而约束问题则在自变量取值的同时还受到一定的约束条件。

最优化问题的数学描述为:\begin{align*}&\text{最小化} \quad f(x)\\&\text{约束条件} \quad g(x) \le 0\\&\quad\quad\quad\quad h(x) = 0\\\end{align*}其中,f(x)是目标函数,g(x)是不等式约束条件,h(x)是等式约束条件,x是自变量。

最优化问题的解即为使目标函数取得极小值或极大值的自变量值。

解的存在性和唯一性与目标函数和约束条件的性质有关。

解的性质可以通过最优性条件来判定,最优性条件包括一阶导数条件和二阶导数条件。

最优化理论和方法可以分为数学规划方法和数值优化方法。

数学规划方法是一类用数学方法求解最优化问题的方法。

其中,线性规划是最基本的数学规划方法之一。

线性规划问题的目标函数和约束条件都是线性的。

线性规划问题具有特殊的结构,可以通过线性规划算法高效地求解。

线性规划的应用非常广泛,例如生产计划、资源分配、运输问题等。

非线性规划是一类目标函数或者约束条件中存在非线性项的最优化问题。

非线性规划问题的求解相对更加困难。

常用的非线性规划算法包括梯度下降法、牛顿法和拟牛顿法等。

整数规划是一类目标函数或者约束条件中自变量取整数值的最优化问题。

整数规划问题具有离散性的特点,求解整数规划问题比线性规划问题更加困难。

常用的整数规划算法包括枚举法、分支定界法和割平面法等。

数值优化方法是一类用数值计算方法求解最优化问题的方法。

数值优化方法主要分为直接搜索法和迭代法。

数学中的优化理论与最优化方法

数学中的优化理论与最优化方法

数学中的优化理论与最优化方法优化理论是数学中的重要分支,在不同领域中都有广泛的应用。

本文将介绍数学中的优化理论以及一些常用的最优化方法。

一、优化理论的基本概念1.1 优化问题优化问题是指在一定的约束条件下,寻找使某个目标函数取得最优值的问题。

通常有两种类型的优化问题:极大化问题和极小化问题。

极大化问题是要找到使目标函数取得最大值的自变量取值,而极小化问题则是要找到使目标函数取得最小值的自变量取值。

1.2 目标函数和约束条件在优化问题中,目标函数是要优化的对象,通常用f(x)表示,其中x表示自变量。

约束条件是目标函数的取值范围或限制条件,用g(x)表示。

优化问题可以表示为如下形式:max/min f(x)s.t. g(x) <= 01.3 最优解最优解是指在所有满足约束条件的自变量取值中,使得目标函数取得最大值或最小值的解。

最优解可能存在唯一解,也可能存在多个解。

二、常用的最优化方法2.1 梯度下降法梯度下降法是一种基于搜索的最优化方法,通过迭代的方式不断调整自变量的取值来逼近最优解。

该方法的核心思想是沿着目标函数的负梯度方向进行搜索,使目标函数逐渐减小,直到达到最小值。

2.2 牛顿法牛顿法是一种迭代求解方程的方法,也可以用于解决优化问题。

该方法基于泰勒级数展开,通过求解目标函数的一阶导数和二阶导数来更新自变量的取值,以逼近最优解。

2.3 线性规划线性规划是一种常用的优化方法,适用于目标函数和约束条件都是线性的情况。

线性规划可以通过线性规划模型进行建模,然后利用线性规划算法求解最优解。

2.4 非线性规划非线性规划是一种更一般性的优化方法,适用于目标函数或约束条件存在非线性关系的情况。

非线性规划可以通过梯度下降法、牛顿法等方法进行求解,也可以利用非线性规划算法进行求解。

2.5 整数规划整数规划是一类特殊的优化问题,要求自变量取值必须为整数。

整数规划有时候可以通过线性规划进行求解,但通常需要借助专门的整数规划算法来求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《最优化理论与方法》复习内容要求和题型
一、复习内容要求
1、最优化问题及其分类,最优解的相关概念,最优化问题的算法的一般迭代格式及其收敛性和停止准则。

2、建立一个实际最优化问题的数学模型的思想和方法,包括线性规划、非线性规划、动态规划及多目标规划模型。

3、掌握单纯形法的理论依据、基本思想和最优性检验定理,熟练用大M法和两阶段求解线性规划问题,特别是构造的新问题与原问题的解的关系。

4、了解内点法的基本思想,掌握线性规划和0-1规划问题的计算机求解方法。

5、知道解决特殊线性规划问题的解法(含分支定界法、隐枚举法、表上作业法和匈牙利法)的思想方法。

6、了解非线性规划问题及数学模型,了解非线性规划的相关概念及理论,知道非线性规划的最优性条件。

7、掌握一维搜索的黄金分割法(0.618法)与Fibonacci法,知道二分法,特别注意这些算法的适用条件。

8、掌握最速下降法、牛顿类算法、FR共轭梯度法的算法步骤,并熟练使用它们求解多维无约束非线性规划,特别注意这些算法的异同点及它们与一维优化的关系。

9、了解惩罚函数法的算法思想,熟练掌握用内、外点法求解多维约束非线性规划问题,特别注意它们的异同点及适用条件。

10、了解乘子法的算法思想,熟练掌握乘子法求解多维约束非线性规划问题,特别注意它与惩罚函数法的异同。

11、了解动态规划的基本概念、最优性原理与基本方程,特别注意动态规划问题与静态规划问题(线性和非线性规划)的异同及一些静态规划问题如何化为动态规划问题。

12、掌握动态规划的建模步骤,了解逆推解法和顺推解法的异同。

13、了解有效解、弱有效解等多目标规划问题的重要概念,注意与单目标规划问题解概念的区别。

14、掌握多目标规划的几种评价函数法:理想点法、线性加权法和极大极小法,了解分层排序法求解层次多目标规划的求解思路,会用这种方法解简单的层次多目标问题。

15、掌握多目标规划计算机求解方法。

二、题型
填空题、简答题、计算题、建模和求解题
三、成绩评定办法
闭卷笔试(50%)+平时出勤、作业、参与课堂练习或讨论(30%)+讨论报告或大作业(小论文)或自主学习(20%)。

相关文档
最新文档