焊接线能量的计算公式
焊缝熔深的计算公式

焊缝熔深的计算公式焊缝熔深是指焊接过程中焊条或焊丝顶部到基材表面的最大距离,它对焊接接头的强度和可靠性有着重要影响。
焊缝熔深的计算涉及到许多因素,例如焊接电流、焊接速度、焊接材料等。
下面我们将详细解释焊缝熔深的计算公式。
1.热输入计算公式热输入是指单位长度焊接线能传递给熔池的功率,它的单位是焦耳/毫米。
焊接的热输入可以通过下面的公式计算:热输入=焊接电流×焊接电压/焊接速度其中,焊接电流是焊条或焊丝的电流,单位是安培;焊接电压是焊接电源的电压,单位是伏特;焊接速度是焊条或焊丝的前进速度,单位是毫米/秒。
2.熔深计算公式熔深是焊缝焊接过程中焊材融入到基材中的深度,它可以通过下面的公式计算:熔深=(2×热输入×焊接时间)/(焊接材料的熔化潜热×焊接密度)其中,热输入是前面计算的热输入值;焊接时间是焊接过程中焊条或焊丝接触到基材的时间,单位是秒;焊接材料的熔化潜热是焊接材料熔化所需的能量,单位是焦耳/克;焊接密度是焊接材料的密度,单位是克/立方厘米。
需要注意的是,这个计算公式是一个简化的理论模型,实际焊接中可能会受到很多因素的影响,例如焊丝直径、焊接角度、熔滴形状等。
3.熔深影响因素除了上述提到的参数,焊缝熔深还受到一些其他因素的影响,包括:焊接材料的热导率:热导率越大,熔深越小;焊接速度:焊接速度越快,熔深越小;焊接电流:焊接电流越大,熔深越大;焊接电压:焊接电压越大,熔深越大。
综上所述,焊缝熔深的计算公式是通过考虑焊接过程中的热输入和材料特性来推导的。
然而,在实际应用中,由于焊接过程的复杂性和多变性,通常需要进行实验和实际测量来确定最适合特定应用的焊接参数,以获得理想的焊缝熔深。
线能量

焊接电流——过小会使电弧不稳,造成未焊透、夹渣及焊缝成形不良等缺陷。焊接电流过大,易产生咬边、焊穿、增加焊件变形和金属飞溅量,也会使焊接接头的组织由于过热而发生变化。
电弧电压——焊条电弧焊的电弧电压主要由电弧长度来决定:电弧长度越长,电弧电压越高,降低保护效果,易产生电弧偏吹等。在焊接过程中,应尽量使用短弧焊接。 焊接线能量——熔焊时,由焊接热源输入给单位长度焊缝的能量。
焊接线能量:E=P/v
其中:v——焊接速度(cm/min)
焊条电弧焊的焊接线能量与焊接电流、电弧电压及焊接速度有关,在保证不焊穿和成形良好的条件下,应尽量采用较大的焊接电流,并适当提高焊接速度,以提高焊接生成率
焊接线能量的计算过程如下:
有效热功率:P=η×Po=ห้องสมุดไป่ตู้×U×I
其中:
Po——电弧功率(J/s)
U——电弧电压(V)
I——焊接电流(A)
η —— 功率有效系数,焊条电弧焊为0.74~0.87、埋弧焊为0.77~0.90、交流钨极氩弧焊为0.68~0.85、直流钨极氩弧焊为0.78~0.85。无特别说明时,取中间值。
熔焊时由焊接能源输入给单位长度焊道上的热量,称为焊接线能量。
线能量的计算公式:
q = IU/υ
式中:I—焊接电流 A
U—电弧电压 V
υ—焊接速度 cm/s
q—线能量 J/cm
焊接速度——过快,熔化温度不够,易造成未熔合、焊缝成形不良等缺陷;若焊接速度过慢,高温停留时间增长,热影响区宽度增加,焊接接头的晶粒变粗,力学性能降低,同时使焊件变形量增大。当焊接较薄焊件时,易形成烧穿。
焊接线能量

在焊接过程中热源沿焊件的某一方向移动,焊件上任一点的温度都经历由低到高的升温阶段,当温度达到最大值后又经历由高到低的降温阶段。
在焊缝两侧不同距离的各点,所经历的这种热循环是不同的,如图3-12所示。
焊接是一个不均匀的加热和冷却过程,也可以说是一种特殊的热处理过程。
与金属材料一般热处理相比,或与塑性成形或凝固成形相比,焊接时的加热速度特别快,冷却速度也相当快,这是造成焊接接头组织不均匀性和性能不均匀性的重要原因。
焊接热循环的主要参数是加热速度,峰值温度T max,高温停留时间t H,冷却速度(或冷却时间t8/5或t8/3)如图3-13所示(1)加热速度采用不同的焊接方法和不同的线能量,焊接不同厚度的低碳钢或低合金结构钢,根据实测结果加热速度如表3-4所示通常随着加热速度的提高,钢的固态相变温度Ac1和Ac3也相应的提高,而且Ac1和Ac3之间的温差也变大,如表3-5所示。
随着钢中碳化元素的增多(例如18Cr2Wv钢),这一效果更为显著。
(2)峰值温度T max属的板厚h及离热源中心距离有关。
(3)高温停留时间t H所谓高温停留时间是指在相变温度Ac1以上停留时间。
如图3-13所示,它包含加热过程高温停留时间t和冷却过程高温停留时间t"。
在相变温度以上停留时间,对于相的溶解、奥氏体的扩散均匀化以及晶粒度都有很大影响。
对于钢来说t H越长,越有利于奥氏体的均匀化,但温度太高,例如在1100℃以上的停留时间过长,将会使奥氏体晶粒严重长大,造成晶粒脆化。
tH与焊接能量E,被焊金属的工件板厚h以及焊件的初始温度T0以及加热最高温度T max等因素有关。
(4)冷却速度冷却速度,特别是在固态相变温度范围内冷却速度,即800~500℃及800~300℃时的冷却速度是焊接热循环中极其重要的参数,它将决定焊接接头的组织、性能及接头质量。
冷却速度对过冷奥氏体的转变影响很大,图3-14 为冷却速度对Fe-C合金平衡状态图上各临界线及临界点的影响。
焊接线能量

焊接线能量在焊接过程中热源沿焊件的某一方向移动,焊件上任一点的温度都经历由低到高的升温阶段,当温度达到最大值后又经历由高到低的降温阶段。
在焊缝两侧不同距离的各点,所经历的这种热循环是不同的,如图3,12所示。
焊接是一个不均匀的加热和冷却过程,也可以说是一种特殊的热处理过程。
与金属材料一般热处理相比,或与塑性成形或凝固成形相比,焊接时的加热速度特别快,冷却速度也相当快,这是造成焊接接头组织不均匀性和性能不均匀性的重要原因。
焊接热循环的主要参数是加热速度,峰值温度 max,高温停留时间,冷却速度 (或冷 TtH却时间或)如图3,13所示 tt8/58/3(1)加热速度采用不同的焊接方法和不同的线能量,焊接不同厚度的低碳钢或低合金结构钢,根据实测结果加热速度如表3,4所示通常随着加热速度的提高,钢的固态相变温度Ac1和Ac3也相应的提高,而且Ac1和Ac3之间的温差也变大,如表3,5所示。
随着钢中碳化元素的增多(例如18Cr2Wv钢),这一效果更为显著。
(2)峰值温度Tmax峰值温度Tmax将直接影响到焊接热影响区焊接或切割过程中母材因受热的影响(未熔化),而发生金相组织变化和力学性能变化的区域。
的组织和性能。
峰值温度过高,将使晶粒严重长大,甚至产生过热的魏氏体组织不易淬火钢焊接热影响区中的过热区,由于奥氏体晶粒长得非常粗大,这种粗大的奥氏体在较快的冷却速度下会形成一种特殊的过热组织,其组织特征为在一个粗大的奥氏体晶粒内会形成许多平行的铁素体针片,在铁素体针片之间的剩余奥氏体最后转变为珠光体,这种过热组织称为魏氏组织。
,造成晶粒脆化;同时还影响到焊接接头的应力应变,应力为焊接过程中焊件内产生的应力。
(按作用时间可分为焊接瞬时应力和焊接残余应力)。
应变为焊接过程中在焊件中所产生的变形。
形成较大的焊接残余应力或变形。
峰值温度Tmax与焊件的初始温度T,焊接线能量E,被焊金0属的板厚h及离热源中心距离有关。
焊工初级(金属熔焊原理)模拟试卷1(题后含答案及解析)

焊工初级(金属熔焊原理)模拟试卷1(题后含答案及解析)题型有:1.jpg /> 涉及知识点:金属熔焊原理5.什么叫焊接热循环?其主要参数有哪些?正确答案:焊接热循环是指焊接过程中,在焊接热源作用下,焊件上某点的温度随时问变化的过程。
其特征是加热速度很快,在最高温度下停留时间很短,随后各点按照不同的冷却速度进行冷却。
对接接头热影响区各点的热循环曲线,见图6-2。
焊接热循环的主要参数有加热速度、最高加热温度、在相变温度以上停留的时间和冷却速度。
涉及知识点:金属熔焊原理6.什么叫焊接线能量?其计算公式怎样?正确答案:焊接线能量是指熔焊时,由焊接能源输入给单位长度焊缝上的能量,用q(J/cm)表示。
其计算公式为q=IU/v式中I——焊接电流,A;U ——电弧电压,V;v——焊接速度,cm/s;q——线能量,J/cm。
涉及知识点:金属熔焊原理7.焊接线能量对接头性能有何影响?正确答案:焊接线能量综合了焊接电流、电弧电压和焊接速度三个工艺因素对焊接热循环的影响。
线能量增大时,过热区的晶粒尺寸粗大,韧性降低;线能量减小时,硬度和强度提高,但韧性也会降低。
生产中根据不同的材料成分,在保证焊缝成形良好的前提下,适当调节焊接工艺参数,以合适的线能量焊接,可以保证焊接接头具有良好的性能。
涉及知识点:金属熔焊原理8.什么叫熔合比?正确答案:熔合比是指熔焊时,被熔化的母材在焊缝金属中所占的百分比,其计算公式为熔合比=FB/(FA+FB)式中FA——熔化的焊条量;FB——熔化的母材量。
涉及知识点:金属熔焊原理9.什么是焊接冶金过程?它与金属冶炼有什么不同?正确答案:焊接冶金过程与金属冶炼一样,都通过加热使金属熔化,在金属熔化过程中,金属、熔渣、气体之间发生复杂的化学反应和物理变化。
与金属冶炼不同的是:金属冶炼时,炉料几乎同时熔炼,升降温速度慢,冶炼时间长,冷凝时也是整体冷却并结晶;而焊接却是在焊件上局部加热,并且不断移动热源,热源中心与周围冷金属之间温差很大,冷却速度很快。
大线能量焊接用钢的现状与发展讲解

大线能量焊接用钢板的应用领域
船舶
桥梁
高层建筑
海洋结构
石油储罐
球罐
国外大线能量焊接用钢的研究现状
造船
日本JFE公司的EH40船板钢的焊接 热输入量已经达到680kJ/cm,40 至100mm厚度的钢板可实现一道次 焊接成形,其焊接效率比传统方 法提高数十倍。
日本新日铁公司开发的EH40造船 钢板,其焊接热输入量能够达到 390 kJ/cm;
• 钢中第二相,包括传统意义上的夹杂物微细化及其形状 和分布状态的有效控制是未来钢铁材料科学与技术发展 的重要方向。
晶内针状铁素体含量与韧脆转变温度的关系
只有当HAZ组织中的针状铁素体含量达到50%以上 时,焊接热影响区才会显现出良好的低温韧性
HAZ部位奥氏体晶粒尺寸对韧性的影响 HAZ部位奥氏体晶粒细小有利于提高韧性
50mm
21mm
50mm
1水冷滑块 2金属熔池 3渣池 4焊接电源 5焊丝 6送丝轮 7导电杆 8引出板 9出水管 10金属熔滴 11进水管 12 焊缝 13起焊槽
普通热输入焊接:多道次、生产效率低
大热输入焊接:单道次、生产效率高,成本低
电渣焊焊缝
手工焊焊缝
1 大线能量焊接用钢的研究现状
近年,随着构件的大型化和大跨度化,使用低合金高强钢的下游企业为 提高施工效率和降低成本,逐步开始采用更为高效的大线能量焊接方法。 目前国内常见的大线能量焊接方法如下:
日本大线能量焊接用钢生产技术简介
日本大热输入焊接用钢的生产技术——氧化物冶金技术
新日铁的“HTUFF”技术:
使钢中形成纳米级Ca、Mg的氧化 物和硫化物粒子,细化奥氏体晶 粒的同时利用这些氧化物作为晶 内针状铁素体的形核点,提高大 热输入焊接CGHAZ的韧性。
焊工复习题(附答案)

2005-2006学年第二学期05级焊工班复习题一、填空题1、当电极材料、电源种类及极性和气体介质一定时,电弧电压的大小决定于电弧长度。
2、电弧的静特性曲线呈U形,它有三个不同的区域,当电流较小时,电弧静特性属下降特性区,即随电流增加,电压减小,当电流稍大时,电弧静特性属平特性区,即随电流增加,电压不变,当电流稍大时,电弧静特性属上升特性区,即电流增加,电压增大。
3、金属熔滴向熔池过渡根据其形式不同大致有粗滴过渡、短路过渡、喷射过渡三种。
4、电弧电压是电弧两端之间的电压降,它由阴极区、阳极区、弧柱区组成。
5、焊接接头的四种基本形式是对接接头、T型接头、角接接头和搭接接头。
6、手弧焊的焊接工艺参数有焊条的选择、焊接电流、电弧电压、焊接速度、焊接层数等。
7、带钝边V型焊缝的符号为,角焊缝的符号为;表示焊缝表面平齐的符号是;8、采用小的焊接线能量,如减小焊接电流,增大焊接速度等,都可以减少焊接热影响区的尺寸。
9、焊缝符号一般由基本符号和指引线组成,必要时还可以加上辅助符号、补充符号、焊缝尺寸符号。
10、S、P是两种极其有害的杂质元素,所以在焊芯H08中的含量不应大于0.04%,在H08A中的含量不应大于0.03%,在H08E中的含量不应大于0.025%。
11、在E5015A1中,“E”表示焊条,“50”表示熔敷金属抗拉强度的最小值(500MPa)“15”表示焊条药皮为低氢钠型,采用直流反接“1”表示焊条适用于全位置焊接“A1”表示熔敷金属化学成分分类代号。
12、造渣剂的作用是机械保护作用和冶金处理作用。
13、酸性焊条的力学性能比碱性焊条的力学性能要低,酸性焊条的抗裂性能比碱性焊条的抗裂性能要差。
14、焊接熔池的一次结晶包括生核和长大两个过程。
15、焊接区中的氢主要来自受潮的药皮或焊剂中的水分、焊条药皮中的有机物、焊件表面的铁锈、油脂及油漆。
16、气孔按其形状可分为球形气孔、条虫状气孔、针状气孔、椭圆形气孔及旋涡状气孔。
计算题

计算题(A)1. [基础理论知识]0.75MPa为多少Pa?多少KPa?答:解:因1MPa=1000KPa=1000000Pa则: 0.75×1000000=750000Pa0.75×1000=750Kpa 答:0.75MPa=750000Pa=750KPa。
2. [基础理论知识]一条焊接用电缆线,测得在流过160A电流时两端电压为4V,求该电缆的电阻为多少?答:解:由I=U/R得R=U/I 则 R=4/160=0.025(Ω) 答:该电缆的电阻为0.025Ω3. [基础理论知识] 焊工进行埋弧焊时,施焊焊接电流为600A,电弧电压为38V,测得焊机外电路总电阻为0.03Ω,求施焊时焊机端电压为多少伏特?解:根据串联电路电压计算公式,得端电压U端=U弧+IR外则 U端=38+600×0.03=56(伏)答:施焊时电焊机端电压为56V。
4. [基础理论知识]当一电焊工工作时采用电流为180安培,他应选用焊条为多大?解:根据经验公式IKd式中I---焊接电流d------焊条直径K-----经验系数取45d=I/K=180/45=4.0 答:应采用焊第为4.0。
5. [基础理论知识]通过人体的电流超过10mA时就有生命危险,已知某人最小电阻为1200Ω,试求此人的安全工作电压为多少?解:根据欧姆定律I=U/R,可知 U=IR=0.01×1200=12(V) 答:此人的安全电压为12V。
6. [基础理论知识]已知一个串联电路(纯电阻性电路),其总电阻为25Ω,两端电压为100V,试求该电路中流过多大电流?解:根据欧姆定律I=U/R计算则I=100/25=4(A) 答:该电路中流过4A电流。
7. [工艺基本知识]用埋弧自动焊焊接δ=16mm的园筒,焊接规范为:I=750A,u=39V,v=34m/h,求此时的焊接线能量?解:线能量q=Iu/v=750×39×60^2/(34×10^3)=3097(J/mm) 答:此时焊接线能量为3097J/mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线能量的计算公式:
q = IU/υ
式中:I—焊接电流 A
U—电弧电压V
υ—焊接速度cm/s
q—线能量J/cm
决定焊接线能量的主要参数就是焊接速度,焊接电流,和电弧电压,所以从这个意义上讲,只要你确定了合理的焊接规范参数,就已经确定了合理的焊接线能量,所以并没有一个专门的定量的的焊接线能量的测定,除非有特别要求,工程技术上也不可能给一个线能量的具体数值来控制,而是由焊接规范控制的,不过焊接线能量可以通过电流和电压和焊速来计算。
但是没一种焊接方法,还有根据实际应用情况线能量都不同,所以这种计算必要性不大,只要你利用合理的焊接规范,一般就没什么问题
个人认为理论上应该乘以热效率系数,但是从工程上来说这些都不是实用的东西
熔焊时,由焊接能源输入给单位长度焊缝上的能量,称为焊接线能量,用下式表示为
IU
q=───
υ
式中 I——焊接电流
熔焊时,由焊接能源输入给单位长度焊缝上的能量,称为焊接线能量,用下式表示为
IU
q=───
υ
式中 I——焊接电流(A);
U——电弧电压(V);
υ——焊接速度(cm/s);
q——线能量(J/cm)。
例如,板厚12mm,进行双面开Ⅰ形坡口埋弧焊,焊丝ф4mm,I=650A,U=38V,υ=0.9cm/s。
,则焊接线能量q为
IU 650×38
q=─── = ────── = 27444 J/cm
υ 0.9
线能量综合了焊接电流、电弧电压和焊接速度三大焊接工艺参数对焊接热循环的影响。
线能量增大时,热影响区的宽度增大,加热到高温的区域增宽,在高温的停留时间增长,同时冷却速度减慢,。