《相邻体积单位间的进率》教学设计_教案教学设计
《体积单位间的进率》教学设计

《体积单位间的进率》教学设计一、教学内容课本P46~47 例3、例4。
二、教学目标1.知识与技能使学生理解掌握体积单位间的进率,会利用进率进行转化。
2.过程与方法通过让学生经历推导体积单位间进率的过程,培养学生的逻辑思维能力及利用所学知识解决实际问题的能力。
3.情感、态度与价值观使学生形成初步的空间观念,体验所学知识与现实生活的联系,能运用所学知识解决生活中简单的问题,从中获得价值体验。
三、重点难点1.教学重点体积单位间的进率及转化。
2.教学难点推导体积单位间的进率。
四、教学用具自制课件、学具。
五、教学设计(一)复习准备1.体积单位有哪些?什么是1 立方米,1 立方分米,1 立方厘米?2.长度单位有哪些?3.面积单位有哪些?我们是怎样推导出来的?(二)探究新知1.体积单位间的进率及转化。
(1)出示1 立方米,1 立方分米,1 立方厘米的正方体。
按照面积单位进率的推导方法,让学生自己推导体积单位间的进率,小组讨论后汇报。
(2)汇报结果。
1 立方米=1 000 立方分米1 立方分米=1 000 立方厘米1 立方米=1 000 000 立方厘米(3)因为1 米=10 分米,棱长是1 米的正方体也可以看成棱长是10 分米的正方体,它的体积是10×10×10=1 000 立方分米,所以1 立方米=1 000 立方分米。
(4)小结:相邻两个体积单位间的进率是1 000。
(5)填空。
①8 立方米=()立方分米②10.4 立方分米=()立方厘米③400 立方分米=()立方米④132 500 立方厘米=()立方米2.长度单位、面积单位、体积单位的比较。
计量长度(边长、棱长、周长)要用长度单位,计量面积(平面图形面积、表面积)要用面积单位,计量体积要用体积单位。
[通过让学生自己推导体积单位间进率的过程,培养学生的逻辑思维能力及利用所学知识解决实际问题的能力。
](三)巩固练习1.在括号里填上合适的单位。
体积单位间的进率教学设计优秀6篇

体积单位间的进率教学设计优秀6篇体积单位间的进率教学设计篇一【教学内容】教材第34~35页例2、例3、例4及第36~37页练习八的第1~9题。
【教学目标】1.通过体积单位之间的进率的指导,使学生掌握体积单位之间的进率,并会进行名数的改写。
2.使学生学会用名数的改写解决一些简单的实际问题。
3.培养学生根据具体情况灵活应用不同的单位进行计算的能力。
【教学重难点】重点:理解体积单位之间的进率。
难点:掌握体积单位之间的互化。
【教学过程】一、复习导入1.口答:说一说常用的体积单位有哪些?2.填一填。
1千米=(xx )米1米=(xx )分米=(xx )厘米1平方米=(xx )平方分米1平方分米=(xx )平方厘米二、新课讲授1.学习体积单位间的进率。
(1)老师板书教材第34页例2:一个棱长为1dm的正方体,它的体积是1dm3。
想一想,它的体积是多少立方厘米。
(2)学生读题,理解题意。
(3)老师出示棱长为1dm的正方体模型。
提问:它的体积用分米作单位是1dm3,如果用厘米作单位,这个正方体的棱长是多少厘米?(棱长是10cm)(4)计算。
请学生想一想,根据正方体体积的计算公式,能不能算出这个正方体体积是多少立方厘米?学生先交流,再独立完成,然后请学生说出计算方法和计算过程,学生可能会说:①如果把正方体的棱长看作是10cm,就可以把它切成1000块1cm3的正方体。
②正方体的棱长是1dm,它的底面积是1dm2,也就是100cm2,再根据底面积x 高,也就是100x10=1000cm3,得出它的体积。
老师根据学生的回答,板书:V=a310x10x10=1000(cm3)1dm3=1000cm3(5)根据推导,请学生说出立方分米和立方厘米之间的进率是多少?1立方分米=1000立方厘米(老师板书)(6)你们能够推算出1立方米和1立方分米的关系吗?学生尝试完成。
老师板书:1立方米=1000立方分米(7)观察板书内容。
想一想:相邻两个体积单位之间的进率存在着怎样的关系?通过观察,学生发现:相邻的两个体积单位之间的进率都是1000。
苏教版六年级数学上册第一单元第9课《相邻体积单位间的进率》教学设计

苏教版六年级数学上册第一单元第9课《相邻体积单位间的进率》教学设计一. 教材分析苏教版六年级数学上册第一单元第9课《相邻体积单位间的进率》的内容主要包括了立方厘米和立方分米之间的进率,立方分米和立方米之间的进率,以及立方厘米、立方分米、立方米之间的进率。
本节课的内容是学生对体积单位的理解和应用,通过学习,使学生能够熟练掌握不同体积单位之间的进率,为后续的体积计算打下基础。
二. 学情分析六年级的学生已经掌握了基本的体积单位知识,对立方厘米、立方分米、立方米等体积单位有一定的了解。
但是,对于这些体积单位之间的进率,学生可能还存在一定的模糊认识。
因此,在教学过程中,需要通过实例和练习,使学生清晰地理解不同体积单位之间的进率。
三. 教学目标1.知识与技能:学生能够掌握立方厘米和立方分米之间的进率,立方分米和立方米之间的进率,以及立方厘米、立方分米、立方米之间的进率。
2.过程与方法:学生能够通过实例和练习,运用所学的体积单位知识,解决实际问题。
3.情感态度与价值观:学生能够对数学产生兴趣,培养学生的合作意识和问题解决能力。
四. 教学重难点1.重点:学生能够掌握不同体积单位之间的进率。
2.难点:学生能够运用所学的体积单位知识,解决实际问题。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握体积单位之间的进率。
2.合作学习法:学生分组讨论和解决问题,培养学生的合作意识和问题解决能力。
3.练习法:通过大量的练习,使学生熟练掌握不同体积单位之间的进率。
六. 教学准备1.教学课件:制作相关的教学课件,帮助学生理解和掌握体积单位之间的进率。
2.练习题:准备一些相关的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)通过一个生活实例,如“一个水果篮子,装满了苹果,苹果的体积是500立方厘米,如果把这些苹果换成相同体积的橙子,需要多少橙子?”引导学生思考和讨论,引出本节课的内容——相邻体积单位间的进率。
掌握进率转换方法:小学数学教案《相邻体积单位间的进率》详解

掌握进率转换方法:小学数学教案《相邻体积单位间的进率》详解。
一、相邻体积单位间的进率概念相邻体积单位间的进率是指在同一物体中,两个相邻的体积单位之间的比率。
例如,在一本书的体积中,两个相邻的体积单位为立方厘米和立方毫米,它们之间的进率为1:1000。
二、相邻体积单位间的进率的计算在计算相邻积单位间的进率时,需要先将两个体积单位换算成同一单位,然后再计算它们之间的比率。
下面以立方米和立方厘米为例,介绍其中的具体步骤。
1.将立方米换算成立方厘米要将立方米换算成立方厘米,可以使用以下公式:1立方米 = 100厘米× 100厘米× 100厘米 = 1 000 000立方厘米其中,1立方米等于100厘米× 100厘米× 100厘米,也就是100厘米长、100厘米宽、100厘米高的立方体。
因此,1立方米等于1 000 000立方厘米。
2.计算相邻单位的进率计算相邻单位的进率可以使用以下公式:进率 = 较大单位数÷ 较小单位数例如,计算立方厘米和立方毫米之间的进率时,可以使用以下公式:进率 = 1000立方毫米÷ 1立方厘米 = 1000因此,立方厘米和立方毫米之间的进率为1:1000,也就是1立方厘米等于1000立方毫米。
三、小学数学教案《相邻体积单位间的进率》详解小学数学教案《相邻体积单位间的进率》是一份帮助小学生掌握相邻体积单位间的进率知识的教案。
该教案完整地讲解了进率的概念、计算方法和应用,同时还提供了丰富的练习题,帮助学生理解和掌握好这个知识点。
该教案的核心内容包括以下几个部分:1.进率的概念和意义本部分主要讲解了进率的定义和作用。
教案通过生的案例介绍了进率在日常生活中的应用,例如在购物时比较不同商品的价格,或者在制作点心时将配料按比例控制。
通过这些实际的例子,学生可以更好地理解进率的概念和作用,并且认识到它对他们的日常生活有着重要的帮助。
《体积单位间的进率》教学设计

《体积单位间的进率》教学设计一、教学目标:1.使学生经历1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程,掌握相邻的两个体积单位之间的进率是1000.2.会正确应用体积单位间的进率进行名数的变换,并解决一些简单的实际问题.3.高学生的分析、比较、判断能力及解决实际生活问题的能力。
三、教学难点:1立方分米=1000立方厘米、1立方米=1000立方分米的推导过程。
四、教学准备:课件、粉笔盒五、教学过程:1、复习回顾体积的单位有哪些?用手势比划1立方厘米、1立方分米、1立方米的体积大小。
长方体体积的计算公式是?正方体的体积计算公式是?正方体和长方体的统一计算公式是?2、情境导入出示问题:“一个正方体礼品的包装盒棱长是1分米,它的体积是多少立方厘米?”找学生读一读,并说出做此题应该注意的一些事项。
想一想1立方分米等于多少立方厘米?猜一猜最后的结果是多少?板书1立方分米等于多立方厘米3、推导新知观察屏幕课件显示的立方体,思考回答,推导出1立方分米和1立方厘米之间的进率。
(1)1分米=10厘米,10厘米×10厘米×10厘米=1000立方厘米,所以1立方分米=1000立方厘米(2)底面积是10厘米×10厘米=100平方厘米,100平方厘米×10厘米=1000立方厘米(3)把1立方分米的正方体,平均分成10层,每层有10×10=100块体积是1立方厘米的小正方体,所以大正方体的体积就是100×10=1000立方厘米用类似的方法推导1立方米等于多少立方分米?说一说。
4、归纳得出:1立方分米=1000立方厘米,1立方米=1000立方分米5、相邻两个体积单位间的进率是1000。
6、巩固深化,展示问题,得出体积单位换算的方法。
展示题目:3.8m3=dm3,2400cm3=dm3学生做题,自主归纳出单位变换的方法:小单位变大单位,除以进率大单位变小单位,乘以进率。
《体积单位之间的进率》的数学教案

《体积单位之间的进率》的数学教案一、教学目标:1. 让学生掌握体积单位之间的进率,即相邻两个体积单位之间的换算关系。
2. 培养学生运用体积单位进行实际问题的解决能力。
3. 培养学生合作学习、积极思考的能力。
二、教学内容:1. 体积单位之间的进率的概念。
2. 体积单位之间的换算方法。
3. 实际问题中的应用。
三、教学重点与难点:1. 重点:体积单位之间的进率,体积单位之间的换算方法。
2. 难点:实际问题中体积单位进率的运用。
四、教学方法:1. 采用直观演示法,让学生直观地感受体积单位之间的进率。
2. 采用小组讨论法,培养学生合作学习的能力。
3. 采用实践操作法,让学生在实际问题中运用体积单位进率。
五、教学过程:1. 导入:通过一个实际问题,引发学生对体积单位之间进率的思考。
2. 新课导入:介绍体积单位之间的进率,讲解体积单位之间的换算方法。
3. 实例讲解:通过具体实例,让学生理解体积单位之间的进率。
4. 小组讨论:让学生分组讨论,探索体积单位之间的进率在实际问题中的应用。
5. 实践操作:布置一道实际问题,让学生运用体积单位进率进行解答。
7. 课后作业:布置一道课后练习题,巩固所学知识。
六、教学评价:1. 通过课堂表现、小组讨论和课后作业,评价学生对体积单位之间进率的掌握程度。
2. 关注学生在实际问题中运用体积单位进率的准确性及解决问题的能力。
七、教学资源:1. 体积单位模型:用于直观展示体积单位之间的关系。
2. 实际问题素材:用于引导学生运用体积单位进率解决实际问题。
3. 课后作业:用于巩固所学知识。
八、教学进度安排:1. 课时:本节课计划用2课时完成。
2. 教学进度:第一课时讲解体积单位之间的进率及换算方法,第二课时进行实例讲解、小组讨论和实践操作。
九、教学反思:2. 根据学生的反馈,调整教学策略,为下一步的教学做好准备。
十、课后作业:2. 完成课后练习题,巩固体积单位之间进率的知识。
重点和难点解析一、教学目标:关注学生对体积单位之间进率的理解与应用,确保学生能够运用体积单位解决实际问题。
《体积单位间的进率》教案

《体积单位间的进率》教案【教学目标】1.了解体积单位之间的换算关系。
2.学习体积单位进率的概念,掌握其计算方法。
3.掌握体积单位进率的应用,能够在实际问题中运用所学知识。
【教学重点】1.体积单位之间的换算关系。
2.体积单位进率的概念、计算方法与应用。
【教学难点】1.体积单位进率的应用。
2.解决实际问题时,如何选用正确的单位进率。
【教学内容】一、导入在生活中,我们经常使用“立方米(m³)”、“升(L)”、“毫升(mL)”等单位来度量体积。
但是,不同的单位之间要如何换算呢?体积单位之间的换算关系对于我们正确使用单位、解决实际问题很有帮助。
今天我们就来学习一下体积单位之间的换算关系。
二、教学过程(一)体积单位之间的换算关系1.关于毫升、升、立方米的换算关系,我们先来看一下这张图:(图1)从图中我们可以看出:1升=1000毫升 1立方米=1000升2. 首先,请同学们计算一下:(1)2.5升= ? 毫升(2)0.6立方米= ? 升(3)1000毫升= ? 升(4)3.5立方米= ? 升(5)800毫升= ? 升(6)0.2 升= ? 毫升(7)0.002升= ? 毫升(8)3立方米= ? 升(二)体积单位进率的概念1.请同学们看一下这张图,了解一下各个单位之间的进率。
(图2)从图中我们可以看出:小单位和大单位之间的进率是10的n 次方,n是小单位距离大单位的个数。
2.进一步说明:当1个单位的进率是10的3次方时,则2个单位的进率是(10的3次方)的2次方,即10的6次方。
再进一步推导,3个单位的进率是10的9次方,4个单位的进率是10的12次方,以此类推。
3.通过上面的介绍,我们可以知道:- 从毫升到升的进率是10的1次方,也就是10。
- 从升到立方米的进率是10的3次方,也就是1000。
(三)体积单位进率的计算方法1. 请同学们计算一下下面的进率:(1)从毫升到升的进率是多少?(2)从升到立方米的进率是多少?2. 再来看一下图2,举例来说:(1)升和立方米之间跨越了3个单位,因此从升到立方米的进率是10的3次方,也就是1000。
《体积单位间的进率》教学设计

《体积单位间的进率》教学设计教学目标:1.根据正方体体积的计算方法,在教师引导下,推导出1dm3=1000cm3,在此基础上,通过观察、比较、分析,用类推的思路自主推导出其他的相邻体积单位之间的进率。
2.通过独立填表,小组交流,全班反馈,将长度、面积、体积相邻两个单位的进率整理成表,促动知识系统化。
3.借助已有知识经验,使用迁移类推的学习方法,自主归纳总结出体积单位间名数换算的方法,并能应用解决实际问题。
教学重点:体积单位间进率的推导过程及名数的改写教学难点:在解决问题中,自觉的实行单位变换使单位的使用更为合理。
教学准备:课件、棱长是1dm 的正方体模型,棱长是1cm 的正方体模型。
教学过程:(一)“开心一读”,激趣揭题:1、开心一读,修改单位:今天早上,我从2平方厘米的床上爬起来,穿好衣服,便拿起17米长的牙刷,挤出1立方分米的牙膏开始刷牙,不知不觉中已经过了20小时。
吃完早餐后,我背起书包,来到了56平方分米的教室,开启一天的学习。
2、小结:计量单位各不同,类型确定要分清;大小选择须合理,不闹笑话头脑清。
3、揭题:完善表格。
猜测体积单位间的进率是多少?你能试着说一说为什么是1000吗?师:大家已经会实行长度单位和面积单位不同名数的换算,并且理解了常见的体积单位,每相邻两个体积单位之间的进率是多少吗?这节课我们就来研究。
(板书课题“体积单位间的进率”)(二)观察演示,探究新知(1)探究体积单位之间的进率出例如2:老师这有一个棱长为1dm 的正方体(出示棱长是1dm 的正方体模型教具),体积是13dm 。
想一想:它的体积是多少立方厘米呢?①理解题意,各抒己见师:请同学们仔细读题,你得到了哪些信息?你准备怎样解决这个问题?预设1:将1dm 换算成10cm 实行计算。
预设2:或先求底面积,再换算单位。
②统一理解,发现进率师:就像刚刚同学们所说的,我们能够把棱长为1dm 看作棱长10cm ,由正方体体积的计算公式算出体积是10003cm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相邻体积单位间的进率》教学设计
第一课时
教学内容:教科书第30页,例11、练一练,练习七第1~4页。
教学目标:
1、使学生通过探索,自主算出相邻体积单位之间的进率,并会运用相邻体积单位间的进率进行不同体积单位的换算。
2、使学生在数学活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思维。
教学重点:会应用相邻体积单位的进率进行不同体积单位的换算。
教学难点:通过探索,自主推算出相邻体积单位间的进率。
教学准备:教学光盘、体积单位的模型。
教学过程:
一、谈话引入
大家已经学会了长方体和正方体的体积计算,说说长方体和正方体的体积应该怎样计算?常用的体积单位有哪些?
我这里有两个正方体,要知道哪一个占的空间大?应该计算它们的什么?
二、教学新课
1、教学例11。
体积相等吗?你怎么想的?
因为1分米=10厘米,所以两个正方体棱长相等,体积也相等。
你能算出这两个正方体的体积吗?算完后,在小组中交流有什么
发现?
汇报交流。
板书:10×10×10=1000(立方厘米)
得出:1立方分米=1000立方厘米。
也就是立方分米与立方厘米间的进率是1000。
你能用同样的方法,推算出1立方分米等于多少立方米吗?小组讨论。
说说你是怎样得到这个结论的?
汇报交流。
板书:1米=10分米
1平方米=100平方分米
1立方米=1000立方分米
立方米和立方分米间的进率是多少呢?
2、完成练一练。
独立完成,集体核对。
5立方分米=()立方厘米,你是怎么想的?
7500立方厘米=()立方分米,应该怎样换算?
乘1000或除以1000可以得到怎样的结果?
板书课题:相邻体积单位间的进率。
三、巩固练习
1、完成练习七第1题。
独立完成填表。
你能说说长度、面积和体积单位有什么联系吗?
有什么区别呢?
2、完成第2题。
独立完成,集体核对。
换算时要注意什么?
3、完成第3、4题。
独立完成,集体核对。
四、课堂小结
今天学习了什么内容?相邻单位间的进率是多少?换算时要注意什么?
板书设计:
相邻体积单位间的进率
10×10×10=1000立方厘米
1立方分米=1000立方厘米
立方分米与立方厘米间的进率是1000。
1米=10分米
1平方米=100平方分米
1立方米=1000立方分米
立方米与立方分米间的进率是1000。
第二课时
教学内容:教科书第31~32页,练习七第5~10题。
教学目标:
1、通过练习,使学生进一步掌握相邻体积单位之间的进率,能熟练进行相邻体积单位的换算。
2、通过练习,使学生进一步提高运用所学的图形知识解决简单实际问题的能力。
教学重点:能熟练进行相邻体积单位的换算。
教学难点:在解决与体积单位有关的实际问题时,能正确思考及换算。
教学准备:教学光盘。
教学过程
一、基础练习
3.8立方米=()立方分米
420立方分米=()立方米
3600立方厘米=()立方分米
12立方分米=()立方厘米
独立完成,集体核对。
说说高级单位的数量怎样换算成低级单位的数量?低级单位的数量怎样换算成高级单位的数量?
板书:高级单位的数量低级单位的数量
低级单位的数量高级单位的数量
板书课题:相邻体积单位的进率换算练习。
二、综合练习
1、完成练习七第5题。
“分别正好装满右边的容器”什么意思?
怎么算出木块的体积呢?容器的容积分别又是什么呢?
独立完成计算。
2、完成第6题。
独立完成计算。
“合多少立方分米”就是将立方米换算成立方米。
3、完成第7、8题。
独立完成填表,汇报交流。
表面积和体积分别应该怎样算?
4、完成第9题。
理解题意。
每个问题实际是求什么?怎样求?需要什么条件?
独立完成解答。
5、完成第10题。
“从外面量”的数据与哪个问题有关?
“从里面量”的数据与哪个问题有关?
独立完成计算。
三、课堂小结
通过今天的练习,你觉得自己在哪些知识上又有了新的收获?板书设计:
相邻体积单位的进率换算练习
高级单位的数量低级单位的数量
低级单位的数量高级单位的数量
感谢您的阅读,本文如对您有帮助,可下载编辑,谢谢。