一次函数基础训练试题
一次函数基础测试题附答案

故是一次函数的有 3 个.
故选:B.
【点睛】
此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.
6.如图,直线 y=-x+m 与直线 y=nx+5n(n≠0)的交点的横坐标为-2,则关于 x 的不等式x+m>nx+5n>0 的整数解为( )
A.-5,-4,-3 【答案】B 【解析】 【分析】
【答案】B
【解析】
【分析】
分别利用一次函数、二次函数和反比例函数的定义分析得出即可.
【详解】
解:(1)y=x 是一次函数,符合题意;
(2)y=2x﹣1 是次函数,符合题意;
(3)y= 1 是反比例函数,不符合题意; x
(4)y=2﹣3x 是一次函数,符合题意;
(5)y=x2﹣1 是二次函数,不符合题意;
A.(21009,21010) C.(21009,﹣21010) 【答案】D 【解析】 【分析】
B.(﹣21009,21010) D.(﹣21009,﹣21010)
写出一部分点的坐标,探索得到规律 A2n+1[(﹣2)n,2×(﹣2)n](n 是自然数),即可求 解; 【详解】 A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),… 由此发现规律: A2n+1[(﹣2)n,2×(﹣2)n](n 是自然数), 2019=2×1009+1, ∴A2019[(﹣2)1009,2×(﹣2)1009], ∴A2019(﹣21009,﹣21010), 故选 D. 【点睛】 本题考查一次函数图象上点的特点;能够根据作图特点,发现坐标的规律是解题的关键.
D.y=x+12
【答案】A
【解析】
初中语文一次函数基础性练习题

初中语文一次函数基础性练习题一、选择题1. 以下哪个不是一次函数?A. y = 2x + 3B. y = -4x - 5C. y = x² - 3x + 1D. y = 0.5x - 2答案:C解析:一次函数是指函数中的最高次幂为1,选项C中的最高次幂为2,因此不是一次函数。
2. 已知一次函数 y = 3x - 2,则当 x = 4 时,y 的值为?A. 10B. 12C. 8D. 2答案:10解析:将 x = 4 代入 y = 3x - 2 中,得到 y = 10。
3. 在直角坐标系中,已知一次函数 y = 2x,当 x 增加 3 时,y 增加了多少?A. 1B. 2C. 3D. 6答案:6解析:由函数 y = 2x 可得,当 x 增加 1 时,y 增加 2,因此当x 增加 3 时,y 增加了 6。
二、填空题1. 已知一次函数 y = -5x - 3,则当 x = 2 时,y 的值为 ?。
答案:-13解析:将 x = 2 代入 y = -5x - 3 中,得到 y = -13。
2. 在直角坐标系中,已知一次函数 y = 4x,当 x = -2 时,y 的值为 ?。
答案:-8解析:将 x = -2 代入 y = 4x 中,得到 y = -8。
三、计算题1. 在直角坐标系中,已知一次函数 y = 2x + 1,求其在 x = 3 时的函数值。
解:将 x = 3 代入 y = 2x + 1 中,得到 y = 7。
因此,当 x = 3 时,y 的值为 7。
2. 已知一次函数 y = -0.5x + 4,求其与 x 轴的交点坐标。
解:与 x 轴的交点坐标为 (x, 0),因此当 y = 0 时,有 -0.5x + 4 = 0。
解得 x = 8。
因此,与 x 轴的交点坐标为 (8, 0)。
以上是初中语文一次函数基础性练习题,希望同学们认真练习,巩固基础,提高成绩。
一次函数基础训练题

一次函数基础训练题一、选择题:1.已知y与x+3成正比例,并且x=1时,y=8,那么y与x之间的函数关系式为()(A)y=8x (B)y=2x+6 (C)y=8x+6 (D)y=5x+32.若直线y=kx+b经过一、二、四象限,则直线y=bx+k不经过()(A)一象限(B)二象限(C)三象限(D)四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是()(A)4 (B)6 (C)8 (D)164.若甲、乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y=k1x+a1和y=k2x+a2,如图,所挂物体质量均为2kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()(A)y1>y2(B)y1=y2(C)y1<y2(D)不能确定5.无论m为何实数,直线y=x+2m与y=-x+4的交点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限6.要得到y=-32x-4的图像,可把直线y=-32x().(A)向左平移4个单位(B)向右平移4个单位(C)向上平移4个单位(D)向下平移4个单位 7.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围是().(A)k<13(B)13<k<1 (C)k>1 (D)k>1或k<138.已知abc≠0,而且a b b c c ac a b+++===p,那么直线y=px+p一定通过()(A)第一、二象限(B)第二、三象限(C)第三、四象限(D)第一、四象限9.在直角坐标系中,已知A(1,1),在x轴上确定点P,使△AOP为等腰三角形,则符合条件的点P共有()(A)1个(B)2个(C)3个(D)4个10.甲、乙二人在如图所示的斜坡AB上作往返跑训练.已知:甲上山的速度是a米/分,下山的速度是b米/分,(a<b);乙上山的速度是12a米/分,下山的速度是2b米/分.如果甲、乙二人同时从点A出发,时间为t(分),离开点A的路程为S(米),•那么下面图象中,大致表示甲、乙二人从点A出发后的时间t (分)与离开点A的路程S(米)•之间的函数关系的是()二、填空题11.已知一次函数y=-6x+1,当-3≤x≤1时,y的取值范围是________.12.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m的取值范围是________. 13.函数y=-3x+2的图像上存在点P,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.14.过点P(8,2)且与直线y=x+1平行的一次函数解析式为_________.三、解答题15.已知一次函数y=ax+b的图象经过点A(2,0)与B(0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y的值在-4≤y≤4范围内,求相应的y的值在什么范围内.16.已知y=p+z,这里p是一个常数,z与x成正比例,且x=2时,y=1;x=3时,y=-1.(1)写出y与x之间的函数关系式;(2)如果x的取值范围是1≤x≤4,求y的取值范围.17.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:第一档第二档第三档第四档凳高x(cm) 37.0 40.0 42.0 45.0桌高y(cm) 70.0 74.8 78.0 82.8(1)小明经过对数据探究,发现:桌高y是凳高x的一次函数,请你求出这个一次函数的关系式;(不要求写出x的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm,凳子的高度为43.5cm,请你判断它们是否配套?说明理由.18.在直角坐标系x0y中,一次函数y=23x+2的图象与x轴,y轴,分别交于A、B两点,•点C坐标为(1,0),点D在x轴上,且∠BCD=∠ABD,求图象经过B、D•两点的一次函数的解析式.19.已知:如图一次函数y=12x-3的图象与x轴、y轴分别交于A、B两点,过点C(4,0)作AB的垂线交AB于点E,交y轴于点D,求点D、E的坐标.20.A市、B市和C市有某种机器10台、10台、8台,•现在决定把这些机器支援给D市18台,E市10.已知:从A市调运一台机器到D市、E市的运费为200元和800元;从B•市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值.(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值.答案:1.B 2.B 3.A 4.A5.B 提示:由方程组y bx ay ax b=+⎧⎨=+⎩的解知两直线的交点为(1,a+b),•而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D•中交点纵坐标是大于a,小于b的数,不等于a+b,故图D不对;故选B.6.B 提示:∵直线y=kx+b经过一、二、四象限,∴0,kb<⎧⎨>⎩对于直线y=bx+k,∵0,kb<⎧⎨>⎩∴图像不经过第二象限,故应选B.7.B 提示:∵y=kx+2经过(1,1),∴1=k+2,∴y=-x+2,∵k=-1<0,∴y随x的增大而减小,故B正确.∵y=-x+2不是正比例函数,∴其图像不经过原点,故C错误.∵k<0,b=•2>0,∴其图像经过第二象限,故D错误.8.C 9.D 提示:根据y=kx+b的图像之间的关系可知,将y=-32x•的图像向下平移4个单位就可得到y=-32x-4的图像.10.C 提示:∵函数y=(m-5)x+(4m+1)x中的y与x成正比例,∴5,50,1410,,4m m m m ≠⎧-≠⎧⎪⎨⎨+==-⎩⎪⎩即 ∴m=-14,故应选C . 11.B 12.C 13.B 提示:∵a b b c c a c a b+++===p , ∴①若a+b+c ≠0,则p=()()()a b b c c a a b c+++++++=2;②若a+b+c=0,则p=a b cc c+-==-1, ∴当p=2时,y=px+q 过第一、二、三象限; 当p=-1时,y=px+p 过第二、三、四象限, 综上所述,y=px+p 一定过第二、三象限.14.D 15.D 16.A 17.C 18.C 19.C20.A 提示:依题意,△=p 2+4│q │>0, ||0k b p k b q k b +=-⎫⎪=-⇒⎬⎪≠⎭k ·b<0,一次函数y=kx+b 中,y 随x 的增大而减小000k k b <⎫⇒<⇒⇒⎬>⎭一次函数的图像一定经过一、二、四象限,选A . 二、1.-5≤y ≤19 2.2<m<3 3.如y=-x+1等.4.m ≥0.提示:应将y=-2x+m 的图像的可能情况考虑周全. 5.(13,3)或(53,-3).提示:∵点P 到x 轴的距离等于3,∴点P 的纵坐标为3或-3 当y=3时,x=13;当y=-3时,x=53;∴点P 的坐标为(13,3)或(53,-3).提示:“点P 到x 轴的距离等于3”就是点P 的纵坐标的绝对值为3,故点P 的纵坐标应有两种情况. 6.y=x-6.提示:设所求一次函数的解析式为y=kx+b . ∵直线y=kx+b 与y=x+1平行,∴k=1,∴y=x+b .将P (8,2)代入,得2=8+b ,b=-6,∴所求解析式为y=x-6.7.解方程组92,,83323,,4x y x y x y ⎧=⎧⎪=⎪⎪⎨⎨⎪⎪=-+=⎩⎪⎩得∴两函数的交点坐标为(98,34),在第一象限. 8.222()aq bp bp aq --. 9.y=2x+7或y=-2x+3 10.1004200911.据题意,有t=25080160⨯k ,∴k=325t . 因此,B 、C 两个城市间每天的电话通话次数为T BC =k ×2801003253205642t t⨯=⨯=.三、1.(1)由题意得:20244a b a b b +==-⎧⎧⎨⎨==⎩⎩解得 ∴这个一镒函数的解析式为:y=-2x+4(•函数图象略). (2)∵y=-2x+4,-4≤y ≤4, ∴-4≤-2x+4≤4,∴0≤x ≤4.2.(1)∵z 与x 成正比例,∴设z=kx (k ≠0)为常数, 则y=p+kx .将x=2,y=1;x=3,y=-1分别代入y=p+kx , 得2131k p k p +=⎧⎨+=-⎩ 解得k=-2,p=5,∴y 与x 之间的函数关系是y=-2x+5;(2)∵1≤x ≤4,把x 1=1,x 2=4分别代入y=-2x+5,得y 1=3,y 2=-3.∴当1≤x ≤4时,-3≤y ≤3.另解:∵1≤x ≤4,∴-8≤-2x ≤-2,-3≤-2x+5≤3,即-3≤y ≤3. 3.(1)设一次函数为y=kx+b ,将表中的数据任取两取,不防取(37.0,70.0)和(42.0,78.0)代入,得2131k p k p +=⎧⎨+=-⎩∴一次函数关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4.∵77≠80.4,∴不配套. 4.(1)由图象可知小明到达离家最远的地方需3小时;此时,他离家30千米.(2)设直线CD 的解析式为y=k 1x+b 1,由C (2,15)、D (3,30),代入得:y=15x-15,(2≤x ≤3). 当x=2.5时,y=22.5(千米)答:出发两个半小时,小明离家22.5千米. (3)设过E 、F 两点的直线解析式为y=k 2x+b 2,由E (4,30),F (6,0),代入得y=-15x+90,(4≤x ≤6) 过A 、B 两点的直线解析式为y=k 3x , ∵B (1,15),∴y=15x .(0≤x ≤1),•分别令y=12,得x=265(小时),x=45(小时). 答:小明出发小时265或45小时距家12千米.5.设正比例函数y=kx ,一次函数y=ax+b ,∵点B 在第三象限,横坐标为-2,设B (-2,y B ),其中y B <0, ∵S △AOB =6,∴12AO ·│y B │=6, ∴y B =-2,把点B (-2,-2)代入正比例函数y=kx ,•得k=1.把点A (-6,0)、B (-2,-2)代入y=ax+b ,得1062223a b a a b b ⎧=-+=-⎧⎪⎨⎨-=-+⎩⎪=-⎩解得∴y=x ,y=-12x-3即所求. 6.延长BC 交x 轴于D ,作DE ⊥y 轴,BE ⊥x 轴,交于E .先证△AOC ≌△DOC , ∴OD=OA=•1,CA=CD ,∴CA+CB=DB=222234DE BE +=+= 5. 7.当x ≥1,y ≥1时,y=-x+3;当x ≥1,y<1时,y=x-1; 当x<1,y ≥1时,y=x+1;当x<•1,y<1时,y=-x+1.由此知,曲线围成的图形是正方形,其边长为2,面积为2.8.∵点A 、B 分别是直线y=23x+2与x 轴和y 轴交点, ∴A (-3,0),B (0,2),∵点C 坐标(1,0)由勾股定理得BC=3,AB=11,设点D的坐标为(x,0).(1)当点D在C点右侧,即x>1时,∵∠BCD=∠ABD,∠BDC=∠ADB,∴△BCD∽△ABD,∴BC CDAB BD=,∴23|1|112xx-=+①∴22321112x xx-+=+,∴8x2-22x+5=0,∴x1=52,x2=14,经检验:x1=52,x2=14,都是方程①的根,∵x=14,不合题意,∴舍去,∴x=52,∴D•点坐标为(52,0).设图象过B、D两点的一次函数解析式为y=kx+b ,2225 522b kk bb⎧⎧==-⎪⎪∴⎨⎨+=⎪⎪=⎩⎩∴所求一次函数为y=-225x+2.(2)若点D在点C左侧则x<1,可证△ABC∽△ADB,∴AD BDAB CB=,∴2|3|2113x x++=②∴8x2-18x-5=0,∴x1=-14,x2=52,经检验x1=14,x2=52,都是方程②的根.∵x2=52不合题意舍去,∴x1=-14,∴D点坐标为(-14,0),∴图象过B、D(-14,0)两点的一次函数解析式为y=42x+2,综上所述,满足题意的一次函数为y=-225x+2或y=42x+2.9.直线y=12x-3与x轴交于点A(6,0),与y轴交于点B(0,-3),∴OA=6,OB=3,∵OA ⊥OB ,CD ⊥AB ,∴∠ODC=∠OAB , ∴cot ∠ODC=cot ∠OAB ,即OD OAOC OB=, ∴OD=463OC OA OB ⨯==8.∴点D 的坐标为(0,8), 设过CD 的直线解析式为y=kx+8,将C (4,0)代入0=4k+8,解得k=-2.∴直线CD :y=-2x+8,由2213524285x y x y x y ⎧=⎧⎪=-⎪⎪⎨⎨⎪⎪=-+=-⎩⎪⎩解得 ∴点E 的坐标为(225,-45). 10.把x=0,y=0分别代入y=43x+4得0,3,4;0.x x y y ==-⎧⎧⎨⎨==⎩⎩∴A 、B 两点的坐标分别为(-3,0),(0,4)•.•∵OA=3,OB=4,∴AB=5,BQ=4-k ,QP=k+1.当QQ ′⊥AB 于Q ′(如图), 当QQ ′=QP 时,⊙Q 与直线AB 相切.由Rt △BQQ′∽Rt △BAO ,得`BQ QQ BQ QP BA AO BA AO ==即.∴4153k k -+=,∴k=78.∴当k=78时,⊙Q 与直线AB 相切.11.(1)y=200x+74000,10≤x ≤30(2)三种方案,依次为x=28,29,30的情况. 12.设稿费为x 元,∵x>7104>400,∴x-f (x )=x-x (1-20%)20%(1-30%)=x-x ·45·15·710x=111125x=7104. ∴x=7104×111125=8000(元).答:这笔稿费是8000元. 13.(1)设预计购买甲、乙商品的单价分别为a 元和b 元,则原计划是:ax+by=1500,①.由甲商品单价上涨1.5元,乙商品单价上涨1元,并且甲商品减少10个情形,得:(a+1.5)(x-10)+(b+1)y=1529,②再由甲商品单价上涨1元,而数量比预计数少5个,乙商品单价上涨仍是1元的情形得:(a+1)(x-5)+(b+1)y=1563.5,③.由①,②,③得:1.51044,568.5.x y ax y a+-=⎧⎨+-=⎩④-⑤×2并化简,得x+2y=186.(2)依题意有:205<2x+y<210及x+2y=186,得54<y<5523.由于y是整数,得y=55,从而得x=76.14.设每月用水量为xm3,支付水费为y元.则y=8,08(),c x ab x ac x a+≤≤⎧⎨+-+≥⎩由题意知:0<c≤5,∴0<8+c≤13.从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得198(15)338(22)b a cb a c=+-+⎧⎨=+-+⎩解得b=2,2a=c+19,⑤.再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,即2a=c+17,⑥.⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.综上得a=10,b=2,c=1. ()15.(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.又010,010, 01828,59, x xx x≤≤≤≤⎧⎧∴⎨⎨≤-≤≤≤⎩⎩∴5≤x≤9,∴W=-800x+17200(5≤x≤9,x是整数).由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;•当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+•400(19-x-y)+500(x+y-10)=-500x-300y-17200.又010,010, 010,010, 0188,1018, x xy yx y x y ≤≤≤≤⎧⎧⎪⎪≤≤∴≤≤⎨⎨⎪⎪≤--≤≤+≤⎩⎩∴W=-500x-300y+17200,且010,010,018.xyx y≤≤⎧⎪≤≤⎨⎪≤+≤⎩(x,y为整数).W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=•10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.11。
一次函数基础训练题(有答案)

一次函数基础训练题一、选择题(每小题3分,共27分)1.下列说法中正确的是( )A .一次函数是正比例函数B .正比例函数包括一次函数C .一次函数不包括正比例函数D .正比例函数是一次函数2.下列函数中是正比例函数的是( )A .矩形面积固定,长和宽的关系B .正方形的面积和边长的关系C .三角形的面积一定,底边和底边上的高之间的关系D .匀速运动中,速度固定时,路程和时间的关系3.已知y 与x 成正比例,如果x=2时,y=1,那么x=3时,y 为( ) A .32B .2C .3D .04.当x=3时,函数y=px-1与函数y=x+p 的值相等,则p 的值是 ( ) A .1 B .2 C .3D .45.下列函数:①y=8x ;②y=-8x ;③y=2x 2;④y=-2x+1.其中是一次函数的个数为 ( )A .0B .1C .2D .36.已知关于x 的一次函数y=m(x-n)的图象经过第二、三、四象限,则有( ) A .m >0,n >0 B .m <0,n >0 C .m >0,n <0 D .m <0,n <07.在一次函数y=kx+3中,当x=3时,y=6,则k 的值为 ( ) A .-1 B .1 C .5 D .-58.过点(2,3)的正比例函数解析式是 ( ) A .y=23xB .y=6xC .21y x =-D .y=32x9.如图14-2-1所示,档可能是一次函数y=px-(p-3)的图象的是 ( )二、填空题(每小题3分,共27分)10.对于函数y=(m-3)x+m+3,当m=__________时,它是正比例函数;当m___________时,它是一次函数.11.一次函数y=px+2,请你补充一个条件___________,使y 随x 的增大而减小. 12.已知y 与x 成正比例函数,当x=14时,y=56,则此函数的解析式为__________,当y=12时,x=_____________.13.若函数y=x+a-1是正比例函数,则a=_____________. 14.如果直线y=mx+n 经过第一、二、三象限,那么mn_________0(填“>”“<”或“=”)15.一次函数y=-3x-5的图象与正比例函数__________的图象平行,且与y 轴交于点__________.16.已知一次函数y=px+m 的图象过点(-2,3)和(1,0)两点,则一次函数解析式为__________.17.已知点P (m ,4)在直线y=2x-4上,则直线y=mx-8经过第_____________象限.18.一次函数y=ax-b 图象不经过第二象限,则a_____________,b__________. 三、解答案(每小题4分,共12分)19.下列函数中,哪些是一次函数?哪些是正比例函数? (1)y=-3x ;(2)y=-8x;(2)y=8x 2+x(1-8x); (3)y=1+8x .20.已知一次函数y=(5-m)x+3m 2-75.问:m 为何值时,它的图象经过原点?21.已知一次函数y=mx+n 的图象如图14-2-2所示. (1)求m ,n 的值;(2)在直角坐标系内画出函数y=nx+m 的图象.。
一次函数基础训练题

一次函数基础训练题一、一次函数的定义与表达式1. 题目下列函数中,是一次函数的是()A. y = (1)/(x)+1B. y = x^2+1C. y = 2x 1D. y=√(x)+1解析一次函数的一般形式为y = kx + b(k,b为常数,k≠0)。
选项A,y=(1)/(x)+1是反比例函数与常数函数的和,不是一次函数,因为反比例函数y = (1)/(x)不符合一次函数形式。
选项B,y = x^2+1是二次函数,因为自变量x的次数是2,不符合一次函数自变量次数为1的要求。
选项C,y = 2x 1符合一次函数y = kx + b的形式,其中k = 2,b=-1。
选项D,y=√(x)+1,自变量x在根号下,不是一次函数。
所以答案是C。
2. 题目已知一次函数y=(m 1)x+3,求m的取值范围。
解析因为一次函数的一般形式为y = kx + b(k≠0),在函数y=(m 1)x+3中,k = m 1。
要使函数为一次函数,则m 1≠0,解得m≠1。
二、一次函数的图象与性质1. 题目一次函数y = 2x+1的图象经过哪几个象限?解析对于一次函数y = kx + b(k,b为常数,k≠0),当k>0,b>0时,图象经过一、二、三象限。
在函数y = 2x+1中,k = 2>0,b = 1>0,所以图象经过一、二、三象限。
2. 题目已知一次函数y=-3x + b的图象经过点(1, -1),求b的值,并判断函数图象的单调性。
解析因为函数y=-3x + b的图象经过点(1,-1),将x = 1,y=-1代入函数可得:-1=-3×1 + b-1=-3 + b移项可得b=-1 + 3=2。
对于一次函数y = kx + b,这里k=-3<0,所以函数y=-3x + 2的图象是单调递减的,即y随x的增大而减小。
三、一次函数的应用1. 题目某汽车油箱中原有油100升,汽车每行驶50千米耗油9升,求油箱剩余油量y(升)与汽车行驶路程x(千米)之间的函数关系式。
《一次函数》基础测试卷及答案

一次函数一、选择题(每小题4分,共12分)1.下列函数:(1)y=-8x,(2)y=3.8,(3)y=9x2,(4)y=5x+8,其中是一次函数的有( )A.0个B.1个C.2个D.3个2.若y+2与2x-3成正比例,则y是x的( )A.正比例函数B.一次函数C.没有函数关系D.以上答案均不正确3.某山山脚的气温是10℃,此山高度每上升1km,气温下降6℃,设比山脚高出x km处的气温为y℃,y与x之间的函数解析式为( )A.y=10-6xB.y=10+6xC.y=6-10xD.y=6x-10二、填空题(每小题4分,共12分)4.下列函数:①y=-3x2+4;②y=x-2;③y=错误!未找到引用源。
x+3;④y=错误!未找到引用源。
+1;⑤y=-错误!未找到引用源。
x,其中是一次函数的有(只写序号).5.已知函数y=(k+2)x+k2-4,当k 时,它是一次函数.当k=_________时,它是正比例函数.6.某企业对自己生产的某种产品进行市场调查,得出这种产品的市场需求量y(千件)和单价x(元)之间的关系式是y=15-3x.(1)单价为2元时,市场需求量是千件.(2)如果单价为5元,那么可能出现的情况是.三、解答题(共26分)7.(8分)已知函数y=(k-2)错误!未找到引用源。
+b+1是一次函数,求k和b的取值范围.8.(8分)(2012·广州中考)某城市居民用水实行阶梯收费,每户每月用水量如果未超过20t,按每吨1.9元收费.如果超过20t,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为xt,应收水费为y元.(1)分别写出每月用水量未超过20t和超过20t,y与x之间的函数解析式.(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨? 【拓展延伸】9.(10分)生态公园计划在园内的坡地上造一片有A,B两种树的混合林,需要购买这两种树苗共2000棵,种植A,B两种树苗的相关信息如表:成活率95%设购买A种树苗x棵,造这片林的总费用为y元,解答下列问题:(1)写出y(元)与x(棵)之间的函数解析式.(2)假设这批树苗种植后成活1960棵,则造这片林的总费用需多少元?答案解析1.【解析】选C.(1)y=-8x符合一次函数的定义,故是一次函数.(2)y=3.8,自变量次数为0,故不是一次函数.(3)y=9x2,自变量次数为2,故不是一次函数.(4)y=5x+8,符合一次函数的定义,故是一次函数.综上可得(1)(4)是一次函数,共2个.2.【解析】选B.由题意可设y+2=k(2x-3)(k≠0),整理得,y=2kx-3k-2,其中2k 与-3k-2都是常数且2k≠0,所以y是x的一次函数.3.【解析】选A.根据气温=山脚的气温-下降的气温可得:y=10-6x.4.【解析】①中自变量的次数是2,④中自变量的次数不是1;所以①④不是一次函数,②③⑤均符合一次函数的定义.答案:②③⑤5.【解析】根据一次函数的定义得,k+2≠0,解得k≠-2.函数y=(k+2)x+k2-4是正比例函数,则k+2≠0,k2-4=0,解得k=2.答案:≠-2 26.【解析】(1)当x=2时,y=15-3×2=9.(2)当x=5时,y=15-3×5=0,说明当单价为5元时,这种产品的市场需求量为0,可能会因定价过高而造成产品大量积压.答案:(1)9 (2)产品大量积压7.【解析】根据题意得:k2-3=1,且k-2≠0,∴k=-2或k=2(舍去),∴k=-2.b是任意的常数.8.【解析】(1)当x≤20时,y=1.9x;当x>20时,y=1.9×20+(x-20)×2.8=2.8x-18.(2)用水量如果未超过20t,按每吨1.9元收费.因为5月份水费平均为每吨2.2元,所以用水量超过了20t.所以2.8x-18=2.2x,解得x=30.答:该户5月份用水30t.9.【解析】(1)y=(15+3)x+(20+4)(2000-x)=-6x+48000.(2)由题意可得:0.95x+0.99(2000-x)=1960.x=500,y=-6×500+48000=45000.所以造这片林的总费用需45000元.。
一次函数基础训练题

一次函数基础训练题一.选择题(共6小题)1.下列函数中,是一次函数的是()A.y=B.y=﹣2x+1C.y=3D.y=x+x22.下列函数中,是一次函数的有()①y=;②y=3x+1;③y=;④y=kx﹣2.A.1个B.2个C.3个D.4个3.下列函数中,y是x的正比例函数的是()A.y=x+1B.y=x C.y=x2D.y=4.函数y=2x+1的图象过点()A.(﹣1,1)B.(﹣1,2)C.(0,1)D.(1,1)5.直线y1=kx+b和y2=bx+k在同一平面直角坐标系内的大致图象为()A.B.C.D.6.如图中表示一次函数y=ax+b与正比例函数y=abx(a,b是常数,且ab<0)图象的是()A.B.C.D.二.填空题(共6小题)7.一次函数y=kx+6中,当b=0时,它是一个函数,所以说正比例函数是一种的一次函数.8.函数y=(k+1)x﹣7中,当k满足时,它是一次函数.9.已知y关于x的函数y=(m+2)x+m2﹣4是正比例函数,则m的值是.10.如图,在平面直角坐标系中,已知点A(0,4),B(2,4),直线y=x+1上有一动点P,当P A=PB时,点P的坐标是.11.一次函数y=mx+n的图象如图所示,则代数式|m+n|﹣|m﹣n|化简后的结果为.12.正比例函数的图象特点:正比例函数的图象是一条的直线.三.解答题(共3小题)13.已知关于x的函数y=kx|﹣2k+3|﹣x+5是一次函数,求k的值.14.仓库内原有粉笔400盒.如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系式.题中函数是一次函数吗?为什么?15.已知y=(k﹣3)x+k2﹣9是关于x的正比例函数,求当x=﹣4时,y的值.。
一次函数基础练习题

一次函数基础练习题一、选择题(每题3分,共30分)1. 一次函数的一般形式是:A. y = kx + bB. y = kx - bC. y = x + kD. y = b + kx2. 一次函数y = 2x + 3的斜率是:A. 2B. 3C. -2D. -33. 一次函数y = -4x + 5的截距是:A. 4B. -4C. 5D. -54. 直线y = 3x - 2与x轴的交点坐标是:A. (0, -2)B. (2/3, 0)C. (0, 2)D. (2, 0)5. 直线y = 2x + 1与y轴的交点坐标是:A. (0, 1)B. (0, 2)C. (1, 0)D. (1, 2)6. 直线y = -x + 4的倾斜角是:A. 0°B. 45°C. 90°D. 180°7. 若直线y = kx + b与x轴相交,则b的值为:A. 0B. 1C. -1D. 不能确定8. 一次函数y = kx + b的图象经过第二、三、四象限时,k和b的符号为:A. k > 0, b < 0B. k < 0, b > 0C. k < 0, b < 0D. k > 0, b > 09. 一次函数y = 2x - 5的增减性是:A. 增函数B. 减函数C. 先增后减D. 先减后增10. 一次函数y = 3x + 4的图象与一次函数y = -2x + 1的图象相交于:A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(每题2分,共20分)11. 一次函数y = 5x + 7的斜率是________。
12. 当x = 1时,一次函数y = -3x + 2的函数值为________。
13. 直线y = 4x - 6与y轴的交点坐标是________。
14. 直线y = 2x - 1与x轴相交时,x的值为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、阿依扎达:这名学生是我们班的学习标兵、德育标兵,各科成绩优异,品学兼优,各科老师都喜欢,担任班里团支书一职,工作认真负责,出色完成各种工作,是老师的好助手。
但是不善于展现自己,缺乏勤学好问精神,历史和生物成绩还有很大的上升空间。
今后要努力的方向是全面发展,争做三好标兵,带动大家学习,加强和同学交流。
2、赵欣怡这名学生是我们班的班长,是一名优秀班干部,是我们班的进步之心,学习标兵、德育标兵,严格要求自己,积极进取,一直在进步。
不足之处在于缺乏勤学好问和钻研精神,虽然不偏科,但是各科成绩还有很大进步空间。
今后要努力的方向是弱的科目要多问,尤其是数学,缺乏钻研精神,带动大家学习。
3、景治奇成绩一直上不去,成绩一直处于这个位置,缺乏上进心,没有目标,比较懒。
英语下滑很大,各科成绩都不理想。
今后要改进的是做一个有上进心的人,有奋斗目标的人,多在学习上表现自己,各科权衡学习。
4、姜东东上个学习成绩名列前茅,是我们班的学习标兵,这个学期成绩下滑很大,各科成绩和以前相比全部下滑,缺乏勤学好问精神,作业完成质量差,本学期对待学习没有上个学期认真,上进心不足。
今后要努力5、孙慧杰这名学生是我们班的德育标兵、文雅之星。
能够严格要求自己,很文静。
但是成绩一直上不来,缺乏上进心,心中没奋斗目标,重来没有主动找过老师问题,缺乏勤学好问精神和认真劲。
今后要努力6、热比提该生一直偏科,偏理科,语文、英语、生物有进步,上进心很强,但是成绩不稳定,学习不扎实,一门科目进步,一门科目下滑,尤其是政史地生,进步空间很大,今后要多背,多记,家长督促孩子各科均衡学习。
7、张杨劳动标兵,劳动积极,责任心极强,关心集体,善于思考,上进心强,听课认真,不足之处在于成绩一直上不去,课后学习效率不高,粗心大意,马马虎虎,缺乏勤学好问精神,严格要求方面不够。
英语要多背单词、多读课文,各科还有很大的提升空间。
8、牛慧杰优秀班干部,担任班级卫生委员和劳动委员,工作认真负责,关心集体,乐于助人,不足之处在于学习不够认真,上进心不足,对待学习思想上有所转变,上课爱说话,听课效果不好,从来不主动问老师,缺乏目标,没有复习计划,今后要努力的方向是转变学习思想,把思想转移到学习上来,多问老师,多问同学,多背、多记9、马瑞瑞民族团结标兵,担任班级副班长,管理班级纪律。
责任心强,关系集体,尊敬师长,团结同学,不足之处在于学习马虎,不认真,懒,背的少,记得少,上进心不强,缺乏持之以恒精神和吃苦耐劳精神,自我约束力不足。
今后要加强英语、政治、历史的学习,要多背、多记、多复习巩固,把成绩提上来。
10、郑冰冰该生是我们班的团结之星,关心集体,每次手抄报和黑板报都是他和几个同学出色完成,从来不让老师操心,经常操心班里学习情况,是老师的好助手,各科老师都喜欢,不足之处:成绩不稳定,学习不扎实,上进心不如上学期,除数学外,其他科目要加把劲提上来,要多背、多记11、杨丽荣该生是我们班的德育之星,十分关系集体,关心同学,尊敬师长,待人礼貌,责任心强,思想正直,上进心强,最大的问题是缺乏勤学好问精神,尤其是数学,12、宋灿灿该生是我们班的进步之星,很关心集体,关心同学,责任心强,各科老师很喜欢,不足之处,自我约束力不够,上课话多,缺乏问的精神,有点懒,今后要努力的方向13、李建波该生诚实,本分,性格很内向,不爱说话,从来不让老师操心,不善于和同学老师交流,也很少表现自己,成绩一直上不去,不足之处在于缺乏自信,对待学习14、阿迪拉该生很安静,在班里话不多,和同学交流的少,责任心不强,上进心不足,15、张龙辉该生是我班的进步之星,这个学期进步很大,尤其是政史地生,进步很大,思想上转变是最大的,上个学习厌学,这个学期改变很大,我想这和我们的家长有很大的联系,今后要努力的方向是把数学和英语成绩提上来16、高如萍该生做事认真,态度端正,尊敬师长,团结同学,是班级的礼仪标兵,不足之处在于学习上进心不强,成绩一直不理想,这次期中成绩下滑大,英语、政治、不背、不记,这个学期与上个学期相比开始对自己放松,开始松懈,没有给自己定一个明确的目标,今后要努力的方向是给自己定任务定目标,差的科目多下功夫,系统复习各科,不断强化学习,要持之以恒,要多问17、许文雪该生安静,懂事,尊重师长,团结同学,是我们班的生活委员,责任心强,敢于担当,黑板报一直是她和几个同学负责,很关心集体,关心同学,不足之处在于成绩不理想,成绩不稳定,这次成绩下滑比较大,不足之处在于缺乏勤学好问精神,课后复习不到位,上课认真劲不足,课后没有对各科目复习巩固,今后要努力的方向是要多问多记多背多复习多强化,有计划地复习巩固18、杨菲菲该生能够严格要求自己,学习态度端正,尊敬师长,待人礼貌,不足之处在于课后不复习,课下对待学习松懈,学习成绩下滑,与上个学期比较懒,今后要努力的方向是加强各科的复习,认真做好笔记,专心听课,课下多记多背多问,要吃苦耐劳,把各科成绩提上来。
19、艾力库特该生上课反应很快,很灵活,缺乏责任心,缺乏认真劲,缺乏上进心,很懒,作业经常不交或作业不认真,心思根本不在学习上,一放学就是去打篮球,玩心很重,20、黄志龙该生是班级民族团结标兵,品质正气,待人礼貌,尊敬师长,学习态度端正,做事认真负责。
不足之处在于不会学习,学习效率低,政史地生英背的少,记得少,自觉性差,这都是没有看书复习的表现,自主学习能力差,上进心不足,缺乏勤学好问精神,今后努力的方向是一定要多问,课后复习一定要及时,多记多背,有计划地复习各科。
21、韩亚鹏该生主要是学习成绩不理想,自我约束力差,学习认真劲不能持之以恒,缺乏上进心,作业敷衍了事,懒散,不背不记,上课听课质量差,思想注意力经常不集中,今后努力的方向是转变懒散的学习思想,摆在学习态度,强化课堂学习复习,勤学好问22、闫珍珍该生学习很认真,作业完成质量高,很文静,很懂事,很乖巧,从来不让老师操心,上进心也有,最大的问题在于成绩一直不理想,背的少,没有一个复习计划,学习效率不高,学习方法要改进。
23、马金富该生是我们班的体育之星,成绩在稳步上升,担任班级体育委员,大小活动组织学生很好,在运动会上和冬季长跑上给班级增光添彩,很有责任心,团结同学,帮组老师管理班级,很懂事,不足之处在于学习成绩不理想,进步空间很大,主要在于懒,不背,不记,上课听课质量差,对待学习懒惰,课后不复习,上进心还不够,能吃苦但缺乏积极进取的精神。
今后要努力的方向加强各科目的复习工作,加强对自己的严格要求,认真对待学习,学会学习。
24、雷刘森该生有进步,老师一抓成绩有进步,思想在往好的方向转变,主要是对待学习懒,爱贪玩,不够认真,对自己要求不高,也就是上进心不足,今后要努力的方向是各科全面复习,多背多记多巩固,上课专心听讲,认真完成作业,家长对督促,多询问。
25、关春辉该生反应快,聪明,劳动积极,就是爱贪玩,玩心很重,心思没有放到学习上来,学习不认真,作业质量完成差,不背、不记、不复习,对待学习很马虎。
多次谈话交心,自我约束力很差。
今后努力的方向26、刘伟杰该生本学期和上学期相比较下滑很多,对待学习很马虎,不思进取,缺乏吃苦精神,上课注意力不集中,时常说话,精神面貌不好,今后要改进的方向是加强自我约束力,把聪明投入到学习中来,认真对待学习,多背多练,把成绩提高!27、伊克山该生本学期学习成绩大不如以前,学习态度不端正,对待学习很马虎,不认真,作业完成的差,很懒,学过的课文不复习,一副无所谓的太度,没有上进心,成绩一直在下滑,听课效果差,今后要努力的方向是首先要端正学习态度,上课认真听课,作业认真完成,多背多记,上课跟老师跟紧一点,把落下的功课不上来,把自己提上来。
28、王诗雨该生文静,诚实守信,为人正直,不足之处在于29、景天成该生喜欢画画,班级的手抄报和黑板报都是该生参与完成,在担任学生会成员期间,工作认真负责,责任心强,关系集体,劳动积极,乐于助人,缺乏自主学习,上课听课效果很差,这是主要问题,不善于动脑,学东西死,对待学习比较懒,作业完成质量不高,今后要把上课听课差的问题逐步改正,政史地生多背,多记30、阿克衣力该生学习懒散,自我约束力差,上课经常思想抛锚,心不在焉,贪玩心重,爱踢足球,学习上进心差,做事不认真,课后不记不背,上课不认真听讲,今后要努力的方向是各科目有计划的复习,跟老师跟紧一点,多问,多背,上课认真听。
31、马强该生做什么事都不是很认真,吃不了苦,贪玩,缺乏认真劲,对待学习马马虎虎,上课听课不认真,经常思想开小差,比较懒,很聪明,上进心不足,没有目标,今后要努力的方向是加强各科复习,多练多背多记,有计划地复习,上课认真听讲,作业独自完成,要积极的问老师。
32、谢文文该生有进步,但是学习态度不端正,作业完成质量差,经常不交作业,作业完成不了,上课心不在焉,听课效果差,思想经常抛锚,心思不在学习上,贪玩心重,不善于思考,不善于表现,劳动偷懒,今后要努力的方向是首先要转变学习态度,作业高质量完成,上课认真听,多背、多记,要扬长补短,家长多督促,多和老师交流,多检查学生作业完成情况。
33、侯晓萌该生很文静,很听话,从来不让老师操心,作业按时完成,遵守学校规章制度,不足之处在于成绩很不理想,各科目都比较差,不背,不记,不复习,上进心差,缺乏自信心,不善于表现,今后要努力的方向是把政史地生多背多记多看。
34、云天将该生很听话,做事很认真,不爱说话,做事情比较慢,劳动积极,肯干,很少让老师操心,主要是学习效果不好,成绩一直不好,学的很认真,成绩上不来,学习方法有待改善,要学会扬长补短,今后把政史地生科目多下功夫,要背,要记,要多动脑思考。
35、陈江学该生学习问题很大,作业质量差,经常不交作业,平时上课喜欢干与上课无关的事,喜欢说话,思想经常抛锚。
36、刘家麟这孩子劳动可以。
最大的问题是不学习,各科作业经常不写,思想涣散,懒,自我约束力差,厌学。
思想需要转变,家长在家多督促孩子完成作业,看书。